std::ranges::partition_point - cppreference.com (original) (raw)

Defined in header
Call signature
template< std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred > constexpr I partition_point( I first, S last, Pred pred, Proj proj = {} ); (1) (since C++20)
template< ranges::forward_range R, class Proj = std::identity, std::indirect_unary_predicate< std::projected<ranges::iterator_t<R>, Proj>> Pred > constexpr ranges::borrowed_iterator_t<R> partition_point( R&& r, Pred pred, Proj proj = {} ); (2) (since C++20)

Examines the partitioned (as if by ranges::partition) range [first, last) or r and locates the end of the first partition, that is, the projected element that does not satisfy pred or last if all projected elements satisfy pred.

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

[edit] Parameters

first, last - the iterator-sentinel pair defining the partially-ordered range of elements to examine
r - the partially-ordered range to examine
pred - predicate to apply to the projected elements
proj - projection to apply to the elements

[edit] Return value

The iterator past the end of the first partition within [first, last) or the iterator equal to last if all projected elements satisfy pred.

[edit] Complexity

Given N = ranges::distance(first, last), performs O(log N) applications of the predicate pred and projection proj.

However, if sentinels don't model std::sized_sentinel_for<I>, the number of iterator increments is O(N).

[edit] Notes

This algorithm is a more general form of ranges::lower_bound, which can be expressed in terms of ranges::partition_point with the predicate [&](auto const& e) { return std::invoke(pred, e, value); });.

[edit] Example

#include #include #include #include   auto print_seq = [](auto rem, auto first, auto last) { for (std::cout << rem; first != last; std::cout << *first++ << ' ') {} std::cout << '\n'; };   int main() { std::array v {1, 2, 3, 4, 5, 6, 7, 8, 9};   auto is_even = [](int i) { return i % 2 == 0; };   std::ranges::partition(v, is_even); print_seq("After partitioning, v: ", v.cbegin(), v.cend());   const auto pp = std::ranges::partition_point(v, is_even); const auto i = std::ranges::distance(v.cbegin(), pp); std::cout << "Partition point is at " << i << "; v[" << i << "] = " << *pp << '\n';   print_seq("First partition (all even elements): ", v.cbegin(), pp); print_seq("Second partition (all odd elements): ", pp, v.cend()); }

Possible output:

After partitioning, v: 2 4 6 8 5 3 7 1 9 Partition point is at 4; v[4] = 5 First partition (all even elements): 2 4 6 8 Second partition (all odd elements): 5 3 7 1 9

[edit] See also