Ordinary Differential Equations - EqWorld (original) (raw)
EqWorld The World of Mathematical Equations |
---|
Home Page Exact Solutions Methods Software Education About This Site Math Forums
Exact Solutions >Ordinary Differential Equations > First-Order Ordinary Differential Equations
1. First-Order Ordinary Differential Equations
- _y_′ =f(y). Autonomous equation.
- _y_′ =f(x)g(y). Separable equation.
- g(x)_y_′ =_f_1(x)y +_f_0(x). Linear equation.
- g(x)_y_′ =_f_1(x)y +f n(x)y n. Bernoulli equation.
- _y_′ =f(y/x). Homogeneous equation
- _y_′ = _ay_2 +bx n. Special Riccati equation.
- _y_′ = _y_2 +f(x)y −_a_2 − af(x). Riccati equation, special case 1.
- _y_′ =f(x)y_2 +ay − ab −_b_2_f(x). Riccati equation, special case 2.
- _y_′ = _y_2 +xf(x)y +f(x). Riccati equation, special case 3.
- _y_′ =f(x)y_2 −_ax n f(x)y + anx _n_−1. Riccati equation, special case 4.
- _y_′ =f(x)_y_2 +anx n_−1 −_a_2_x_2_n f(x). Riccati equation, special case 5.
- y_′ = −(n + 1)x n y_2 +x n+1_f(x)y −_f(x). Riccati equation, special case 6.
- x _y_′ =f(x)_y_2 +ny + ax_2_n f(x). Riccati equation, special case 7.
- x _y_′ =x_2_n f(x)y_2 + [ax n f(x) −_n]y +bf(x). Riccati equation, special case 8.
- y_′ =f(x)y_2 +g(x)y −_a_2_f(x) −_ag(x). Riccati equation, special case 9.
- _y_′ =f(x)y_2 +g(x)y +anx n_−1 −_a_2_x_2_n f(x) −_ax n g(x). Riccati equation, special case 10.
- _y_′ =ae λx _y_2 +ae λx f(x)y +λ f(x). Riccati equation, special case 11.
- _y_′ =f(x)y_2 −_ae λx f(x)y +aλe λx. Riccati equation, special case 12.
- _y_′ =f(x)y_2 +aλe λx −_a_2_e_2_λx f(x). Riccati equation, special case 13.
- _y_′ =f(x)_y_2 +λy + ae_2_λx f(x). Riccati equation, special case 14.
- _y_′ =_y_2 −_f_2(x) +_f_′(x). Riccati equation, special case 15.
- _y_′ =f(x)y_2 −_f(x)g(x)y +_g_′(x). Riccati equation, special case 16.
- _y_′ =f(x)_y_2 +g(x)y +h(x). General Riccati equation.
- _yy_′ =y + f(x). Abel equation of the second kind in the canonical form.
- _yy_′ =f(x)y + g(x). Abel equation of the second kind.
- _yy_′ =f(x)_y_2 +g(x)y +h(x). Abel equation of the second kind.
- _y_′ =f(ax + by + c).
- y_′ =f(y +ax n + b) −_anx _n_−1.
- _y_′ = (y/x)f(x n y m). Generalized homogeneous equation.
- _y_′ = −(n/m)(y/x) +y k f(x)g(x n y m).
- _y_′ =f((ax +by + c)/(αx + βy +γ)).
- _y_′ =x n_−1_y_1−_m f(ax n +by m).
- [x n f(y) +xg(y)]_y_′ =h(y).
- x[f(x n y m) +m x k g(x n y m)]y_′ =y[h(x n y m) −_n x k g(x n y m)].
- x[f(x n y m) +m y k g(x n y m)]y_′ =y[h(x n y m) −_n y k g(x n y m)].
- x[sf(x n y m) −mg(x k y s)]y_′ =y[ng(x k y s) −_kf(x n y m)].
- [f(y) +amx n y _m_−1]_y_′ +g(x) +anx n_−1_y m = 0.
- _y_′ =e_−_λx f(e λx y).
- _y_′ =e λy f(e λy x).
- _y_′ =yf(e αx y m).
- _y_′ =x_−1_f(x n e αy).
- _y_′ =f(x)e λy +g(x).
- _y_′ = −_nx_−1 +f(x)g(x n e y).
- _y_′ = −(α/m)y +y k f(x)g(e αx y m).
- _y_′ =e αx_−_βy f(ae αx +be βy).
- [e αx f(y) +aβ]_y_′ +e βy g(x) + aα = 0.
- x[f(x n e αy) +αyg(x n e αy)]y_′ =h(x n e αy) −_nyg(x n e αy).
- [f(e αx y m) +mxg(e αx y m)]y_′ =y[h(e αx y m) −_αxg(e αx y m)].
The EqWorld website presents extensive information on solutions to various classes ofordinary differential equations,partial differential equations,integral equations,functional equations, and other mathematical equations.
Copyright © 2004-2017 Andrei D. Polyanin