Systems of Ordinary Differential Equations (original) (raw)

EqWorld logo EqWorld The World of Mathematical Equations IPM Logo

Home Page Exact Solutions Methods Software Education About This Site Math Forums

Exact Solutions >Systems of Ordinary Differential Equations > Nonlinear Systems of Two Ordinary Differential Equations

PDF version of this page

3. Nonlinear Systems of Two Ordinary Differential Equations

3.1. Systems of First-Order Ordinary Differential Equations;x = x(t), y = y(t)

  1. _x_′ = x n F(x, y), _y_′ = g(y) F(x, y).
  2. _x_′ = e_λ_x F(x, y), _y_′ = g(y) F(x, y).
  3. _x_′ = F(x, y), _y_′ = G(x, y).Autonomous system of general form.
  4. _x_′ = _f_1(x) _g_1(y) Φ(x, y, t), _y_′ = _f_2(x) _g_2(y) Φ(x, y, t).
  5. x = _tx_′ + F(_x_′, _y_′), y = _ty_′ + G(_x_′, _y_′).Clairaut system.

3.2. Systems of Second-Order Ordinary Differential Equations;x = x(t), y = y(t)

  1. _x_″ = xf(axby) + g(axby), _y_″ = yf(axby) + h(axby).
  2. _x_″ = xf(y/x), _y_″ = yg(y/x).
  3. _x_″ = _kxr_−3, _y_″ = _kyr_−3; r = (_x_2 + _y_2)1/2.Equations of motion of a point mass in gravitational field.
  4. _x_″ = xf(r), _y_″ = yf(r); r = (_x_2 + _y_2)1/2.Equations of motion of a point mass in central force field.
  5. _x_″ = xf(_x_2 + _y_2, y/x) − yg(y/x), _y_″ = yf(_x_2 + _y_2, y/x) + xg(y/x).
  6. x_″ = −_f(y)g(v)_x_′, y_″ = −_f(y)g(v)_y_′ − a; v = [(_x_′)2 + (_y_′)2]1/2.Equations of motion of a projectile.
  7. _x_″ + a(t)x = x_−3_f(y/x), _y_″ + a(t)y = y_−3_g(y/x).Generalized Ermakov (Yermakov) system.
  8. _x_″ = x_−3_F(x/φ(t), y/φ(t)), _y_″ = y_−3_G(x/φ(t), y/φ(t)); φ(t) = (_at_2 + bt + c)1/2.
  9. _x_″ = f(_y_′/_x_′), _y_″ = g(_y_′/_x_′).
  10. _x_″ = _x_Φ(x, y, t, _x_′, _y_′), _y_″ = _y_Φ(x, y, t, _x_′, _y_′).
  11. _x_″ + x_−3_f(y/x) =_x_Φ(x, y, t, _x_′, _y_′), _y_″ + y_−3_g(y/x) =_y_Φ(x, y, t, _x_′, _y_′).
  12. _x_″ = F(t, _tx_′ − x, _ty_′ − y), _y_″ = G(t, _tx_′ − x, _ty_′ − y).
  13. _x_″ = _x_′Φ(x, y, t, _x_′, _y_′) + f(y), _y_″ = −_y_′Φ(x, y, t, _x_′, _y_′) + g(x).
  14. _x_″ = _ay_′Φ(x, y, t, _x_′, _y_′) + f(x), _y_″ = _bx_′Φ(x, y, t, _x_′, _y_′) + g(y).
  15. _x_″ = f(_y_′)Φ(x, y, t, _x_′, _y_′), _y_″ = g(_x_′)Φ(x, y, t, _x_′, _y_′).

The EqWorld website presents extensive information on solutions to various classes ofordinary differential equations,partial differential equations,integral equations,functional equations, and other mathematical equations.

Copyright © 2004-2017 Andrei D. Polyanin