std::numeric_limits::epsilon - cppreference.com (original) (raw)
| static T epsilon() throw(); | | (until C++11) | | -------------------------------------- | | ------------- | | static constexpr T epsilon() noexcept; | | (since C++11) |
Returns the machine epsilon, that is, the difference between 1.0 and the next value representable by the floating-point type T. It is only meaningful if std::numeric_limits<T>::is_integer == false.
[edit] Return value
| T | std::numeric_limits<T>::epsilon() |
|---|---|
| /* non-specialized */ | T() |
| bool | false |
| char | 0 |
| signed char | 0 |
| unsigned char | 0 |
| wchar_t | 0 |
| char8_t (since C++20) | 0 |
| char16_t (since C++11) | 0 |
| char32_t (since C++11) | 0 |
| short | 0 |
| unsigned short | 0 |
| int | 0 |
| unsigned int | 0 |
| long | 0 |
| unsigned long | 0 |
| long long (since C++11) | 0 |
| unsigned long long(since C++11) | 0 |
| float | FLT_EPSILON |
| double | DBL_EPSILON |
| long double | LDBL_EPSILON |
[edit] Example
Demonstrates the use of machine epsilon to compare floating-point values for equality:
#include
#include
#include
#include
#include
#include
#include
template
std::enable_if_t<not std::numeric_limits::is_integer, bool>
equal_within_ulps(T x, T y, std::size_t n)
{
// Since epsilon() is the gap size (ULP, unit in the last place)
// of floating-point numbers in interval [1, 2), we can scale it to
// the gap size in interval [2^e, 2^{e+1}), where e is the exponent
// of x and y.
// If x and y have different gap sizes (which means they have
// different exponents), we take the smaller one. Taking the bigger
// one is also reasonable, I guess.
const T m = std::min(std::fabs(x), std::fabs(y));
// Subnormal numbers have fixed exponent, which is min_exponent - 1.
const int exp = m < std::numeric_limits::min()
? std::numeric_limits::min_exponent - 1
: std::ilogb(m);
// We consider x and y equal if the difference between them is
// within n ULPs.
return std::fabs(x - y) <= n * std::ldexp(std::numeric_limits::epsilon(), exp);
}
int main()
{
double x = 0.3;
double y = 0.1 + 0.2;
std::cout << std::hexfloat;
std::cout << "x = " << x << '\n';
std::cout << "y = " << y << '\n';
std::cout << (x == y ? "x == y" : "x != y") << '\n';
for (std::size_t n = 0; n <= 10; ++n)
if (equal_within_ulps(x, y, n))
{
std::cout << "x equals y within " << n << " ulps" << '\n';
break;
}
}
Output:
x = 0x1.3333333333333p-2 y = 0x1.3333333333334p-2 x != y x equals y within 1 ulps