Systems of Ordinary Differential Equations (original) (raw)
![]() |
EqWorld The World of Mathematical Equations | ![]() |
|---|
Home Page Exact Solutions Methods Software Education About This Site Math Forums
Exact Solutions >Systems of Ordinary Differential Equations > Nonlinear Systems of Three or More Ordinary Differential Equations
4. Nonlinear Systems of Three or More Ordinary Differential Equations
4.1. Systems of First-Order Ordinary Differential Equations;x = x(t), y = y(t),z = z(t)
- _ax_′ = (b − c)yz, _by_′ = (c − a)zx, _cz_′ = (a − b)xy.
- _ax_′ = (b − c)yzf(x, y, z, t), _by_′ = (c − a)zxf(x, y, z, t), _cz_′ = (a − b)xyf(x, y, z, t).
- _x_′ = a(y − x), _y_′ = bx − y − xz, z_′ = −_cz + xy.Lorenz equations.
- _x_′ = _cF_2 − _bF_3, _y_′ = _aF_3 − _cF_1, _z_′ = _bF_1 − _aF_2, where F n = F n(x, y, z, t).
- _x_′ = _czF_2 − _byF_3, _y_′ = _axF_3 − _czF_1, _z_′ = _byF_1 − _axF_2, where F n = F n(x, y, z, t).
- _x_′ = x(_cF_2 − _bF_3), _y_′ = y(_aF_3 − _cF_1), _z_′ = z(_bF_1 − _aF_2), where F n = F n(x, y, z, t).
- _x_′ = h(z)_F_2 − g(y)_F_3, _y_′ = f(x)_F_3 − h(z)_F_1, _z_′ = g(y)_F_1 − f(x)_F_2where F n = F n(x, y, z, t).
7a. Systems of nonlinear ODEs with homogeneous right-hand sides.
4.2. Systems of Second-Order Ordinary Differential Equations; x = x(t), y = y(t), z = z(t)
- _x_″ = F x, _y_″ = F y, _z_″ = F z, where F = F(r), r = (_x_2 + _y_2 + _z_2)1/2.
- _x_″ = xF, _y_″ = yF, _z_″ = zF, where F = F(x, y, z, t, _x_′, _y_′, _z_′).
- _x_″ = _F_1, _y_″ = _F_2, _z_″ = _F_3, where Fn = Fn(t, _tx_′ − x,_ty_′ − y, _tz_′ − z).
- _x_″ = _cF_2 − _bF_3, _y_″ = _aF_3 − _cF_1, _z_″ = _bF_1 − _aF_2, where F = F(x, y, z, t, _x_′, _y_′, _z_′).
The EqWorld website presents extensive information on solutions to various classes ofordinary differential equations,partial differential equations,integral equations,functional equations, and other mathematical equations.
Copyright © 2004-2017 Andrei D. Polyanin

