Linear Equations and Problems of Mathematical Physics (original) (raw)
![]() |
EqWorld The World of Mathematical Equations | ![]() |
|---|
Home Page Exact Solutions Methods Software Education For Authors Math Forums
Mathematical Books >Handbook of Mathematics for Engineers and Scientists > Contents > T8. Linear Equations and Problems of Mathematical Physics
T8. Linear Equations and Problems of Mathematical Physics
- T8.1. Parabolic Equations
- T8.1.1. Heat Equation w t = aw xx
- T8.1.2. Nonhomogeneous Heat Equation w t = aw xx + Φ(x, t)
- T8.1.3. Equation of the Form w t = aw xx + bw x + cw + Φ(x, t)
- T8.1.4. Heat Equation with Axial Symmetry w t = a(w rr + r_−1_w r)
- T8.1.5. Equation of the Form w t = a(w rr + r_−1_w r) + Φ(r, t)
- T8.1.6. Heat Equation with Central Symmetry w t = a(w rr + 2_r_−1_w_ r)
- T8.1.7. Equation of the Form w t = a(w rr + 2_r_−1_w_ r) + Φ(r, t)
- T8.1.8. Equation of the Form w t = aw xx + (1 − 2β)x_−1_wx
- T8.1.9. Equations of the Diffusion (Thermal) Boundary Layer
- T8.1.10. Schrodinger Equation i w t = −kw xx + U(x)w
- T8.2. Hyperbolic Equations
- T8.2.1. Wave Equation w tt = a_2_w xx
- T8.2.2. Equation of the Form w tt = a_2_w xx + Φ(x, t)
- T8.2.3. Klein--Gordon Equation w tt = a_2_w xx − bw
- T8.2.4. Equation of the Form w tt = a_2_w xx − bw + Φ(x, t)
- T8.2.5. Equation of the Form w tt = _a_2(w rr + r_−1_w r) + Φ(r, t)
- T8.2.6. Equation of the Form w tt = a_2(w rr + 2_r_−1_w r) + Φ(r, t)
- T8.2.7. Equations of the Form w tt + k w t = a_2_w xx + bw
- T8.3. Elliptic Equations
- T8.3.1. Laplace Equation Δ_w_ = 0
- T8.3.2. Poisson Equation Δ_w_ + Φ(x) = 0
- T8.3.3. Helmholtz Equation Δ_w_ + λ_w_ = −Φ(x)
- T8.4. Fourth-Order Linear Equations
- T8.4.1. Equation of the Form w tt + a_2_w xxxx = 0
- T8.4.2. Equation of the Form w tt + a_2_w xxxx = Φ(x, t)
- T8.4.3. Biharmonic Equation ΔΔ_w_ = 0
- T8.4.4. Nonhomogeneous Biharmonic Equation ΔΔ_w_ = Φ(x, y)
- References for Chapter T8
The EqWorld website presents extensive information on solutions to various classes of ordinary differential equations, partial differential equations, integral equations, functional equations, and other mathematical equations.
Copyright © 2004-2017 Andrei D. Polyanin

