GCC Bugs
Table of Contents
Reporting Bugs
A good bug report, which is complete and self-contained, enables us to fix the bug.
Before you report a bug, please check the list of well-known bugs and, if possible, try a current release or development snapshot.
Before reporting that GCC compiles your code incorrectly, compile it with gcc -Wall -Wextra
and see whether this shows anything wrong with your code. Similarly, if compiling with-fno-strict-aliasing -fwrapv -fno-aggressive-loop-optimizations
makes a difference, or if compiling with -fsanitize=address,undefined
produces any run-time errors, then your code is probably not correct.
We also ask that for C++ code, users test their programs with-D_GLIBCXX_ASSERTIONS
. If you're able to rebuild the entire program (including any libraries it uses, because it changes ABI), please do try libstdc++'s debug mode(-D_GLIBCXX_DEBUG
) which enables more thorough checking in parts of the C++ standard library. If either of these fail, this is a strong indicator of an error in your code.
Summarized bug reporting instructions
After this summary, you'll find detailed instructions that explain how to obtain some of the information requested in this summary.
What we need
Please include all of the following items, the first three of which can be obtained from the output of gcc -v
:
- the exact version of GCC;
- the system type;
- the options given when GCC was configured/built;
- the complete command line that triggers the bug;
- the compiler output (error messages, warnings, etc.); and
- the preprocessed file (
*.i*
) that triggers the bug, generated by adding-save-temps
to the complete compilation command, or, in the case of a bug report for the GNAT front end, a complete set of source files (see below).
What we do not want
- A source file that
#include
s header files that are left out of the bug report (see above) - That source file and a collection of header files.
- An attached archive (tar, zip, shar, whatever) containing all (or some) of the above.
- A code snippet that won't cause the compiler to produce the exact output mentioned in the bug report (e.g., a snippet with just a few lines around the one that apparently triggers the bug, with some pieces replaced with ellipses or comments for extra obfuscation :-)
- The location (URL) of the package that failed to build (we won't download it, anyway, since you've already given us what we need to duplicate the bug, haven't you? :-)
- An error that occurs only some of the times a certain file is compiled, such that retrying a sufficient number of times results in a successful compilation; this is a symptom of a hardware problem, not of a compiler bug (sorry).
- Assembly files (
*.s
) produced by the compiler, or any binary files, such as object files, executables, core files, or precompiled header files. - Duplicate bug reports, or reports of bugs already fixed in the development tree, especially those that have already been reported as fixed last week :-)
- Bugs in the assembler, the linker or the C library. These are separate projects, with separate mailing lists and different bug reporting procedures.
- Bugs in unofficial releases or snapshots of GCC not issued by the GCC project. Report them to whoever provided you with that version.
- Questions about the correctness or the expected behavior of certain constructs that are not GCC extensions. Ask them in forums dedicated to the discussion of the programming language.
- Violations of the Code of Conduct.
Where to post it
Please submit your bug report directly to theGCC bug tracker.
The GCC bug tracker requires you to create an account with a valid e-mail address. This is not merely to be annoying. It's because in the past spammers have filed fake bug reports, and fake attachments to real bug reports, to distribute malware and to add links to their spam web sites. Requiring a valid e-mail address is a partial deterrent to this. We apologize for the inconvenience.
Detailed bug reporting instructions
Please refer to the next section when reporting bugs in GNAT, the Ada compiler, or to the one after that when reporting bugs that appear when using a precompiled header.
In general, all the information we need can be obtained by collecting the command line below, as well as its output and the preprocessed file it generates.
gcc -v -save-temps _all-your-options source-file_
The preprocessed source is the basic requirement to fix a bug. However, providing a minimal testcaseincreases the chances of getting your bug fixed. The onlyexcuses to not send us the preprocessed sources are (i) if you've found a bug in the preprocessor, (ii) if you've reduced the testcase to a small file that doesn't include any other file or (iii) if the bug appears only when using precompiled headers. If you can't post the preprocessed sources because they're proprietary code, then try to create a small file that triggers the same problem.
Since we're supposed to be able to re-create the assembly output (extension .s
), you usually should not include it in the bug report, although you may want to post parts of it to point out assembly code you consider to be wrong.
Please avoid posting an archive (.tar, .shar or .zip); we generally need just a single file to reproduce the bug (the .i/.ii/.f preprocessed file), and, by storing it in an archive, you're just making our volunteers' jobs harder. Only when your bug report requires multiple source files to be reproduced should you use an archive. This is, for example, the case if you are using INCLUDE
directives in Fortran code, which are not processed by the preprocessor, but the compiler. In that case, we need the main file and all INCLUDE
d files. In any case, make sure the compiler version, error message, etc, are included in the body of your bug report as plain text, even if needlessly duplicated as part of an archive.
Detailed bug reporting instructions for GNAT
See the previous section for bug reporting instructions for GCC language implementations other than Ada.
Bug reports have to contain at least the following information in order to be useful:
- the exact version of GCC, as shown by "
gcc -v
"; - the system type;
- the options when GCC was configured/built;
- the exact command line passed to the
gcc
program triggering the bug (not just the flags passed tognatmake
, butgnatmake
prints the parameters it passed togcc
) - a collection of source files for reproducing the bug, preferably a minimal set (see below);
- a description of the expected behavior;
- a description of actual behavior.
If your code depends on additional source files (usually package specifications), submit the source code for these compilation units in a single file that is acceptable input to gnatchop
, i.e. contains no non-Ada text. If the compilation terminated normally, you can usually obtain a list of dependencies using the "gnatls -d _mainunit_
" command, where_mainunit_
is the file name of the main compilation unit (which is also passed to gcc
).
If you report a bug which causes the compiler to print a bug box, include that bug box in your report, and do not forget to send all the source files listed after the bug box along with your report.
If you use gnatprep
, be sure to send in preprocessed sources (unless you have to report a bug in gnatprep
).
When you have checked that your report meets these criteria, please submit it according to our generic instructions. (If you use a mailing list for reporting, please include an "[Ada]
" tag in the subject.)
Detailed bug reporting instructions when using a precompiled header
If you're encountering a bug when using a precompiled header, the first thing to do is to delete the precompiled header, and try running the same GCC command again. If the bug happens again, the bug doesn't really involve precompiled headers, please report it without using them by following the instructions above.
If you've found a bug while building a precompiled header (for instance, the compiler crashes), follow the usual instructionsabove.
If you've found a real precompiled header bug, what we'll need to reproduce it is the sources to build the precompiled header (as a single .i
file), the source file that uses the precompiled header, any other headers that source file includes, and the command lines that you used to build the precompiled header and to use it.
Please don't send us the actual precompiled header. It is likely to be very large and we can't use it to reproduce the problem.
Frequently Reported Bugs
There are many reasons why a reported bug doesn't get fixed. It might be difficult to fix, or fixing it might break compatibility. Often, reports get a low priority when there is a simple work-around. In particular, bugs caused by invalid code have a simple work-around:fix the code.
Non-bugs
The following are not actually bugs, but are reported often enough to warrant a mention here.
It is not always a bug in the compiler, if code which "worked" in a previous version, is now rejected. Earlier versions of GCC sometimes were less picky about standard conformance and accepted invalid source code. In addition, programming languages themselves change, rendering code invalid that used to be conforming (this holds especially for C++). In either case, you should update your code to match recent language standards.
General
Problems with floating point numbers - themost often reported non-bug.
In a number of cases, GCC appears to perform floating point computations incorrectly. For example, the C++ program
#include
int main() { double a = 0.5; double b = 0.01; std::cout << (int)(a / b) << std::endl; return 0; }
might print 50 on some systems and optimization levels, and 49 on others.
This is the result of rounding: The computer cannot represent all real numbers exactly, so it has to use approximations. When computing with approximation, the computer needs to round to the nearest representable number.
This is an inherent limitation of floating point types, not a bug. See Goldberg's What Every Computer Scientist Should Know about Floating-Point Arithmeticfor more information.
C
Increment/decrement operator (++
/--
) not working as expected - a problem with many variations.
The following expressions have unpredictable results:
x[i]=++i foo(i,++i) i*(++i) /* special case with foo=="operator*" / std::cout << i << ++i / foo(foo(std::cout,i),++i) */
since the i
without increment can be evaluated before or after ++i
.
The C and C++ standards have the notion of "sequence points". Everything that happens between two sequence points happens in an unspecified order, but it has to happen after the first and before the second sequence point. The end of a statement and a function call are examples for sequence points, whereas assignments and the comma between function arguments are not.
Modifying a value twice between two sequence points as shown in the following examples is even worse:
i=++i foo(++i,++i) (++i)(++i) / special case with foo=="operator*" / std::cout << ++i << ++i / foo(foo(std::cout,++i),++i) */
This leads to undefined behavior (i.e. the compiler can do anything).
Casting does not work as expected when optimization is turned on.
This is often caused by a violation of aliasing rules, which are part of the ISO C standard. These rules say that a program is invalid if you try to access a variable through a pointer of an incompatible type. This is happening in the following example where a short is accessed through a pointer to integer (the code assumes 16-bit short
s and 32-bitint
s):
#include <stdio.h>
int main() { short a[2];
a[0]=0x1111; a[1]=0x1111;
*(int )a = 0x22222222; / violation of aliasing rules */
printf("%x %x\n", a[0], a[1]); return 0; }
The aliasing rules were designed to allow compilers more aggressive optimization. Basically, a compiler can assume that all changes to variables happen through pointers or references to variables of a type compatible to the accessed variable. Dereferencing a pointer that violates the aliasing rules results in undefined behavior.
In the case above, the compiler may assume that no access through an integer pointer can change the array a
, consisting of shorts. Thus, printf
may be called with the original values ofa[0]
and a[1]
. What really happens is up to the compiler and may change with architecture and optimization level.
Recent versions of GCC turn on the option -fstrict-aliasing
(which allows alias-based optimizations) by default with -O2
. And some architectures then really print "1111 1111" as result. Without optimization the executable will generate the "expected" output "2222 2222".
To disable optimizations based on alias-analysis for faulty legacy code, the option -fno-strict-aliasing
can be used as a work-around.
The option -Wstrict-aliasing
(which is included in-Wall
) warns about some - but not all - cases of violation of aliasing rules when -fstrict-aliasing
is active.
To fix the code above, you can use a union
instead of a cast (note that this is a GCC extension which might not work with other compilers):
#include <stdio.h>
int main() { union { short a[2]; int i; } u;
u.a[0]=0x1111; u.a[1]=0x1111;
u.i = 0x22222222;
printf("%x %x\n", u.a[0], u.a[1]); return 0; }
Now the result will always be "2222 2222".
For some more insight into the subject, please have a look atthis article.
Loops do not terminate
This is often caused by out-of-bound array accesses or by signed integer overflow which both result in undefined behavior according to the ISO C standard. For example
int SATD (int* diff, int use_hadamard) { int k, satd = 0, m[16], dd, d[16]; ... for (dd=d[k=0]; k<16; dd=d[++k]) satd += (dd < 0 ? -dd : dd);
accesses d[16]
before the loop is exited with the k<16
check. This causes the compiler to optimize away the exit test because the new value of k
must be in the range [0, 15]
according to ISO C.
GCC starting with version 4.8 has a new option-fno-aggressive-loop-optimizations
that may help here. If it does, then this is a clear sign that your code is not conforming to ISO C and it is not a GCC bug.
Cannot use preprocessor directive in macro arguments.
Let me guess... you used an older version of GCC to compile code that looks something like this:
memcpy(dest, src, #ifdef PLATFORM1 12 #else 24 #endif );
and you got a whole pile of error messages:
test.c:11: warning: preprocessing directive not recognized within macro arg test.c:11: warning: preprocessing directive not recognized within macro arg test.c:11: warning: preprocessing directive not recognized within macro arg test.c: In function
foo': test.c:6: undefined or invalid # directive test.c:8: undefined or invalid # directive test.c:9: parse error before
24' test.c:10: undefined or invalid # directive
This is because your C library's <string.h>
happens to define memcpy
as a macro - which is perfectly legitimate. In recent versions of glibc, for example, printf
is among those functions which are implemented as macros.
Versions of GCC prior to 3.3 did not allow you to put #ifdef
(or any other preprocessor directive) inside the arguments of a macro. The code therefore would not compile.
As of GCC 3.3 this kind of construct is always accepted and the preprocessor will probably do what you expect, but see the manual for detailed semantics.
However, this kind of code is not portable. It is "undefined behavior" according to the C standard; that means different compilers may do different things with it. It is always possible to rewrite code which uses conditionals inside macros so that it doesn't. You could write the above example
#ifdef PLATFORM1 memcpy(dest, src, 12); #else memcpy(dest, src, 24); #endif
This is a bit more typing, but I personally think it's better style in addition to being more portable.
Cannot initialize a static variable with stdin
.
This has nothing to do with GCC, but people ask us about it a lot. Code like this:
#include <stdio.h>
FILE *yyin = stdin;
will not compile with GNU libc, because stdin
is not a constant. This was done deliberately, to make it easier to maintain binary compatibility when the type FILE
needs to be changed. It is surprising for people used to traditional Unix C libraries, but it is permitted by the C standard.
This construct commonly occurs in code generated by old versions of lex or yacc. We suggest you try regenerating the parser with a current version of flex or bison, respectively. In your own code, the appropriate fix is to move the initialization to the beginning of main.
There is a common misconception that the GCC developers are responsible for GNU libc. These are in fact two entirely separate projects; please check theGNU libc web pagesfor details.
C++
Functions can be called without qualifying them with their namespace.
Argument Dependent Lookup (ADL) means that functions can be found in namespaces associated with their arguments. This means that move(arg)
can call std::move
if arg
is a type defined in namespacestd
, such as std::string
or std::vector
. If std::move
is not the function you intended to call, use a qualified name such as ::move(arg)
or foo::move(arg)
.
Nested classes can access private members and types of the containing class.
Defect report 45 clarifies that nested classes are members of the class they are nested in, and so are granted access to private members of that class.
G++ emits two copies of constructors and destructors.
In general there are three types of constructors (and destructors).
- The complete object constructor/destructor.
- The base object constructor/destructor.
- The allocating constructor/deallocating destructor.
The first two are different, when virtual base classes are involved.
Global destructors are not run in the correct order.
Global destructors should be run in the reverse order of their constructors completing. In most cases this is the same as the reverse order of constructors starting, but sometimes it is different, and that is important. You need to compile and link your programs with --use-cxa-atexit
. We have not turned this switch on by default, as it requires a cxa
aware runtime library (libc
, glibc
, or equivalent).
Classes in exception specifiers must be complete types.
[15.4]/1 tells you that you cannot have an incomplete type, or pointer to incomplete (other than _cv_ void *
) in an exception specification.
Exceptions don't work in multithreaded applications.
You need to rebuild g++ and libstdc++ with--enable-threads
. Remember, C++ exceptions are not like hardware interrupts. You cannot throw an exception in one thread and catch it in another. You cannot throw an exception from a signal handler and catch it in the main thread.
Templates, scoping, and digraphs.
If you have a class in the global namespace, say named X
, and want to give it as a template argument to some other class, saystd::vector
, then std::vector<::X>
fails with a parser error in C++98/C++03 mode.
The reason is that the C++98 standard mandates that the sequence<:
is treated as if it were the token [
. (There are several such combinations of characters - they are called_digraphs_.) Depending on the version, the compiler then reports a parse error before the character :
(the colon beforeX
) or a missing closing bracket ]
.
The simplest way to avoid this is to write std::vector< ::X>
, i.e. place a space between the opening angle bracket and the scope operator, or compile using C++11 or later. Defect report 1104 changed the parser rules so that <::
works as expected.
Common problems when upgrading the compiler
GCC maintains a 'Porting to' resource for new versions:GCC 15 | GCC 14 |GCC 13 | GCC 12 |GCC 11 | GCC 10 |GCC 9 | GCC 8 |GCC 7 | GCC 6 |GCC 5 | GCC 4.9 |GCC 4.8 | GCC 4.7 | GCC 4.6 | GCC 4.4 |GCC 4.3.
ABI changes
The C++ application binary interface (ABI) consists of two components: the first defines how the elements of classes are laid out, how functions are called, how function names are mangled, etc; the second part deals with the internals of the objects in libstdc++. For C++ standards marked asexperimental, stable ABI is not guaranteed: for these, if you change your compiler to a different major release you must recompile any libraries that were built using a C++ -std= flag that was still experimental. If you fail to do so, you risk getting linker errors or malfunctioning programs. It should not be necessary to recompile for C++ standards supported fully by GCC, such as the default standard. See also thecompatibility section of the GCC manual.
Standard conformance
With each release, we try to make G++ conform closer to the ISO C++ standard.
Non-conforming legacy code that worked with older versions of GCC may be rejected by more recent compilers. There is no command-line switch to ensure compatibility in general, because trying to parse standard-conforming and old-style code at the same time would render the C++ front end unmaintainable. However, some non-conforming constructs are allowed when the command-line option -fpermissive
is used.
The manual contains a section onCommon Misunderstandings with GNU C++.