LLVM: lib/Transforms/Utils/SimplifyLibCalls.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
39
40#include
41
42using namespace llvm;
43using namespace PatternMatch;
44
48 cl::desc("Enable unsafe double to float "
49 "shrinking for math lib calls"));
50
51
52
53
56 cl::desc("Enable hot/cold operator new library calls"));
60 "Enable optimization of existing hot/cold operator new library calls"));
61
62namespace {
63
64
65
66
67struct HotColdHintParser : public cl::parser {
69
72 return O.error("'" + Arg + "' value invalid for uint argument!");
73
75 return O.error("'" + Arg + "' value must be in the range [0, 255]!");
76
77 return false;
78 }
79};
80
81}
82
83
84
85
86
89 cl::desc("Value to pass to hot/cold operator new for cold allocation"));
92 cl::desc("Value to pass to hot/cold operator new for "
93 "notcold (warm) allocation"));
96 cl::desc("Value to pass to hot/cold operator new for hot allocation"));
97
98
99
100
101
103 return Func == LibFunc_abs || Func == LibFunc_labs ||
104 Func == LibFunc_llabs || Func == LibFunc_strlen;
105}
106
107
109 for (User *U : V->users()) {
110 if (ICmpInst *IC = dyn_cast(U))
111 if (IC->isEquality() && IC->getOperand(1) == With)
112 continue;
113
114 return false;
115 }
116 return true;
117}
118
121 return OI->getType()->isFloatingPointTy();
122 });
123}
124
127 return OI->getType()->isFP128Ty();
128 });
129}
130
131
132
133
134
135
136
137
140 if (Base < 2 || Base > 36)
141 if (Base != 0)
142
143 return nullptr;
144
145
147
149 if (!isSpace((unsigned char)Str[Offset])) {
150 Str = Str.substr(Offset);
151 break;
152 }
153
154 if (Str.empty())
155
156
157 return nullptr;
158
159
160 bool Negate = Str[0] == '-';
161 if (Str[0] == '-' || Str[0] == '+') {
162 Str = Str.drop_front();
163 if (Str.empty())
164
165 return nullptr;
167 }
168
169
170
172 unsigned NBits = RetTy->getPrimitiveSizeInBits();
173 uint64_t Max = AsSigned && Negate ? 1 : 0;
175
176
177 if (Str.size() > 1) {
178 if (Str[0] == '0') {
179 if (toUpper((unsigned char)Str[1]) == 'X') {
180 if (Str.size() == 2 || (Base && Base != 16))
181
182
183 return nullptr;
184
185 Str = Str.drop_front(2);
188 }
189 else if (Base == 0)
191 } else if (Base == 0)
193 }
194 else if (Base == 0)
196
197
198
199
201 for (unsigned i = 0; i != Str.size(); ++i) {
202 unsigned char DigVal = Str[i];
204 DigVal = DigVal - '0';
205 else {
206 DigVal = toUpper(DigVal);
207 if (isAlpha(DigVal))
208 DigVal = DigVal - 'A' + 10;
209 else
210 return nullptr;
211 }
212
213 if (DigVal >= Base)
214
215 return nullptr;
216
217
218
219 bool VFlow;
221 if (VFlow || Result > Max)
222 return nullptr;
223 }
224
225 if (EndPtr) {
226
227 Value *Off = B.getInt64(Offset + Str.size());
229 Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr");
230 B.CreateStore(StrEnd, EndPtr);
231 }
232
233 if (Negate)
234
235 Result = -Result;
236
237 return ConstantInt::get(RetTy, Result);
238}
239
241 for (User *U : V->users()) {
242 if (ICmpInst *IC = dyn_cast(U))
243 if (Constant *C = dyn_cast(IC->getOperand(1)))
244 if (C->isNullValue())
245 continue;
246
247 return false;
248 }
249 return true;
250}
251
255 return false;
256
258 return false;
259
261 return false;
262
263 return true;
264}
265
268 uint64_t DereferenceableBytes) {
270 if ()
271 return;
272 for (unsigned ArgNo : ArgNos) {
273 uint64_t DerefBytes = DereferenceableBytes;
278 DereferenceableBytes);
279
284 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
287 }
288 }
289}
290
294 if ()
295 return;
296
297 for (unsigned ArgNo : ArgNos) {
298 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
300
301 if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) {
302 unsigned AS =
305 continue;
307 }
308
310 }
311}
312
323 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
325 }
326 }
327}
328
329
330
331
332
333
337 if (auto *NewCI = dyn_cast_or_null(New))
339 return New;
340}
341
344 NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()}));
347 for (unsigned I = 0; I < NewCI->arg_size(); ++I)
351
353}
354
355
357 return Len >= Str.size() ? Str : Str.substr(0, Len);
358}
359
360
361
362
363
365
369
370
372 if (Len)
374 else
375 return nullptr;
376 --Len;
377
378
379 if (Len == 0)
380 return Dst;
381
382 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
383}
384
387
388
390 if (!DstLen)
391 return nullptr;
392
393
394
395
396 Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
397
398
399
400 B.CreateMemCpy(CpyDst, Align(1), Src, Align(1),
401 TLI->getAsSizeT(Len + 1, *B.GetInsertBlock()->getModule()));
402 return Dst;
403}
404
406
414
415
417 if (LengthArg) {
419
420 if (!Len)
421 return Dst;
422 } else {
423 return nullptr;
424 }
425
426
428 if (SrcLen) {
430 --SrcLen;
431 } else {
432 return nullptr;
433 }
434
435
436 if (SrcLen == 0)
437 return Dst;
438
439
440 if (Len < SrcLen)
441 return nullptr;
442
443
444
445 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
446}
447
448
449
450
453{
456
457
458 Type *CharTy = B.getInt8Ty();
459 Value *Char0 = B.CreateLoad(CharTy, Src);
460 CharVal = B.CreateTrunc(CharVal, CharTy);
461 Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp");
462
463 if (NBytes) {
464 Value *Zero = ConstantInt::get(NBytes->getType(), 0);
465 Value *And = B.CreateICmpNE(NBytes, Zero);
466 Cmp = B.CreateLogicalAnd(And, Cmp);
467 }
468
470 return B.CreateSelect(Cmp, Src, NullPtr);
471}
472
477
480
481
482
483 ConstantInt *CharC = dyn_cast(CharVal);
484 if (!CharC) {
486 if (Len)
488 else
489 return nullptr;
490
493 unsigned IntBits = TLI->getIntSize();
494 if (!FT->getParamType(1)->isIntegerTy(IntBits))
495 return nullptr;
496
500 emitMemChr(SrcStr, CharVal,
501 ConstantInt::get(SizeTTy, Len), B,
502 DL, TLI));
503 }
504
505 if (CharC->isZero()) {
508
509
510 return B.CreateIntToPtr(B.getTrue(), CI->getType());
511 }
512
513
514
517 if (CharC->isZero())
519 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
520 return nullptr;
521 }
522
523
524
526 ? Str.size()
528 if (I == StringRef::npos)
530
531
532 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
533}
534
538 ConstantInt *CharC = dyn_cast(CharVal);
540
543
544 if (CharC && CharC->isZero())
546 return nullptr;
547 }
548
551
552
553
554 uint64_t NBytes = Str.size() + 1;
555 Value *Size = ConstantInt::get(SizeTTy, NBytes);
557}
558
561 if (Str1P == Str2P)
562 return ConstantInt::get(CI->getType(), 0);
563
567
568
569 if (HasStr1 && HasStr2)
570 return ConstantInt::get(CI->getType(),
571 std::clamp(Str1.compare(Str2), -1, 1));
572
573 if (HasStr1 && Str1.empty())
574 return B.CreateNeg(B.CreateZExt(
575 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
576
577 if (HasStr2 && Str2.empty())
578 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
580
581
583 if (Len1)
586 if (Len2)
588
589 if (Len1 && Len2) {
593 B, DL, TLI));
594 }
595
596
597 if (!HasStr1 && HasStr2) {
601 B, DL, TLI));
602 } else if (HasStr1 && !HasStr2) {
606 B, DL, TLI));
607 }
608
610 return nullptr;
611}
612
613
614
618
623 if (Str1P == Str2P)
624 return ConstantInt::get(CI->getType(), 0);
625
628
630 if (ConstantInt *LengthArg = dyn_cast(Size))
632 else
634
635 if (Length == 0)
636 return ConstantInt::get(CI->getType(), 0);
637
638 if (Length == 1)
640
644
645
646 if (HasStr1 && HasStr2) {
647
650 return ConstantInt::get(CI->getType(),
651 std::clamp(SubStr1.compare(SubStr2), -1, 1));
652 }
653
654 if (HasStr1 && Str1.empty())
655 return B.CreateNeg(B.CreateZExt(
656 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
657
658 if (HasStr2 && Str2.empty())
659 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
661
663 if (Len1)
666 if (Len2)
668
669
670 if (!HasStr1 && HasStr2) {
671 Len2 = std::min(Len2, Length);
675 B, DL, TLI));
676 } else if (HasStr1 && !HasStr2) {
677 Len1 = std::min(Len1, Length);
681 B, DL, TLI));
682 }
683
684 return nullptr;
685}
686
691 if (SrcLen && Size) {
693 if (SrcLen <= Size->getZExtValue() + 1)
695 }
696
697 return nullptr;
698}
699
702 if (Dst == Src)
703 return Src;
704
706
708 if (Len)
710 else
711 return nullptr;
712
713
714
718 return Dst;
719}
720
723
724
727
728 if (Dst == Src) {
730 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
731 }
732
733
735 if (Len)
737 else
738 return nullptr;
739
741 Value *DstEnd = B.CreateInBoundsGEP(
743
744
745
748 return DstEnd;
749}
750
751
752
756
757
759
760
762
765 NBytes = SizeC->getZExtValue();
766 else
767 return nullptr;
768
771 if (NBytes <= 1) {
772 if (NBytes == 1)
773
774 B.CreateStore(B.getInt8(0), Dst);
775
776
778 }
779
780
781
782
785 return nullptr;
786
787 uint64_t SrcLen = Str.find('\0');
788
789
790 bool NulTerm = SrcLen < NBytes;
791
792 if (NulTerm)
793
794
795 NBytes = SrcLen + 1;
796 else {
797
798
799 SrcLen = std::min(SrcLen, uint64_t(Str.size()));
800 NBytes = std::min(NBytes - 1, SrcLen);
801 }
802
803 if (SrcLen == 0) {
804
805 B.CreateStore(B.getInt8(0), Dst);
806 return ConstantInt::get(CI->getType(), 0);
807 }
808
809
810
811
815
816 if (!NulTerm) {
817 Value *EndOff = ConstantInt::get(CI->getType(), NBytes);
818 Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff);
819 B.CreateStore(B.getInt8(0), EndPtr);
820 }
821
822
823
824
825 return ConstantInt::get(CI->getType(), SrcLen);
826}
827
828
829
830Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd,
835
837
838
841 }
842
843
844
847 N = SizeC->getZExtValue();
848
849 if (N == 0)
850
851 return Dst;
852
853 if (N == 1) {
854 Type *CharTy = B.getInt8Ty();
855 Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0");
856 B.CreateStore(CharVal, Dst);
857 if (!RetEnd)
858
859 return Dst;
860
861
862 Value *ZeroChar = ConstantInt::get(CharTy, 0);
863 Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp");
864
865 Value *Off1 = B.getInt32(1);
866 Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end");
867 return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel");
868 }
869
870
872 if (SrcLen)
874 else
875 return nullptr;
876
877 --SrcLen;
878
879 if (SrcLen == 0) {
880
881 Align MemSetAlign =
883 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
888 return Dst;
889 }
890
891 if (N > SrcLen + 1) {
892 if (N > 128)
893
894 return nullptr;
895
896
899 return nullptr;
900 std::string SrcStr = Str.str();
901
902
903 SrcStr.resize(N, '\0');
904 Src = B.CreateGlobalString(SrcStr, "str", 0,
905 nullptr, false);
906 }
907
908
909
913 if (!RetEnd)
914 return Dst;
915
916
917
918 Value *Off = B.getInt64(std::min(SrcLen, N));
919 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr");
920}
921
923 unsigned CharSize,
926 Type *CharTy = B.getIntNTy(CharSize);
927
930
931
932
933
934
935
936 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
938 }
939
940 if (Bound) {
941 if (ConstantInt *BoundCst = dyn_cast(Bound)) {
942 if (BoundCst->isZero())
943
944 return ConstantInt::get(CI->getType(), 0);
945
946 if (BoundCst->isOne()) {
947
948 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
949 Value *ZeroChar = ConstantInt::get(CharTy, 0);
950 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
951 return B.CreateZExt(Cmp, CI->getType());
952 }
953 }
954 }
955
957 Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
958
959
960 if (Bound)
961 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
962 return LenC;
963 }
964
965 if (Bound)
966
967 return nullptr;
968
969
970
971
972
973
974
975
976
978
980 return nullptr;
981
985 if (Slice.Array == nullptr) {
986 NullTermIdx = 0;
987 } else {
988 NullTermIdx = ~((uint64_t)0);
991 NullTermIdx = I;
992 break;
993 }
994 }
995
996
997 if (NullTermIdx == ~((uint64_t)0))
998 return nullptr;
999 }
1000
1004 cast(GEP->getSourceElementType())->getNumElements();
1005
1006
1007
1008
1009
1011 (isa(GEP->getOperand(0)) &&
1012 NullTermIdx == ArrSize - 1)) {
1014 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
1016 }
1017 }
1018 }
1019
1020
1021 if (SelectInst *SI = dyn_cast(Src)) {
1024 if (LenTrue && LenFalse) {
1025 ORE.emit([&]() {
1027 << "folded strlen(select) to select of constants";
1028 });
1029 return B.CreateSelect(SI->getCondition(),
1030 ConstantInt::get(CI->getType(), LenTrue - 1),
1031 ConstantInt::get(CI->getType(), LenFalse - 1));
1032 }
1033 }
1034
1035 return nullptr;
1036}
1037
1039 if (Value *V = optimizeStringLength(CI, B, 8))
1040 return V;
1042 return nullptr;
1043}
1044
1047 if (Value *V = optimizeStringLength(CI, B, 8, Bound))
1048 return V;
1049
1052 return nullptr;
1053}
1054
1057 unsigned WCharSize = TLI->getWCharSize(M) * 8;
1058
1059 if (WCharSize == 0)
1060 return nullptr;
1061
1062 return optimizeStringLength(CI, B, WCharSize);
1063}
1064
1069
1070
1071
1072 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1074
1075
1076 if (HasS1 && HasS2) {
1077 size_t I = S1.find_first_of(S2);
1080
1081 return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0),
1082 B.getInt64(I), "strpbrk");
1083 }
1084
1085
1086 if (HasS2 && S2.size() == 1)
1088
1089 return nullptr;
1090}
1091
1094 if (isa(EndPtr)) {
1095
1096
1098 }
1099
1100 return nullptr;
1101}
1102
1107
1108
1109
1110 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1112
1113
1114 if (HasS1 && HasS2) {
1115 size_t Pos = S1.find_first_not_of(S2);
1117 Pos = S1.size();
1118 return ConstantInt::get(CI->getType(), Pos);
1119 }
1120
1121 return nullptr;
1122}
1123
1128
1129
1130 if (HasS1 && S1.empty())
1132
1133
1134 if (HasS1 && HasS2) {
1135 size_t Pos = S1.find_first_of(S2);
1137 Pos = S1.size();
1138 return ConstantInt::get(CI->getType(), Pos);
1139 }
1140
1141
1142 if (HasS2 && S2.empty())
1144
1145 return nullptr;
1146}
1147
1149
1152
1153
1156 if (!StrLen)
1157 return nullptr;
1159 StrLen, B, DL, TLI);
1160 if (!StrNCmp)
1161 return nullptr;
1163 ICmpInst *Old = cast(U);
1167 replaceAllUsesWith(Old, Cmp);
1168 }
1169 return CI;
1170 }
1171
1172
1176
1177
1178 if (HasStr2 && ToFindStr.empty())
1180
1181
1182 if (HasStr1 && HasStr2) {
1183 size_t Offset = SearchStr.find(ToFindStr);
1184
1187
1188
1189 return B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), CI->getArgOperand(0),
1191 }
1192
1193
1194 if (HasStr2 && ToFindStr.size() == 1) {
1196 }
1197
1199 return nullptr;
1200}
1201
1209
1210 if (LenC) {
1212
1213 return NullPtr;
1214
1215 if (LenC->isOne()) {
1216
1217
1218 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
1219
1220 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1221 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
1222 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
1223 }
1224 }
1225
1228 return nullptr;
1229
1230 if (Str.size() == 0)
1231
1232
1233
1234 return NullPtr;
1235
1237 if (LenC) {
1239 if (Str.size() < EndOff)
1240
1241 return nullptr;
1242 }
1243
1244 if (ConstantInt *CharC = dyn_cast(CharVal)) {
1245
1246 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
1248
1249
1250 return NullPtr;
1251
1252 if (LenC)
1253
1254 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
1255
1256 if (Str.find(Str[Pos]) == Pos) {
1257
1258
1259
1260
1261 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1262 "memrchr.cmp");
1263 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr,
1264 B.getInt64(Pos), "memrchr.ptr_plus");
1265 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
1266 }
1267 }
1268
1269
1270 Str = Str.substr(0, EndOff);
1272 return nullptr;
1273
1274
1275
1276
1277 Type *SizeTy = Size->getType();
1278 Type *Int8Ty = B.getInt8Ty();
1279 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1280
1281 CharVal = B.CreateTrunc(CharVal, Int8Ty);
1282 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
1283 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
1284 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
1285 Value *SrcPlus =
1286 B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
1287 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
1288}
1289
1293
1298 }
1299
1301 ConstantInt *CharC = dyn_cast(CharVal);
1304
1305
1306 if (LenC) {
1308 return NullPtr;
1309
1310 if (LenC->isOne()) {
1311
1312
1313 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
1314
1315 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1316 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
1317 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
1318 }
1319 }
1320
1323 return nullptr;
1324
1325 if (CharC) {
1326 size_t Pos = Str.find(CharC->getZExtValue());
1328
1329
1330 return NullPtr;
1331
1332
1333
1334
1335 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1336 "memchr.cmp");
1337 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
1338 "memchr.ptr");
1339 return B.CreateSelect(Cmp, NullPtr, SrcPlus);
1340 }
1341
1342 if (Str.size() == 0)
1343
1344
1345
1346 return NullPtr;
1347
1348 if (LenC)
1350
1351 size_t Pos = Str.find_first_not_of(Str[0]);
1353 || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363 Type *SizeTy = Size->getType();
1364 Type *Int8Ty = B.getInt8Ty();
1365
1366
1367 CharVal = B.CreateTrunc(CharVal, Int8Ty);
1368
1369 Value *Sel1 = NullPtr;
1371
1372 Value *PosVal = ConstantInt::get(SizeTy, Pos);
1373 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
1374 Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
1376 Value *And = B.CreateAnd(CEqSPos, NGtPos);
1377 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
1378 Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
1379 }
1380
1381 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
1382 Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
1383 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1384 Value *And = B.CreateAnd(NNeZ, CEqS0);
1385 return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
1386 }
1387
1388 if (!LenC) {
1390
1391
1392
1394
1395
1396 return nullptr;
1397 }
1398
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1413 return nullptr;
1414
1415 unsigned char Max =
1416 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
1417 reinterpret_cast<const unsigned char *>(Str.end()));
1418
1419
1420
1421
1422
1423
1425
1426
1427
1428
1429
1430 std::string SortedStr = Str.str();
1432
1433 unsigned NonContRanges = 1;
1434 for (size_t i = 1; i < SortedStr.size(); ++i) {
1435 if (SortedStr[i] > SortedStr[i - 1] + 1) {
1436 NonContRanges++;
1437 }
1438 }
1439
1440
1441
1442 if (NonContRanges > 2)
1443 return nullptr;
1444
1445
1446 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1447
1449 for (unsigned char C : SortedStr)
1450 CharCompares.push_back(B.CreateICmpEQ(CharVal, B.getInt8(C)));
1451
1452 return B.CreateIntToPtr(B.CreateOr(CharCompares), CI->getType());
1453 }
1454
1455
1456
1457 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
1458
1459
1461 for (char C : Str)
1462 Bitfield.setBit((unsigned char)C);
1464
1465
1466 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
1467 C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1468
1469
1471 "memchr.bounds");
1472
1473
1474 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1475 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1476
1477
1478
1479 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1481}
1482
1483
1484
1490
1494 return nullptr;
1495
1496
1497
1498
1499
1500
1502 Value *Zero = ConstantInt::get(CI->getType(), 0);
1503 for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) {
1504 if (Pos == MinSize ||
1505 (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
1506
1507
1508
1509
1510 return Zero;
1511 }
1512
1513 if (LStr[Pos] != RStr[Pos])
1514 break;
1515 }
1516
1517
1518 typedef unsigned char UChar;
1519 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1520 Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
1522 Value *Res = ConstantInt::get(CI->getType(), IRes);
1523 return B.CreateSelect(Cmp, Zero, Res);
1524}
1525
1526
1530 if (Len == 0)
1532
1533
1534 if (Len == 1) {
1535 Value *LHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), LHS, "lhsc"),
1537 Value *RHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), RHS, "rhsc"),
1539 return B.CreateSub(LHSV, RHSV, "chardiff");
1540 }
1541
1542
1543
1544
1547 Align PrefAlignment = DL.getPrefTypeAlign(IntType);
1548
1549
1550 Value *LHSV = nullptr;
1551 if (auto *LHSC = dyn_cast(LHS))
1553
1554 Value *RHSV = nullptr;
1555 if (auto *RHSC = dyn_cast(RHS))
1557
1558
1559
1562 if (!LHSV)
1563 LHSV = B.CreateLoad(IntType, LHS, "lhsv");
1564 if (!RHSV)
1565 RHSV = B.CreateLoad(IntType, RHS, "rhsv");
1566 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1567 }
1568 }
1569
1570 return nullptr;
1571}
1572
1573
1574Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1578
1580
1582 return Res;
1583
1584
1586 if (!LenC)
1587 return nullptr;
1588
1590}
1591
1594 if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1595 return V;
1596
1597
1598
1599
1606 }
1607
1608 return nullptr;
1609}
1610
1612 return optimizeMemCmpBCmpCommon(CI, B);
1613}
1614
1618 if (isa(CI))
1619 return nullptr;
1620
1621
1626}
1627
1634 if (CI->use_empty() && Dst == Src)
1635 return Dst;
1636
1637 if (N) {
1638 if (N->isNullValue())
1641
1642 !StopChar)
1643 return nullptr;
1644 } else {
1645 return nullptr;
1646 }
1647
1648
1651 if (N->getZExtValue() <= SrcStr.size()) {
1655 }
1656 return nullptr;
1657 }
1658
1660 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1661
1663 return Pos + 1 <= N->getZExtValue()
1664 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1666}
1667
1671
1674
1675
1676
1678 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1679}
1680
1684 if (isa(CI))
1685 return nullptr;
1686
1687
1692}
1693
1697 if (isa(CI))
1698 return nullptr;
1699
1700
1705}
1706
1708 if (isa(CI->getArgOperand(0)))
1710
1711 return nullptr;
1712}
1713
1714
1715
1716
1717
1721 return nullptr;
1722
1727 "notcold")
1731 else
1732 return nullptr;
1733
1734
1735
1736
1737
1738
1739
1740
1741 switch (Func) {
1742 case LibFunc_Znwm12__hot_cold_t:
1745 LibFunc_Znwm12__hot_cold_t, HotCold);
1746 break;
1747 case LibFunc_Znwm:
1750 LibFunc_Znwm12__hot_cold_t, HotCold);
1751 break;
1752 case LibFunc_Znam12__hot_cold_t:
1755 LibFunc_Znam12__hot_cold_t, HotCold);
1756 break;
1757 case LibFunc_Znam:
1760 LibFunc_Znam12__hot_cold_t, HotCold);
1761 break;
1762 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
1766 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold);
1767 break;
1768 case LibFunc_ZnwmRKSt9nothrow_t:
1772 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold);
1773 break;
1774 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
1778 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold);
1779 break;
1780 case LibFunc_ZnamRKSt9nothrow_t:
1784 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold);
1785 break;
1786 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
1790 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold);
1791 break;
1792 case LibFunc_ZnwmSt11align_val_t:
1796 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold);
1797 break;
1798 case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
1802 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold);
1803 break;
1804 case LibFunc_ZnamSt11align_val_t:
1808 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold);
1809 break;
1810 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
1814 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1815 HotCold);
1816 break;
1817 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
1821 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1822 HotCold);
1823 break;
1824 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
1828 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1829 HotCold);
1830 break;
1831 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
1835 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1836 HotCold);
1837 break;
1838 case LibFunc_size_returning_new:
1841 LibFunc_size_returning_new_hot_cold,
1842 HotCold);
1843 break;
1844 case LibFunc_size_returning_new_hot_cold:
1847 LibFunc_size_returning_new_hot_cold,
1848 HotCold);
1849 break;
1850 case LibFunc_size_returning_new_aligned:
1854 LibFunc_size_returning_new_aligned_hot_cold, HotCold);
1855 break;
1856 case LibFunc_size_returning_new_aligned_hot_cold:
1860 LibFunc_size_returning_new_aligned_hot_cold, HotCold);
1861 break;
1862 default:
1863 return nullptr;
1864 }
1865 return nullptr;
1866}
1867
1868
1869
1870
1871
1872
1878}
1879
1880
1881
1882
1883
1884
1886 if (FPExtInst *Cast = dyn_cast(Val)) {
1887 Value *Op = Cast->getOperand(0);
1888 if (Op->getType()->isFloatTy())
1889 return Op;
1890 }
1891 if (ConstantFP *Const = dyn_cast(Val)) {
1892 APFloat F = Const->getValueAPF();
1893 bool losesInfo;
1895 &losesInfo);
1896 if (!losesInfo)
1897 return ConstantFP::get(Const->getContext(), F);
1898 }
1899 return nullptr;
1900}
1901
1902
1905 bool isPrecise = false) {
1908 return nullptr;
1909
1910
1911
1912
1913 if (isPrecise)
1915 FPTruncInst *Cast = dyn_cast(U);
1917 return nullptr;
1918 }
1919
1920
1924 if (!V[0] || (isBinary && !V[1]))
1925 return nullptr;
1926
1927
1928
1929
1930
1931
1933 bool IsIntrinsic = CalleeFn->isIntrinsic();
1934 if (!IsIntrinsic) {
1936 if (!CallerName.empty() && CallerName.back() == 'f' &&
1937 CallerName.size() == (CalleeName.size() + 1) &&
1939 return nullptr;
1940 }
1941
1942
1945
1946
1948 if (IsIntrinsic) {
1950 R = isBinary ? B.CreateIntrinsic(IID, B.getFloatTy(), V)
1951 : B.CreateIntrinsic(IID, B.getFloatTy(), V[0]);
1952 } else {
1955 CalleeAttrs)
1957 }
1958 return B.CreateFPExt(R, B.getDoubleTy());
1959}
1960
1961
1964 bool isPrecise = false) {
1966}
1967
1968
1971 bool isPrecise = false) {
1973}
1974
1975
1977 Value *Real, *Imag;
1978
1980
1982 return nullptr;
1983
1985 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1986
1987 Real = B.CreateExtractValue(Op, 0, "real");
1988 Imag = B.CreateExtractValue(Op, 1, "imag");
1989
1990 } else {
1991 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1992
1995
1996
1997
1998 Value *AbsOp = nullptr;
1999 if (ConstantFP *ConstReal = dyn_cast(Real)) {
2000 if (ConstReal->isZero())
2001 AbsOp = Imag;
2002
2003 } else if (ConstantFP *ConstImag = dyn_cast(Imag)) {
2004 if (ConstImag->isZero())
2005 AbsOp = Real;
2006 }
2007
2008 if (AbsOp)
2010 *CI, B.CreateUnaryIntrinsic(Intrinsic::fabs, AbsOp, CI, "cabs"));
2011
2013 return nullptr;
2014 }
2015
2016
2017 Value *RealReal = B.CreateFMulFMF(Real, Real, CI);
2018 Value *ImagImag = B.CreateFMulFMF(Imag, Imag, CI);
2020 *CI, B.CreateUnaryIntrinsic(Intrinsic::sqrt,
2021 B.CreateFAddFMF(RealReal, ImagImag, CI), CI,
2022 "cabs"));
2023}
2024
2025
2026
2028 if (isa(I2F) || isa(I2F)) {
2029 Value *Op = cast(I2F)->getOperand(0);
2030
2031
2032 unsigned BitWidth = Op->getType()->getScalarSizeInBits();
2033 if (BitWidth < DstWidth || (BitWidth == DstWidth && isa(I2F))) {
2034 Type *IntTy = Op->getType()->getWithNewBitWidth(DstWidth);
2035 return isa(I2F) ? B.CreateSExt(Op, IntTy)
2036 : B.CreateZExt(Op, IntTy);
2037 }
2038 }
2039
2040 return nullptr;
2041}
2042
2043
2044
2045
2050 bool Ignored;
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067 CallInst *BaseFn = dyn_cast(Base);
2070
2077 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
2078
2079 switch (LibFn) {
2080 default:
2081 return nullptr;
2082 case LibFunc_expf:
2083 case LibFunc_exp:
2084 case LibFunc_expl:
2085 ExpName = TLI->getName(LibFunc_exp);
2086 ID = Intrinsic::exp;
2087 LibFnFloat = LibFunc_expf;
2088 LibFnDouble = LibFunc_exp;
2089 LibFnLongDouble = LibFunc_expl;
2090 break;
2091 case LibFunc_exp2f:
2092 case LibFunc_exp2:
2093 case LibFunc_exp2l:
2094 ExpName = TLI->getName(LibFunc_exp2);
2095 ID = Intrinsic::exp2;
2096 LibFnFloat = LibFunc_exp2f;
2097 LibFnDouble = LibFunc_exp2;
2098 LibFnLongDouble = LibFunc_exp2l;
2099 break;
2100 }
2101
2102
2105 ? B.CreateUnaryIntrinsic(ID, FMul, nullptr, ExpName)
2107 LibFnLongDouble, B,
2109
2110
2111
2112
2113
2114 substituteInParent(BaseFn, ExpFn);
2115 return ExpFn;
2116 }
2117 }
2118
2119
2120
2123 return nullptr;
2124
2125 AttributeList NoAttrs;
2126
2128
2129
2131 (isa(Expo) || isa(Expo)) &&
2132 (UseIntrinsic ||
2133 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) {
2134
2135
2136
2138 Constant *One = ConstantFP::get(Ty, 1.0);
2139
2140 if (UseIntrinsic) {
2141 return copyFlags(*Pow, B.CreateIntrinsic(Intrinsic::ldexp,
2142 {Ty, ExpoI->getType()},
2143 {One, ExpoI}, Pow, "exp2"));
2144 }
2145
2147 One, ExpoI, TLI, LibFunc_ldexp, LibFunc_ldexpf,
2148 LibFunc_ldexpl, B, NoAttrs));
2149 }
2150 }
2151
2152
2153 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
2156 BaseR = BaseR / *BaseF;
2157 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
2158 const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
2159 APSInt NI(64, false);
2160 if ((IsInteger || IsReciprocal) &&
2163 NI > 1 && NI.isPowerOf2()) {
2164 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
2165 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
2167 return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul,
2168 nullptr, "exp2"));
2169 else
2171 LibFunc_exp2f,
2172 LibFunc_exp2l, B, NoAttrs));
2173 }
2174 }
2175
2176
2178 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) {
2179
2182 B.CreateIntrinsic(Intrinsic::exp10, {Ty}, {Expo}, Pow, "exp10");
2183 return copyFlags(*Pow, NewExp10);
2184 }
2185
2187 LibFunc_exp10f, LibFunc_exp10l,
2188 B, NoAttrs));
2189 }
2190
2191
2194
2195
2197 "pow(1.0, y) should have been simplified earlier!");
2198
2199 Value *Log = nullptr;
2201 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
2203 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
2204
2205 if (Log) {
2206 Value *FMul = B.CreateFMul(Log, Expo, "mul");
2208 return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul,
2209 nullptr, "exp2"));
2210 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
2211 LibFunc_exp2l))
2213 LibFunc_exp2f,
2214 LibFunc_exp2l, B, NoAttrs));
2215 }
2216 }
2217
2218 return nullptr;
2219}
2220
2224
2225 if (NoErrno)
2226 return B.CreateUnaryIntrinsic(Intrinsic::sqrt, V, nullptr, "sqrt");
2227
2228
2229 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
2230 LibFunc_sqrtl))
2231
2232
2233
2235 LibFunc_sqrtl, B, Attrs);
2236
2237 return nullptr;
2238}
2239
2240
2245
2249 return nullptr;
2250
2251
2252
2254 return nullptr;
2255
2256
2257
2258
2259
2263 return nullptr;
2264
2266 TLI);
2267 if (!Sqrt)
2268 return nullptr;
2269
2270
2272 Sqrt = B.CreateUnaryIntrinsic(Intrinsic::fabs, Sqrt, nullptr, "abs");
2273
2275
2276
2277
2281 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
2282 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
2283 }
2284
2285
2287 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
2288
2289 return Sqrt;
2290}
2291
2296 return B.CreateIntrinsic(Intrinsic::powi, Types, Args);
2297}
2298
2307 bool Ignored;
2308
2309
2312
2313
2314
2316 return Base;
2317
2318 if (Value *Exp = replacePowWithExp(Pow, B))
2319 return Exp;
2320
2321
2322
2323
2325 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
2326
2327
2329 return ConstantFP::get(Ty, 1.0);
2330
2331
2333 return Base;
2334
2335
2337 return B.CreateFMul(Base, Base, "square");
2338
2339 if (Value *Sqrt = replacePowWithSqrt(Pow, B))
2340 return Sqrt;
2341
2342
2343
2344
2350 Value *Sqrt = nullptr;
2351 if (!ExpoA.isInteger()) {
2353
2354
2355
2357 return nullptr;
2358
2360 return nullptr;
2361
2364 return nullptr;
2365 if (!ExpoI.isInteger())
2366 return nullptr;
2367 ExpoF = &ExpoI;
2368
2370 B, TLI);
2371 if (!Sqrt)
2372 return nullptr;
2373 }
2374
2375
2376
2382 *Pow,
2384 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
2385 M, B));
2386
2387 if (PowI && Sqrt)
2388 return B.CreateFMul(PowI, Sqrt);
2389
2390 return PowI;
2391 }
2392 }
2393
2394
2395 if (AllowApprox && (isa(Expo) || isa(Expo))) {
2398 }
2399
2400
2401
2402 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
2403 hasFloatVersion(M, Name)) {
2405 return Shrunk;
2406 }
2407
2408 return nullptr;
2409}
2410
2416 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
2417 hasFloatVersion(M, Name))
2419
2420
2421
2422
2423
2424
2425
2426 const bool UseIntrinsic = Callee->isIntrinsic();
2427
2429 if (!UseIntrinsic && Ty->isVectorTy())
2430 return Ret;
2431
2432
2433
2435 if ((isa(Op) || isa(Op)) &&
2436 (UseIntrinsic ||
2437 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) {
2439 Constant *One = ConstantFP::get(Ty, 1.0);
2440
2441 if (UseIntrinsic) {
2442 return copyFlags(*CI, B.CreateIntrinsic(Intrinsic::ldexp,
2443 {Ty, Exp->getType()},
2444 {One, Exp}, CI));
2445 }
2446
2450 One, Exp, TLI, LibFunc_ldexp, LibFunc_ldexpf,
2452 }
2453 }
2454
2455 return Ret;
2456}
2457
2460
2461
2462
2465 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
2467 return Ret;
2468
2469
2470
2471
2472
2473
2474
2475
2478
2479 Intrinsic::ID IID = Callee->getName().starts_with("fmin") ? Intrinsic::minnum
2480 : Intrinsic::maxnum;
2483}
2484
2491
2492 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
2494 return Ret;
2495
2496 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2497
2498
2499 if (TLI->getLibFunc(LogNm, LogLb)) {
2500 switch (LogLb) {
2501 case LibFunc_logf:
2502 LogID = Intrinsic::log;
2503 ExpLb = LibFunc_expf;
2504 Exp2Lb = LibFunc_exp2f;
2505 Exp10Lb = LibFunc_exp10f;
2506 PowLb = LibFunc_powf;
2507 break;
2508 case LibFunc_log:
2509 LogID = Intrinsic::log;
2510 ExpLb = LibFunc_exp;
2511 Exp2Lb = LibFunc_exp2;
2512 Exp10Lb = LibFunc_exp10;
2513 PowLb = LibFunc_pow;
2514 break;
2515 case LibFunc_logl:
2516 LogID = Intrinsic::log;
2517 ExpLb = LibFunc_expl;
2518 Exp2Lb = LibFunc_exp2l;
2519 Exp10Lb = LibFunc_exp10l;
2520 PowLb = LibFunc_powl;
2521 break;
2522 case LibFunc_log2f:
2523 LogID = Intrinsic::log2;
2524 ExpLb = LibFunc_expf;
2525 Exp2Lb = LibFunc_exp2f;
2526 Exp10Lb = LibFunc_exp10f;
2527 PowLb = LibFunc_powf;
2528 break;
2529 case LibFunc_log2:
2530 LogID = Intrinsic::log2;
2531 ExpLb = LibFunc_exp;
2532 Exp2Lb = LibFunc_exp2;
2533 Exp10Lb = LibFunc_exp10;
2534 PowLb = LibFunc_pow;
2535 break;
2536 case LibFunc_log2l:
2537 LogID = Intrinsic::log2;
2538 ExpLb = LibFunc_expl;
2539 Exp2Lb = LibFunc_exp2l;
2540 Exp10Lb = LibFunc_exp10l;
2541 PowLb = LibFunc_powl;
2542 break;
2543 case LibFunc_log10f:
2544 LogID = Intrinsic::log10;
2545 ExpLb = LibFunc_expf;
2546 Exp2Lb = LibFunc_exp2f;
2547 Exp10Lb = LibFunc_exp10f;
2548 PowLb = LibFunc_powf;
2549 break;
2550 case LibFunc_log10:
2551 LogID = Intrinsic::log10;
2552 ExpLb = LibFunc_exp;
2553 Exp2Lb = LibFunc_exp2;
2554 Exp10Lb = LibFunc_exp10;
2555 PowLb = LibFunc_pow;
2556 break;
2557 case LibFunc_log10l:
2558 LogID = Intrinsic::log10;
2559 ExpLb = LibFunc_expl;
2560 Exp2Lb = LibFunc_exp2l;
2561 Exp10Lb = LibFunc_exp10l;
2562 PowLb = LibFunc_powl;
2563 break;
2564 default:
2565 return nullptr;
2566 }
2567
2568
2570 if (!IsKnownNoErrno) {
2571 SimplifyQuery SQ(DL, TLI, DT, AC, Log, true, true, DC);
2575 0, SQ);
2579 }
2580 if (IsKnownNoErrno) {
2581 auto *NewLog = B.CreateUnaryIntrinsic(LogID, Log->getArgOperand(0), Log);
2582 NewLog->copyMetadata(*Log);
2584 }
2585 } else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2586 LogID == Intrinsic::log10) {
2588 ExpLb = LibFunc_expf;
2589 Exp2Lb = LibFunc_exp2f;
2590 Exp10Lb = LibFunc_exp10f;
2591 PowLb = LibFunc_powf;
2593 ExpLb = LibFunc_exp;
2594 Exp2Lb = LibFunc_exp2;
2595 Exp10Lb = LibFunc_exp10;
2596 PowLb = LibFunc_pow;
2597 } else
2598 return nullptr;
2599 } else
2600 return nullptr;
2601
2602
2605 return nullptr;
2606
2609
2613
2614
2616 if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) {
2619 ? B.CreateUnaryIntrinsic(LogID, Arg->getOperand(0), nullptr, "log")
2622
2623 if (ArgID == Intrinsic::powi)
2624 Y = B.CreateSIToFP(Y, Ty, "cast");
2625 Value *MulY = B.CreateFMul(Y, LogX, "mul");
2626
2627
2628 substituteInParent(Arg, MulY);
2629 return MulY;
2630 }
2631
2632
2633
2634 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2635 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2637 if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2638
2640 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2641 Eul = ConstantFP::get(Log->getType(), 2.0);
2642 else
2643 Eul = ConstantFP::get(Log->getType(), 10.0);
2645 ? B.CreateUnaryIntrinsic(LogID, Eul, nullptr, "log")
2648
2649
2650 substituteInParent(Arg, MulY);
2651 return MulY;
2652 }
2653
2654 return nullptr;
2655}
2656
2657
2660 return nullptr;
2661
2665 return nullptr;
2669
2670 LibFunc SqrtLb, ExpLb, Exp2Lb, Exp10Lb;
2671
2673 switch (SqrtLb) {
2674 case LibFunc_sqrtf:
2675 ExpLb = LibFunc_expf;
2676 Exp2Lb = LibFunc_exp2f;
2677 Exp10Lb = LibFunc_exp10f;
2678 break;
2679 case LibFunc_sqrt:
2680 ExpLb = LibFunc_exp;
2681 Exp2Lb = LibFunc_exp2;
2682 Exp10Lb = LibFunc_exp10;
2683 break;
2684 case LibFunc_sqrtl:
2685 ExpLb = LibFunc_expl;
2686 Exp2Lb = LibFunc_exp2l;
2687 Exp10Lb = LibFunc_exp10l;
2688 break;
2689 default:
2690 return nullptr;
2691 }
2692 else if (SqrtFn->getIntrinsicID() == Intrinsic::sqrt) {
2694 ExpLb = LibFunc_expf;
2695 Exp2Lb = LibFunc_exp2f;
2696 Exp10Lb = LibFunc_exp10f;
2698 ExpLb = LibFunc_exp;
2699 Exp2Lb = LibFunc_exp2;
2700 Exp10Lb = LibFunc_exp10;
2701 } else
2702 return nullptr;
2703 } else
2704 return nullptr;
2705
2706 if (ArgLb != ExpLb && ArgLb != Exp2Lb && ArgLb != Exp10Lb &&
2707 ArgID != Intrinsic::exp && ArgID != Intrinsic::exp2)
2708 return nullptr;
2709
2711 B.SetInsertPoint(Arg);
2712 auto *ExpOperand = Arg->getOperand(0);
2713 auto *FMul =
2714 B.CreateFMulFMF(ExpOperand, ConstantFP::get(ExpOperand->getType(), 0.5),
2715 CI, "merged.sqrt");
2716
2718 return Arg;
2719}
2720
2725
2726
2727
2729 (Callee->getName() == "sqrt" ||
2730 Callee->getIntrinsicID() == Intrinsic::sqrt))
2732
2733 if (Value *Opt = mergeSqrtToExp(CI, B))
2734 return Opt;
2735
2737 return Ret;
2738
2740 if ( || I->getOpcode() != Instruction::FMul ||
->isFast())
2741 return Ret;
2742
2743
2744
2745
2746 Value *Op0 = I->getOperand(0);
2747 Value *Op1 = I->getOperand(1);
2748 Value *RepeatOp = nullptr;
2749 Value *OtherOp = nullptr;
2750 if (Op0 == Op1) {
2751
2752 RepeatOp = Op0;
2753 } else {
2754
2755
2756
2757
2758
2761 cast(Op0)->isFast()) {
2762
2763 RepeatOp = MulOp;
2764 OtherOp = Op1;
2766 cast(Op1)->isFast()) {
2767
2768 RepeatOp = MulOp;
2769 OtherOp = Op0;
2770 }
2771 }
2772 if (!RepeatOp)
2773 return Ret;
2774
2775
2776
2777
2778
2779
2780 Value *FabsCall =
2781 B.CreateUnaryIntrinsic(Intrinsic::fabs, RepeatOp, I, "fabs");
2782 if (OtherOp) {
2783
2784
2785
2786 Value *SqrtCall =
2787 B.CreateUnaryIntrinsic(Intrinsic::sqrt, OtherOp, I, "sqrt");
2788 return copyFlags(*CI, B.CreateFMulFMF(FabsCall, SqrtCall, I));
2789 }
2790 return copyFlags(*CI, FabsCall);
2791}
2792
2794
2795
2796
2797
2799 if (!IsNoNan) {
2800 SimplifyQuery SQ(DL, TLI, DT, AC, CI, true, true, DC);
2802 0, SQ);
2806 0, SQ);
2809 }
2810 }
2811
2812 if (IsNoNan) {
2814 if (auto *FRemI = dyn_cast(FRem))
2815 FRemI->setHasNoNaNs(true);
2816 return FRem;
2817 }
2818 return nullptr;
2819}
2820
2821Value *LibCallSimplifier::optimizeTrigInversionPairs(CallInst *CI,
2827 if (UnsafeFPShrink &&
2828 (Name == "tan" || Name == "atanh" || Name == "sinh" || Name == "cosh" ||
2829 Name == "asinh") &&
2830 hasFloatVersion(M, Name))
2832
2834 auto *OpC = dyn_cast(Op1);
2835 if (!OpC)
2836 return Ret;
2837
2838
2839 if (!CI->isFast() || !OpC->isFast())
2840 return Ret;
2841
2842
2843
2844
2845
2846
2848 Function *F = OpC->getCalledFunction();
2849 if (F && TLI->getLibFunc(F->getName(), Func) &&
2852 .Case("tan", LibFunc_atan)
2853 .Case("atanh", LibFunc_tanh)
2854 .Case("sinh", LibFunc_asinh)
2855 .Case("cosh", LibFunc_acosh)
2856 .Case("tanf", LibFunc_atanf)
2857 .Case("atanhf", LibFunc_tanhf)
2858 .Case("sinhf", LibFunc_asinhf)
2859 .Case("coshf", LibFunc_acoshf)
2860 .Case("tanl", LibFunc_atanl)
2861 .Case("atanhl", LibFunc_tanhl)
2862 .Case("sinhl", LibFunc_asinhl)
2863 .Case("coshl", LibFunc_acoshl)
2864 .Case("asinh", LibFunc_sinh)
2865 .Case("asinhf", LibFunc_sinhf)
2866 .Case("asinhl", LibFunc_sinhl)
2868 if (Func == inverseFunc)
2869 Ret = OpC->getArgOperand(0);
2870 }
2871 return Ret;
2872}
2873
2875
2876
2877
2879}
2880
2882 bool UseFloat, Value *&Sin, Value *&Cos,
2886 Type *ResTy;
2888
2890 if (UseFloat) {
2891 Name = "__sincospif_stret";
2892
2893 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2894
2895
2899 } else {
2900 Name = "__sincospi_stret";
2902 }
2903
2905 return false;
2909 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
2910
2911 if (Instruction *ArgInst = dyn_cast(Arg)) {
2912
2913
2914 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2915 } else {
2916
2917
2918 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2919 B.SetInsertPoint(&EntryBB, EntryBB.begin());
2920 }
2921
2922 SinCos = B.CreateCall(Callee, Arg, "sincospi");
2923
2925 Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2926 Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2927 } else {
2928 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2929 "sinpi");
2930 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2931 "cospi");
2932 }
2933
2934 return true;
2935}
2936
2941
2944 Call->copyFastMathFlags(CI);
2946 if (IsEven) {
2947
2949 }
2950
2951 return B.CreateFNegFMF(CallInst, CI);
2952 }
2953
2954
2958 Call->copyFastMathFlags(CI);
2960 }
2961
2962 return nullptr;
2963}
2964
2967 switch (Func) {
2968 case LibFunc_cos:
2969 case LibFunc_cosf:
2970 case LibFunc_cosl:
2972
2973 case LibFunc_sin:
2974 case LibFunc_sinf:
2975 case LibFunc_sinl:
2976
2977 case LibFunc_tan:
2978 case LibFunc_tanf:
2979 case LibFunc_tanl:
2980
2981 case LibFunc_erf:
2982 case LibFunc_erff:
2983 case LibFunc_erfl:
2985
2986 default:
2987 return nullptr;
2988 }
2989}
2990
2992
2993
2995 return nullptr;
2996
3001
3003
3004
3005
3006
3009 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
3010
3011
3012 if (SinCalls.empty() || CosCalls.empty())
3013 return nullptr;
3014
3015 Value *Sin, *Cos, *SinCos;
3017 SinCos, TLI))
3018 return nullptr;
3019
3023 replaceAllUsesWith(C, Res);
3024 };
3025
3026 replaceTrigInsts(SinCalls, Sin);
3027 replaceTrigInsts(CosCalls, Cos);
3028 replaceTrigInsts(SinCosCalls, SinCos);
3029
3030 return IsSin ? Sin : Cos;
3031}
3032
3033void LibCallSimplifier::classifyArgUse(
3038 auto *CI = dyn_cast(Val);
3040 return;
3041
3042
3044 return;
3045
3049 if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
3052 return;
3053
3054 if (IsFloat) {
3055 if (Func == LibFunc_sinpif)
3057 else if (Func == LibFunc_cospif)
3059 else if (Func == LibFunc_sincospif_stret)
3061 } else {
3062 if (Func == LibFunc_sinpi)
3064 else if (Func == LibFunc_cospi)
3066 else if (Func == LibFunc_sincospi_stret)
3068 }
3069}
3070
3071
3076 return nullptr;
3077
3082 return nullptr;
3085 return nullptr;
3086
3087
3089 APSInt QuotInt(IntBW, false);
3090 bool IsExact;
3094 return nullptr;
3095
3096 B.CreateAlignedStore(
3097 ConstantInt::get(B.getIntNTy(IntBW), QuotInt.getExtValue()),
3099 return ConstantFP::get(CI->getType(), Rem);
3100}
3101
3102
3104
3106 return nullptr;
3107
3108
3109
3114
3116
3119 return nullptr;
3120
3123
3126 return ConstantFP::get(CI->getType(), MaxVal);
3127}
3128
3129
3130
3131
3132
3134
3135
3138 Type *ArgType = Op->getType();
3139 Value *V = B.CreateIntrinsic(Intrinsic::cttz, {ArgType}, {Op, B.getTrue()},
3140 nullptr, "cttz");
3141 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
3142 V = B.CreateIntCast(V, RetType, false);
3143
3145 return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0));
3146}
3147
3149
3150
3152 Type *ArgType = Op->getType();
3153 Value *V = B.CreateIntrinsic(Intrinsic::ctlz, {ArgType}, {Op, B.getFalse()},
3154 nullptr, "ctlz");
3156 V);
3157 return B.CreateIntCast(V, CI->getType(), false);
3158}
3159
3161
3162
3164 Value *IsNeg = B.CreateIsNeg(X);
3165 Value *NegX = B.CreateNSWNeg(X, "neg");
3166 return B.CreateSelect(IsNeg, NegX, X);
3167}
3168
3170
3172 Type *ArgType = Op->getType();
3173 Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp");
3174 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit");
3175 return B.CreateZExt(Op, CI->getType());
3176}
3177
3179
3181 Type *ArgType = Op->getType();
3182 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii");
3183 return B.CreateZExt(Op, CI->getType());
3184}
3185
3187
3189 ConstantInt::get(CI->getType(), 0x7F));
3190}
3191
3192
3196 return nullptr;
3197
3198 return convertStrToInt(CI, Str, nullptr, 10, true, B);
3199}
3200
3201
3203 bool AsSigned) {
3205 if (isa(EndPtr)) {
3206
3207
3209 EndPtr = nullptr;
3211 return nullptr;
3212
3215 return nullptr;
3216
3218 return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B);
3219 }
3220
3221 return nullptr;
3222}
3223
3224
3225
3226
3227
3229
3231 int StreamArg) {
3233
3234
3235
3236
3237
3238
3239
3240
3241 if (!CI->hasFnAttr(Attribute::Cold) &&
3244 }
3245
3246 return nullptr;
3247}
3248
3250 if (!Callee || !Callee->isDeclaration())
3251 return false;
3252
3253 if (StreamArg < 0)
3254 return true;
3255
3256
3257
3258
3259 if (StreamArg >= (int)CI->arg_size())
3260 return false;
3262 if (!LI)
3263 return false;
3266 return false;
3267 return GV->getName() == "stderr";
3268}
3269
3271
3274 return nullptr;
3275
3276
3277 if (FormatStr.empty())
3279
3280
3281
3282
3284 return nullptr;
3285
3287
3288 if (FormatStr.size() == 1 || FormatStr == "%%") {
3289
3290
3291
3292 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]);
3294 }
3295
3296
3297 if (FormatStr == "%s" && CI->arg_size() > 1) {
3300 return nullptr;
3301
3302 if (OperandStr.empty())
3303 return (Value *)CI;
3304
3305 if (OperandStr.size() == 1) {
3306
3307
3308
3309 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]);
3311 }
3312
3313 if (OperandStr.back() == '\n') {
3314 OperandStr = OperandStr.drop_back();
3315 Value *GV = B.CreateGlobalString(OperandStr, "str");
3317 }
3318 return nullptr;
3319 }
3320
3321
3322 if (FormatStr.back() == '\n' &&
3323 !FormatStr.contains('%')) {
3324
3325
3326 FormatStr = FormatStr.drop_back();
3327 Value *GV = B.CreateGlobalString(FormatStr, "str");
3329 }
3330
3331
3332
3333 if (FormatStr == "%c" && CI->arg_size() > 1 &&
3335
3336
3339 }
3340
3341
3342 if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
3345 return nullptr;
3346}
3347
3349
3353 if (Value *V = optimizePrintFString(CI, B)) {
3354 return V;
3355 }
3356
3358
3359
3360
3364 Callee->getAttributes());
3366 New->setCalledFunction(IPrintFFn);
3367 B.Insert(New);
3368 return New;
3369 }
3370
3371
3372
3375 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
3376 Callee->getAttributes());
3378 New->setCalledFunction(SmallPrintFFn);
3379 B.Insert(New);
3380 return New;
3381 }
3382
3383 return nullptr;
3384}
3385
3386Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
3388
3391 return nullptr;
3392
3393
3396
3397
3398 if (FormatStr.contains('%'))
3399 return nullptr;
3400
3401
3403
3405 return ConstantInt::get(CI->getType(), FormatStr.size());
3406 }
3407
3408
3409
3410 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3411 return nullptr;
3412
3413
3414 if (FormatStr[1] == 'c') {
3415
3417 return nullptr;
3421 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
3422 B.CreateStore(B.getInt8(0), Ptr);
3423
3424 return ConstantInt::get(CI->getType(), 1);
3425 }
3426
3427 if (FormatStr[1] == 's') {
3428
3429
3431 return nullptr;
3432
3434
3436
3438 if (SrcLen) {
3441
3442 return ConstantInt::get(CI->getType(), SrcLen - 1);
3444
3445 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
3446 return B.CreateIntCast(PtrDiff, CI->getType(), false);
3447 }
3448
3451 return nullptr;
3452
3454 if (!Len)
3455 return nullptr;
3457 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
3459
3460
3461 return B.CreateIntCast(Len, CI->getType(), false);
3462 }
3463 return nullptr;
3464}
3465
3470 if (Value *V = optimizeSPrintFString(CI, B)) {
3471 return V;
3472 }
3473
3475
3476
3477
3481 FT, Callee->getAttributes());
3483 New->setCalledFunction(SIPrintFFn);
3484 B.Insert(New);
3485 return New;
3486 }
3487
3488
3489
3492 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
3493 Callee->getAttributes());
3495 New->setCalledFunction(SmallSPrintFFn);
3496 B.Insert(New);
3497 return New;
3498 }
3499
3500 return nullptr;
3501}
3502
3503
3504
3505
3506
3507
3508Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg,
3511 assert(StrArg || (N < 2 && Str.size() == 1));
3512
3513 unsigned IntBits = TLI->getIntSize();
3515 if (Str.size() > IntMax)
3516
3517
3518
3519 return nullptr;
3520
3521 Value *StrLen = ConstantInt::get(CI->getType(), Str.size());
3522 if (N == 0)
3523 return StrLen;
3524
3525
3526
3528 if (N > Str.size())
3529
3530
3531 NCopy = Str.size() + 1;
3532 else
3533 NCopy = N - 1;
3534
3536 if (NCopy && StrArg)
3537
3540
3541 if (N > Str.size())
3542
3543
3544 return StrLen;
3545
3546
3547 Type *Int8Ty = B.getInt8Ty();
3548 Value *NulOff = B.getIntN(IntBits, NCopy);
3549 Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr");
3550 B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd);
3551 return StrLen;
3552}
3553
3554Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
3556
3559 return nullptr;
3560
3563 if (N > IntMax)
3564
3565
3566 return nullptr;
3567
3570
3571
3574 return nullptr;
3575
3576
3578 if (FormatStr.contains('%'))
3579
3580
3581 return nullptr;
3582
3583 return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B);
3584 }
3585
3586
3587
3588 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4)
3589 return nullptr;
3590
3591
3592 if (FormatStr[1] == 'c') {
3593 if (N <= 1) {
3594
3595
3596
3598 return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B);
3599 }
3600
3601
3603 return nullptr;
3607 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
3608 B.CreateStore(B.getInt8(0), Ptr);
3609 return ConstantInt::get(CI->getType(), 1);
3610 }
3611
3612 if (FormatStr[1] != 's')
3613 return nullptr;
3614
3616
3619 return nullptr;
3620
3621 return emitSnPrintfMemCpy(CI, StrArg, Str, N, B);
3622}
3623
3625 if (Value *V = optimizeSnPrintFString(CI, B)) {
3626 return V;
3627 }
3628
3631 return nullptr;
3632}
3633
3634Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
3636 optimizeErrorReporting(CI, B, 0);
3637
3638
3641 return nullptr;
3642
3643
3644
3645
3647 return nullptr;
3648
3649
3651
3652 if (FormatStr.contains('%'))
3653 return nullptr;
3654
3659 }
3660
3661
3662
3663 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3664 return nullptr;
3665
3666
3667 if (FormatStr[1] == 'c') {
3668
3670 return nullptr;
3673 "chari");
3675 }
3676
3677 if (FormatStr[1] == 's') {
3678
3680 return nullptr;
3683 }
3684 return nullptr;
3685}
3686
3691 if (Value *V = optimizeFPrintFString(CI, B)) {
3692 return V;
3693 }
3694
3695
3696
3700 FT, Callee->getAttributes());
3702 New->setCalledFunction(FIPrintFFn);
3703 B.Insert(New);
3704 return New;
3705 }
3706
3707
3708
3711 auto SmallFPrintFFn =
3713 Callee->getAttributes());
3715 New->setCalledFunction(SmallFPrintFFn);
3716 B.Insert(New);
3717 return New;
3718 }
3719
3720 return nullptr;
3721}
3722
3724 optimizeErrorReporting(CI, B, 3);
3725
3726
3729 if (SizeC && CountC) {
3731
3732
3733 if (Bytes == 0)
3734 return ConstantInt::get(CI->getType(), 0);
3735
3736
3737
3738 if (Bytes == 1 && CI->use_empty()) {
3741 Value *Cast = B.CreateIntCast(Char, IntTy, true, "chari");
3743 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
3744 }
3745 }
3746
3747 return nullptr;
3748}
3749
3751 optimizeErrorReporting(CI, B, 1);
3752
3753
3754
3757 return nullptr;
3758
3759
3761 return nullptr;
3762
3763
3765 if (!Len)
3766 return nullptr;
3767
3768
3772 *CI,
3774 ConstantInt::get(SizeTTy, Len - 1),
3776}
3777
3781 return nullptr;
3782
3783
3784
3787
3788
3791 }
3792
3793 return nullptr;
3794}
3795
3796Value *LibCallSimplifier::optimizeExit(CallInst *CI) {
3797
3798
3800 if (!CI->hasFnAttr(Attribute::Cold) &&
3803 }
3804 return nullptr;
3805}
3806
3808
3812}
3813
3814bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
3816 FloatFuncName += 'f';
3818}
3819
3820Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
3825
3826
3828
3832 "Optimizing string/memory libcall would change the calling convention");
3833 switch (Func) {
3834 case LibFunc_strcat:
3835 return optimizeStrCat(CI, Builder);
3836 case LibFunc_strncat:
3837 return optimizeStrNCat(CI, Builder);
3838 case LibFunc_strchr:
3839 return optimizeStrChr(CI, Builder);
3840 case LibFunc_strrchr:
3841 return optimizeStrRChr(CI, Builder);
3842 case LibFunc_strcmp:
3843 return optimizeStrCmp(CI, Builder);
3844 case LibFunc_strncmp:
3845 return optimizeStrNCmp(CI, Builder);
3846 case LibFunc_strcpy:
3847 return optimizeStrCpy(CI, Builder);
3848 case LibFunc_stpcpy:
3849 return optimizeStpCpy(CI, Builder);
3850 case LibFunc_strlcpy:
3851 return optimizeStrLCpy(CI, Builder);
3852 case LibFunc_stpncpy:
3853 return optimizeStringNCpy(CI, true, Builder);
3854 case LibFunc_strncpy:
3855 return optimizeStringNCpy(CI, false, Builder);
3856 case LibFunc_strlen:
3857 return optimizeStrLen(CI, Builder);
3858 case LibFunc_strnlen:
3859 return optimizeStrNLen(CI, Builder);
3860 case LibFunc_strpbrk:
3861 return optimizeStrPBrk(CI, Builder);
3862 case LibFunc_strndup:
3863 return optimizeStrNDup(CI, Builder);
3864 case LibFunc_strtol:
3865 case LibFunc_strtod:
3866 case LibFunc_strtof:
3867 case LibFunc_strtoul:
3868 case LibFunc_strtoll:
3869 case LibFunc_strtold:
3870 case LibFunc_strtoull:
3871 return optimizeStrTo(CI, Builder);
3872 case LibFunc_strspn:
3873 return optimizeStrSpn(CI, Builder);
3874 case LibFunc_strcspn:
3875 return optimizeStrCSpn(CI, Builder);
3876 case LibFunc_strstr:
3877 return optimizeStrStr(CI, Builder);
3878 case LibFunc_memchr:
3879 return optimizeMemChr(CI, Builder);
3880 case LibFunc_memrchr:
3881 return optimizeMemRChr(CI, Builder);
3882 case LibFunc_bcmp:
3883 return optimizeBCmp(CI, Builder);
3884 case LibFunc_memcmp:
3885 return optimizeMemCmp(CI, Builder);
3886 case LibFunc_memcpy:
3887 return optimizeMemCpy(CI, Builder);
3888 case LibFunc_memccpy:
3889 return optimizeMemCCpy(CI, Builder);
3890 case LibFunc_mempcpy:
3891 return optimizeMemPCpy(CI, Builder);
3892 case LibFunc_memmove:
3893 return optimizeMemMove(CI, Builder);
3894 case LibFunc_memset:
3895 return optimizeMemSet(CI, Builder);
3896 case LibFunc_realloc:
3897 return optimizeRealloc(CI, Builder);
3898 case LibFunc_wcslen:
3899 return optimizeWcslen(CI, Builder);
3900 case LibFunc_bcopy:
3901 return optimizeBCopy(CI, Builder);
3902 case LibFunc_Znwm:
3903 case LibFunc_ZnwmRKSt9nothrow_t:
3904 case LibFunc_ZnwmSt11align_val_t:
3905 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
3906 case LibFunc_Znam:
3907 case LibFunc_ZnamRKSt9nothrow_t:
3908 case LibFunc_ZnamSt11align_val_t:
3909 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
3910 case LibFunc_Znwm12__hot_cold_t:
3911 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
3912 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
3913 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
3914 case LibFunc_Znam12__hot_cold_t:
3915 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
3916 case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
3917 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
3918 case LibFunc_size_returning_new:
3919 case LibFunc_size_returning_new_hot_cold:
3920 case LibFunc_size_returning_new_aligned:
3921 case LibFunc_size_returning_new_aligned_hot_cold:
3922 return optimizeNew(CI, Builder, Func);
3923 default:
3924 break;
3925 }
3926 }
3927 return nullptr;
3928}
3929
3930
3934 return nullptr;
3935
3937
3938 if (CharSeq.empty())
3939 Fill = APInt(32, 0);
3941 return nullptr;
3942
3944}
3945
3946Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
3950
3951
3953 return nullptr;
3954
3955 if (Value *V = optimizeSymmetric(CI, Func, Builder))
3956 return V;
3957
3958 switch (Func) {
3959 case LibFunc_sinpif:
3960 case LibFunc_sinpi:
3961 return optimizeSinCosPi(CI, true, Builder);
3962 case LibFunc_cospif:
3963 case LibFunc_cospi:
3964 return optimizeSinCosPi(CI, false, Builder);
3965 case LibFunc_powf:
3966 case LibFunc_pow:
3967 case LibFunc_powl:
3968 return optimizePow(CI, Builder);
3969 case LibFunc_exp2l:
3970 case LibFunc_exp2:
3971 case LibFunc_exp2f:
3972 return optimizeExp2(CI, Builder);
3973 case LibFunc_fabsf:
3974 case LibFunc_fabs:
3975 case LibFunc_fabsl:
3977 case LibFunc_sqrtf:
3978 case LibFunc_sqrt:
3979 case LibFunc_sqrtl:
3980 return optimizeSqrt(CI, Builder);
3981 case LibFunc_fmod:
3982 case LibFunc_fmodf:
3983 case LibFunc_fmodl:
3984 return optimizeFMod(CI, Builder);
3985 case LibFunc_logf:
3986 case LibFunc_log:
3987 case LibFunc_logl:
3988 case LibFunc_log10f:
3989 case LibFunc_log10:
3990 case LibFunc_log10l:
3991 case LibFunc_log1pf:
3992 case LibFunc_log1p:
3993 case LibFunc_log1pl:
3994 case LibFunc_log2f:
3995 case LibFunc_log2:
3996 case LibFunc_log2l:
3997 case LibFunc_logbf:
3998 case LibFunc_logb:
3999 case LibFunc_logbl:
4000 return optimizeLog(CI, Builder);
4001 case LibFunc_tan:
4002 case LibFunc_tanf:
4003 case LibFunc_tanl:
4004 case LibFunc_sinh:
4005 case LibFunc_sinhf:
4006 case LibFunc_sinhl:
4007 case LibFunc_asinh:
4008 case LibFunc_asinhf:
4009 case LibFunc_asinhl:
4010 case LibFunc_cosh:
4011 case LibFunc_coshf:
4012 case LibFunc_coshl:
4013 case LibFunc_atanh:
4014 case LibFunc_atanhf:
4015 case LibFunc_atanhl:
4016 return optimizeTrigInversionPairs(CI, Builder);
4017 case LibFunc_ceil:
4019 case LibFunc_floor:
4021 case LibFunc_round:
4023 case LibFunc_roundeven:
4025 case LibFunc_nearbyint:
4027 case LibFunc_rint:
4029 case LibFunc_trunc:
4031 case LibFunc_acos:
4032 case LibFunc_acosh:
4033 case LibFunc_asin:
4034 case LibFunc_atan:
4035 case LibFunc_cbrt:
4036 case LibFunc_exp:
4037 case LibFunc_exp10:
4038 case LibFunc_expm1:
4039 case LibFunc_cos:
4040 case LibFunc_sin:
4041 case LibFunc_tanh:
4044 return nullptr;
4045 case LibFunc_copysign:
4048 return nullptr;
4049 case LibFunc_fdim:
4050 case LibFunc_fdimf:
4051 case LibFunc_fdiml:
4052 return optimizeFdim(CI, Builder);
4053 case LibFunc_fminf:
4054 case LibFunc_fmin:
4055 case LibFunc_fminl:
4056 case LibFunc_fmaxf:
4057 case LibFunc_fmax:
4058 case LibFunc_fmaxl:
4059 return optimizeFMinFMax(CI, Builder);
4060 case LibFunc_cabs:
4061 case LibFunc_cabsf:
4062 case LibFunc_cabsl:
4063 return optimizeCAbs(CI, Builder);
4064 case LibFunc_remquo:
4065 case LibFunc_remquof:
4066 case LibFunc_remquol:
4067 return optimizeRemquo(CI, Builder);
4068 case LibFunc_nan:
4069 case LibFunc_nanf:
4070 case LibFunc_nanl:
4072 default:
4073 return nullptr;
4074 }
4075}
4076
4080
4081
4082
4083
4085 return nullptr;
4086
4090
4093
4096
4097
4098
4099
4102 else if (isa(CI) && CI->isFast())
4103 UnsafeFPShrink = true;
4104
4105
4107 if (!IsCallingConvC)
4108 return nullptr;
4109
4110
4111 switch (II->getIntrinsicID()) {
4112 case Intrinsic::pow:
4113 return optimizePow(CI, Builder);
4114 case Intrinsic::exp2:
4115 return optimizeExp2(CI, Builder);
4116 case Intrinsic:🪵
4117 case Intrinsic::log2:
4118 case Intrinsic::log10:
4119 return optimizeLog(CI, Builder);
4120 case Intrinsic::sqrt:
4121 return optimizeSqrt(CI, Builder);
4122 case Intrinsic::memset:
4123 return optimizeMemSet(CI, Builder);
4124 case Intrinsic::memcpy:
4125 return optimizeMemCpy(CI, Builder);
4126 case Intrinsic::memmove:
4127 return optimizeMemMove(CI, Builder);
4128 default:
4129 return nullptr;
4130 }
4131 }
4132
4133
4134 if (Value *SimplifiedFortifiedCI =
4135 FortifiedSimplifier.optimizeCall(CI, Builder))
4136 return SimplifiedFortifiedCI;
4137
4138
4140
4142 return nullptr;
4143 if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
4144 return V;
4145 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
4146 return V;
4147 switch (Func) {
4148 case LibFunc_ffs:
4149 case LibFunc_ffsl:
4150 case LibFunc_ffsll:
4151 return optimizeFFS(CI, Builder);
4152 case LibFunc_fls:
4153 case LibFunc_flsl:
4154 case LibFunc_flsll:
4155 return optimizeFls(CI, Builder);
4156 case LibFunc_abs:
4157 case LibFunc_labs:
4158 case LibFunc_llabs:
4159 return optimizeAbs(CI, Builder);
4160 case LibFunc_isdigit:
4161 return optimizeIsDigit(CI, Builder);
4162 case LibFunc_isascii:
4163 return optimizeIsAscii(CI, Builder);
4164 case LibFunc_toascii:
4165 return optimizeToAscii(CI, Builder);
4166 case LibFunc_atoi:
4167 case LibFunc_atol:
4168 case LibFunc_atoll:
4169 return optimizeAtoi(CI, Builder);
4170 case LibFunc_strtol:
4171 case LibFunc_strtoll:
4172 return optimizeStrToInt(CI, Builder, true);
4173 case LibFunc_strtoul:
4174 case LibFunc_strtoull:
4175 return optimizeStrToInt(CI, Builder, false);
4176 case LibFunc_printf:
4177 return optimizePrintF(CI, Builder);
4178 case LibFunc_sprintf:
4179 return optimizeSPrintF(CI, Builder);
4180 case LibFunc_snprintf:
4181 return optimizeSnPrintF(CI, Builder);
4182 case LibFunc_fprintf:
4183 return optimizeFPrintF(CI, Builder);
4184 case LibFunc_fwrite:
4185 return optimizeFWrite(CI, Builder);
4186 case LibFunc_fputs:
4187 return optimizeFPuts(CI, Builder);
4188 case LibFunc_puts:
4189 return optimizePuts(CI, Builder);
4190 case LibFunc_perror:
4191 return optimizeErrorReporting(CI, Builder);
4192 case LibFunc_vfprintf:
4193 case LibFunc_fiprintf:
4194 return optimizeErrorReporting(CI, Builder, 0);
4195 case LibFunc_exit:
4196 case LibFunc_Exit:
4197 return optimizeExit(CI);
4198 default:
4199 return nullptr;
4200 }
4201 }
4202 return nullptr;
4203}
4204
4211 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), DT(DT), DC(DC), AC(AC),
4212 ORE(ORE), BFI(BFI), PSI(PSI), Replacer(Replacer), Eraser(Eraser) {}
4213
4214void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
4215
4216 Replacer(I, With);
4217}
4218
4219void LibCallSimplifier::eraseFromParent(Instruction *I) {
4220 Eraser(I);
4221}
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(
4259 CallInst *CI, unsigned ObjSizeOp, std::optional SizeOp,
4260 std::optional StrOp, std::optional FlagOp) {
4261
4262
4263 if (FlagOp) {
4265 if (!Flag || ->isZero())
4266 return false;
4267 }
4268
4270 return true;
4271
4273 dyn_cast(CI->getArgOperand(ObjSizeOp))) {
4274 if (ObjSizeCI->isMinusOne())
4275 return true;
4276
4277 if (OnlyLowerUnknownSize)
4278 return false;
4279 if (StrOp) {
4281
4282
4283 if (Len)
4285 else
4286 return false;
4287 return ObjSizeCI->getZExtValue() >= Len;
4288 }
4289
4290 if (SizeOp) {
4292 dyn_cast(CI->getArgOperand(*SizeOp)))
4293 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
4294 }
4295 }
4296 return false;
4297}
4298
4299Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
4301 if (isFortifiedCallFoldable(CI, 3, 2)) {
4307 }
4308 return nullptr;
4309}
4310
4311Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
4313 if (isFortifiedCallFoldable(CI, 3, 2)) {
4319 }
4320 return nullptr;
4321}
4322
4323Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
4325 if (isFortifiedCallFoldable(CI, 3, 2)) {
4331 }
4332 return nullptr;
4333}
4334
4335Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
4338 if (isFortifiedCallFoldable(CI, 3, 2))
4342 }
4343 return nullptr;
4344}
4345
4346Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
4352
4353
4354 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
4356 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
4357 }
4358
4359
4360
4361
4362
4363
4364 if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) {
4365 if (Func == LibFunc_strcpy_chk)
4367 else
4369 }
4370
4371 if (OnlyLowerUnknownSize)
4372 return nullptr;
4373
4374
4376 if (Len)
4378 else
4379 return nullptr;
4380
4383 Value *LenV = ConstantInt::get(SizeTTy, Len);
4385
4386
4387 if (Ret && Func == LibFunc_stpcpy_chk)
4388 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst,
4389 ConstantInt::get(SizeTTy, Len - 1));
4390 return copyFlags(*CI, cast(Ret));
4391}
4392
4393Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
4395 if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0))
4398 return nullptr;
4399}
4400
4401Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
4404 if (isFortifiedCallFoldable(CI, 3, 2)) {
4405 if (Func == LibFunc_strncpy_chk)
4409 else
4413 }
4414
4415 return nullptr;
4416}
4417
4418Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
4420 if (isFortifiedCallFoldable(CI, 4, 3))
4424
4425 return nullptr;
4426}
4427
4428Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
4430 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) {
4435 }
4436
4437 return nullptr;
4438}
4439
4440Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
4442 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) {
4446 VariadicArgs, B, TLI));
4447 }
4448
4449 return nullptr;
4450}
4451
4452Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
4454 if (isFortifiedCallFoldable(CI, 2))
4457
4458 return nullptr;
4459}
4460
4461Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
4463 if (isFortifiedCallFoldable(CI, 3))
4467
4468 return nullptr;
4469}
4470
4471Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
4473 if (isFortifiedCallFoldable(CI, 3))
4477
4478 return nullptr;
4479}
4480
4481Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
4483 if (isFortifiedCallFoldable(CI, 3))
4487
4488 return nullptr;
4489}
4490
4491Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
4493 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2))
4497
4498 return nullptr;
4499}
4500
4501Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
4503 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1))
4507
4508 return nullptr;
4509}
4510
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4529
4532
4535
4536
4537
4538 if (!TLI->getLibFunc(*Callee, Func))
4539 return nullptr;
4540
4541
4543 return nullptr;
4544
4545 switch (Func) {
4546 case LibFunc_memcpy_chk:
4547 return optimizeMemCpyChk(CI, Builder);
4548 case LibFunc_mempcpy_chk:
4549 return optimizeMemPCpyChk(CI, Builder);
4550 case LibFunc_memmove_chk:
4551 return optimizeMemMoveChk(CI, Builder);
4552 case LibFunc_memset_chk:
4553 return optimizeMemSetChk(CI, Builder);
4554 case LibFunc_stpcpy_chk:
4555 case LibFunc_strcpy_chk:
4556 return optimizeStrpCpyChk(CI, Builder, Func);
4557 case LibFunc_strlen_chk:
4558 return optimizeStrLenChk(CI, Builder);
4559 case LibFunc_stpncpy_chk:
4560 case LibFunc_strncpy_chk:
4561 return optimizeStrpNCpyChk(CI, Builder, Func);
4562 case LibFunc_memccpy_chk:
4563 return optimizeMemCCpyChk(CI, Builder);
4564 case LibFunc_snprintf_chk:
4565 return optimizeSNPrintfChk(CI, Builder);
4566 case LibFunc_sprintf_chk:
4567 return optimizeSPrintfChk(CI, Builder);
4568 case LibFunc_strcat_chk:
4569 return optimizeStrCatChk(CI, Builder);
4570 case LibFunc_strlcat_chk:
4571 return optimizeStrLCat(CI, Builder);
4572 case LibFunc_strncat_chk:
4573 return optimizeStrNCatChk(CI, Builder);
4574 case LibFunc_strlcpy_chk:
4575 return optimizeStrLCpyChk(CI, Builder);
4576 case LibFunc_vsnprintf_chk:
4577 return optimizeVSNPrintfChk(CI, Builder);
4578 case LibFunc_vsprintf_chk:
4579 return optimizeVSPrintfChk(CI, Builder);
4580 default:
4581 break;
4582 }
4583 return nullptr;
4584}
4585
4588 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
Module.h This file contains the declarations for the Module class.
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
static bool isBinary(MachineInstr &MI)
const SmallVectorImpl< MachineOperand > & Cond
static bool isDigit(const char C)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isOnlyUsedInEqualityComparison(Value *V, Value *With)
Return true if it is only used in equality comparisons with With.
static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef< unsigned > ArgNos, Value *Size, const DataLayout &DL)
static cl::opt< unsigned, false, HotColdHintParser > ColdNewHintValue("cold-new-hint-value", cl::Hidden, cl::init(1), cl::desc("Value to pass to hot/cold operator new for cold allocation"))
static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos, const TargetLibraryInfo *TLI)
static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, const DataLayout &DL)
static Value * mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old)
static cl::opt< bool > OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false), cl::desc("Enable hot/cold operator new library calls"))
static Value * optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, const TargetLibraryInfo *TLI, bool isPrecise=false)
Shrink double -> float for binary functions.
static bool ignoreCallingConv(LibFunc Func)
static cl::opt< bool > OptimizeExistingHotColdNew("optimize-existing-hot-cold-new", cl::Hidden, cl::init(false), cl::desc("Enable optimization of existing hot/cold operator new library calls"))
static void annotateDereferenceableBytes(CallInst *CI, ArrayRef< unsigned > ArgNos, uint64_t DereferenceableBytes)
static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg)
static Value * optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, bool isBinary, const TargetLibraryInfo *TLI, bool isPrecise=false)
Shrink double -> float functions.
static Value * optimizeSymmetricCall(CallInst *CI, bool IsEven, IRBuilderBase &B)
static Value * getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, Module *M, IRBuilderBase &B, const TargetLibraryInfo *TLI)
static Value * valueHasFloatPrecision(Value *Val)
Return a variant of Val with float type.
static Value * optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, uint64_t Len, IRBuilderBase &B, const DataLayout &DL)
static Value * createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, IRBuilderBase &B)
static Value * convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr, uint64_t Base, bool AsSigned, IRBuilderBase &B)
static Value * memChrToCharCompare(CallInst *CI, Value *NBytes, IRBuilderBase &B, const DataLayout &DL)
static Value * copyFlags(const CallInst &Old, Value *New)
static StringRef substr(StringRef Str, uint64_t Len)
static cl::opt< unsigned, false, HotColdHintParser > HotNewHintValue("hot-new-hint-value", cl::Hidden, cl::init(254), cl::desc("Value to pass to hot/cold operator new for hot allocation"))
static bool isTrigLibCall(CallInst *CI)
static Value * optimizeNaN(CallInst *CI)
Constant folding nan/nanf/nanl.
static bool isOnlyUsedInComparisonWithZero(Value *V)
static Value * replaceUnaryCall(CallInst *CI, IRBuilderBase &B, Intrinsic::ID IID)
static bool callHasFloatingPointArgument(const CallInst *CI)
static Value * optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, const TargetLibraryInfo *TLI, bool isPrecise=false)
Shrink double -> float for unary functions.
static bool callHasFP128Argument(const CallInst *CI)
static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, ArrayRef< unsigned > ArgNos)
static Value * optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, Value *Size, bool StrNCmp, IRBuilderBase &B, const DataLayout &DL)
static Value * getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth)
static cl::opt< bool > EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, cl::init(false), cl::desc("Enable unsafe double to float " "shrinking for math lib calls"))
static cl::opt< unsigned, false, HotColdHintParser > NotColdNewHintValue("notcold-new-hint-value", cl::Hidden, cl::init(128), cl::desc("Value to pass to hot/cold operator new for " "notcold (warm) allocation"))
This file defines the SmallString class.
opStatus divide(const APFloat &RHS, roundingMode RM)
bool isFiniteNonZero() const
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
double convertToDouble() const
Converts this APFloat to host double value.
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
opStatus add(const APFloat &RHS, roundingMode RM)
const fltSemantics & getSemantics() const
float convertToFloat() const
Converts this APFloat to host float value.
opStatus remainder(const APFloat &RHS)
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
An arbitrary precision integer that knows its signedness.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
A cache of @llvm.assume calls within a function.
static AttributeList get(LLVMContext &C, ArrayRef< std::pair< unsigned, Attribute > > Attrs)
Create an AttributeList with the specified parameters in it.
Attribute getFnAttr(Attribute::AttrKind Kind) const
Return the attribute object that exists for the function.
AttributeSet getParamAttrs(unsigned ArgNo) const
The attributes for the argument or parameter at the given index are returned.
AttributeList addParamAttributes(LLVMContext &C, unsigned ArgNo, const AttrBuilder &B) const
Add an argument attribute to the list.
MaybeAlign getAlignment() const
static Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes)
StringRef getValueAsString() const
Return the attribute's value as a string.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
void addFnAttr(Attribute::AttrKind Kind)
Adds the attribute to the function.
void removeParamAttrs(unsigned ArgNo, const AttributeMask &AttrsToRemove)
Removes the attributes from the given argument.
void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Removes the attribute from the given argument.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool doesNotAccessMemory(unsigned OpNo) const
void removeRetAttrs(const AttributeMask &AttrsToRemove)
Removes the attributes from the return value.
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
bool isStrictFP() const
Determine if the call requires strict floating point semantics.
AttributeSet getParamAttributes(unsigned ArgNo) const
Return the param attributes for this call.
uint64_t getParamDereferenceableBytes(unsigned i) const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
MaybeAlign getParamAlign(unsigned ArgNo) const
Extract the alignment for a call or parameter (0=unknown).
AttributeSet getRetAttributes() const
Return the return attributes for this call.
void setAttributes(AttributeList A)
Set the attributes for this call.
bool doesNotThrow() const
Determine if the call cannot unwind.
Value * getArgOperand(unsigned i) const
uint64_t getParamDereferenceableOrNullBytes(unsigned i) const
Extract the number of dereferenceable_or_null bytes for a parameter (0=unknown).
Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
Function * getCaller()
Helper to get the caller (the parent function).
This class represents a function call, abstracting a target machine's calling convention.
bool isNoTailCall() const
TailCallKind getTailCallKind() const
bool isMustTailCall() const
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getPredicate() const
Return the predicate for this instruction.
uint64_t getElementAsInteger(unsigned i) const
If this is a sequential container of integers (of any size), return the specified element in the low ...
ConstantFP - Floating Point Values [float, double].
static Constant * getInfinity(Type *Ty, bool Negative=false)
static Constant * getQNaN(Type *Ty, bool Negative=false, APInt *Payload=nullptr)
This is the shared class of boolean and integer constants.
bool isOne() const
This is just a convenience method to make client code smaller for a common case.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
bool fitsInLegalInteger(unsigned Width) const
Returns true if the specified type fits in a native integer type supported by the CPU.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
This class represents an extension of floating point types.
This class represents a truncation of floating point types.
Convenience struct for specifying and reasoning about fast-math flags.
void setNoSignedZeros(bool B=true)
static FastMathFlags getFast()
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
FortifiedLibCallSimplifier(const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize=false)
Value * optimizeCall(CallInst *CI, IRBuilderBase &B)
Take the given call instruction and return a more optimal value to replace the instruction with or 0 ...
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
AttributeList getAttributes() const
Return the attribute list for this Function.
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
Common base class shared among various IRBuilders.
void setDefaultOperandBundles(ArrayRef< OperandBundleDef > OpBundles)
Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
bool hasNoInfs() const LLVM_READONLY
Determine whether the no-infs flag is set.
bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
bool isFast() const LLVM_READONLY
Determine whether all fast-math-flags are set.
const Function * getFunction() const
Return the function this instruction belongs to.
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
bool hasApproxFunc() const LLVM_READONLY
Determine whether the approximate-math-functions flag is set.
bool hasAllowReassoc() const LLVM_READONLY
Determine whether the allow-reassociation flag is set.
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Class to represent integer types.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
LibCallSimplifier(const DataLayout &DL, const TargetLibraryInfo *TLI, DominatorTree *DT, DomConditionCache *DC, AssumptionCache *AC, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, function_ref< void(Instruction *, Value *)> Replacer=&replaceAllUsesWithDefault, function_ref< void(Instruction *)> Eraser=&eraseFromParentDefault)
Value * optimizeCall(CallInst *CI, IRBuilderBase &B)
optimizeCall - Take the given call instruction and return a more optimal value to replace the instruc...
An instruction for reading from memory.
Value * getPointerOperand()
A Module instance is used to store all the information related to an LLVM module.
const std::string & getTargetTriple() const
Get the target triple which is a string describing the target host.
Analysis providing profile information.
This class represents the LLVM 'select' instruction.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr bool empty() const
empty - Check if the string is empty.
char back() const
back - Get the last character in the string.
constexpr size_t size() const
size - Get the string size.
bool contains(StringRef Other) const
Return true if the given string is a substring of *this, and false otherwise.
size_t find(char C, size_t From=0) const
Search for the first character C in the string.
static constexpr size_t npos
int compare(StringRef RHS) const
compare - Compare two strings; the result is negative, zero, or positive if this string is lexicograp...
StringRef drop_back(size_t N=1) const
Return a StringRef equal to 'this' but with the last N elements dropped.
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
static bool isCallingConvCCompatible(CallBase *CI)
Returns true if call site / callee has cdecl-compatible calling conventions.
Provides information about what library functions are available for the current target.
unsigned getWCharSize(const Module &M) const
Returns the size of the wchar_t type in bytes or 0 if the size is unknown.
ConstantInt * getAsSizeT(uint64_t V, const Module &M) const
Returns a constant materialized as a size_t type.
unsigned getSizeTSize(const Module &M) const
Returns the size of the size_t type in bits.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
StringRef getName(LibFunc F) const
unsigned getIntSize() const
Get size of a C-level int or unsigned int, in bits.
Triple - Helper class for working with autoconf configuration names.
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
const fltSemantics & getFltSemantics() const
bool isVectorTy() const
True if this is an instance of VectorType.
bool isPointerTy() const
True if this is an instance of PointerType.
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
bool isStructTy() const
True if this is an instance of StructType.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
A Use represents the edge between a Value definition and its users.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
LLVMContext & getContext() const
All values hold a context through their type.
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
int getNumOccurrences() const
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
AttributeMask typeIncompatible(Type *Ty, AttributeSet AS, AttributeSafetyKind ASK=ASK_ALL)
Which attributes cannot be applied to a type.
@ C
The default llvm calling convention, compatible with C.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
OneUse_match< T > m_OneUse(const T &SubPattern)
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
initializer< Ty > init(const Ty &Val)
NodeAddr< FuncNode * > Func
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
int64_t maxIntN(int64_t N)
Gets the maximum value for a N-bit signed integer.
Value * emitUnaryFloatFnCall(Value *Op, const TargetLibraryInfo *TLI, StringRef Name, IRBuilderBase &B, const AttributeList &Attrs)
Emit a call to the unary function named 'Name' (e.g.
Value * emitStrChr(Value *Ptr, char C, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strchr function to the builder, for the specified pointer and character.
Value * emitPutChar(Value *Char, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the putchar function. This assumes that Char is an 'int'.
Value * emitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the __memcpy_chk function to the builder.
Value * emitStrNCpy(Value *Dst, Value *Src, Value *Len, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strncpy function to the builder, for the specified pointer arguments and length.
bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
Value * emitHotColdNewAlignedNoThrow(Value *Num, Value *Align, Value *NoThrow, IRBuilderBase &B, const TargetLibraryInfo *TLI, LibFunc NewFunc, uint8_t HotCold)
bool isKnownNeverInfinity(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
APFloat abs(APFloat X)
Returns the absolute value of the argument.
bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
Value * emitSPrintf(Value *Dest, Value *Fmt, ArrayRef< Value * > VariadicArgs, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the sprintf function.
bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
Value * emitMemRChr(Value *Ptr, Value *Val, Value *Len, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the memrchr function, analogously to emitMemChr.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Value * emitStrLCat(Value *Dest, Value *Src, Value *Size, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strlcat function.
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
bool hasFloatFn(const Module *M, const TargetLibraryInfo *TLI, Type *Ty, LibFunc DoubleFn, LibFunc FloatFn, LibFunc LongDoubleFn)
Check whether the overloaded floating point function corresponding to Ty is available.
Value * emitStrNCat(Value *Dest, Value *Src, Value *Size, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strncat function.
bool isLibFuncEmittable(const Module *M, const TargetLibraryInfo *TLI, LibFunc TheLibFunc)
Check whether the library function is available on target and also that it in the current Module is a...
Value * emitVSNPrintf(Value *Dest, Value *Size, Value *Fmt, Value *VAList, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the vsnprintf function.
Align getKnownAlignment(Value *V, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to infer an alignment for the specified pointer.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Value * emitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the strncmp function to the builder.
Value * emitMemCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the memcmp function.
Value * emitBinaryFloatFnCall(Value *Op1, Value *Op2, const TargetLibraryInfo *TLI, StringRef Name, IRBuilderBase &B, const AttributeList &Attrs)
Emit a call to the binary function named 'Name' (e.g.
Value * emitFPutS(Value *Str, Value *File, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the fputs function.
Value * emitStrDup(Value *Ptr, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strdup function to the builder, for the specified pointer.
void sort(IteratorTy Start, IteratorTy End)
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
Value * emitBCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the bcmp function.
std::enable_if_t< std::is_unsigned_v< T >, T > SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed=nullptr)
Multiply two unsigned integers, X and Y, and add the unsigned integer, A to the product.
uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
FunctionCallee getOrInsertLibFunc(Module *M, const TargetLibraryInfo &TLI, LibFunc TheLibFunc, FunctionType *T, AttributeList AttributeList)
Calls getOrInsertFunction() and then makes sure to add mandatory argument attributes.
Value * emitStrLen(Value *Ptr, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the strlen function to the builder, for the specified pointer.
Value * emitFPutC(Value *Char, Value *File, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the fputc function.
Value * emitStpNCpy(Value *Dst, Value *Src, Value *Len, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the stpncpy function to the builder, for the specified pointer arguments and length.
Value * emitStrCat(Value *Dest, Value *Src, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strcat function.
Value * emitVSPrintf(Value *Dest, Value *Fmt, Value *VAList, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the vsprintf function.
bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
Value * emitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the fwrite function.
Value * emitSNPrintf(Value *Dest, Value *Size, Value *Fmt, ArrayRef< Value * > Args, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the snprintf function.
@ Mod
The access may modify the value stored in memory.
Value * emitStpCpy(Value *Dst, Value *Src, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the stpcpy function to the builder, for the specified pointer arguments.
@ And
Bitwise or logical AND of integers.
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
DWARFExpression::Operation Op
@ NearestTiesToEven
roundTiesToEven.
constexpr unsigned BitWidth
Value * emitHotColdNewNoThrow(Value *Num, Value *NoThrow, IRBuilderBase &B, const TargetLibraryInfo *TLI, LibFunc NewFunc, uint8_t HotCold)
Value * emitMalloc(Value *Num, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the malloc function.
Value * emitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the memchr function.
Value * emitHotColdNewAligned(Value *Num, Value *Align, IRBuilderBase &B, const TargetLibraryInfo *TLI, LibFunc NewFunc, uint8_t HotCold)
Value * emitPutS(Value *Str, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the puts function. This assumes that Str is some pointer.
Value * emitMemCCpy(Value *Ptr1, Value *Ptr2, Value *Val, Value *Len, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the memccpy function.
Value * emitHotColdSizeReturningNew(Value *Num, IRBuilderBase &B, const TargetLibraryInfo *TLI, LibFunc NewFunc, uint8_t HotCold)
Value * emitHotColdNew(Value *Num, IRBuilderBase &B, const TargetLibraryInfo *TLI, LibFunc NewFunc, uint8_t HotCold)
Emit a call to the hot/cold operator new function.
Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize=8)
Returns true if the GEP is based on a pointer to a string (array of.
Value * emitStrLCpy(Value *Dest, Value *Src, Value *Size, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strlcpy function.
Value * emitHotColdSizeReturningNewAligned(Value *Num, Value *Align, IRBuilderBase &B, const TargetLibraryInfo *TLI, LibFunc NewFunc, uint8_t HotCold)
Value * emitStrCpy(Value *Dst, Value *Src, IRBuilderBase &B, const TargetLibraryInfo *TLI)
Emit a call to the strcpy function to the builder, for the specified pointer arguments.
KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, unsigned Depth, const SimplifyQuery &SQ)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
Value * emitMemPCpy(Value *Dst, Value *Src, Value *Len, IRBuilderBase &B, const DataLayout &DL, const TargetLibraryInfo *TLI)
Emit a call to the mempcpy function.
uint64_t maxUIntN(uint64_t N)
Gets the maximum value for a N-bit unsigned integer.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
static const fltSemantics & IEEEsingle() LLVM_READNONE
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
opStatus
IEEE-754R 7: Default exception handling.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Holds functions to get, set or test bitfields.
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
const ConstantDataArray * Array
ConstantDataArray pointer.
bool isNonNegative() const
Returns true if this value is known to be non-negative.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
static constexpr FPClassTest OrderedLessThanZeroMask
bool isKnownNeverLogicalZero(const Function &F, Type *Ty) const
Return true if it's know this can never be interpreted as a zero.
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.