LLVM: lib/Analysis/TargetLibraryInfo.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
21using namespace llvm;
22
27 "No vector functions library"),
29 "Accelerate framework"),
31 "Darwin_libsystem_m", "Darwin libsystem_m"),
33 "GLIBC Vector Math library"),
35 "IBM MASS vector library"),
37 "Intel SVML library"),
39 "SIMD Library for Evaluating Elementary Functions"),
41 "Arm Performance Libraries"),
43 "AMD vector math library")));
44
45StringLiteral const TargetLibraryInfoImpl::StandardNames[LibFunc::NumLibFuncs] =
46 {
47#define TLI_DEFINE_STRING
48#include "llvm/Analysis/TargetLibraryInfo.def"
49};
50
52 assert(!VectorFnName.empty() && "Vector function name must not be empty.");
55 Out << VABIPrefix << "_" << ScalarFnName << "(" << VectorFnName << ")";
56 return std::string(Out.str());
57}
58
59
81};
82
84
86#define TLI_DEFINE_SIG
87#include "llvm/Analysis/TargetLibraryInfo.def"
88};
89
91 "Missing library function signatures");
92
94
95 if (.isOSDarwin())
96 return false;
97
98
100 return false;
101
102 if (T.isMacOSX() && T.isMacOSXVersionLT(10, 9))
103 return false;
104
105 if (T.isiOS() && T.isOSVersionLT(7, 0))
106 return false;
107
108 return true;
109}
110
112
113
114 if (TT.isOSLinux())
115 return TT.isGNUEnvironment() || TT.isMusl();
116
117
118 return TT.isOSFreeBSD() || TT.isOSSolaris();
119}
120
123 switch (CC) {
124 default:
125 return false;
127 return true;
131
132
133
134 if (Triple(TT).isiOS())
135 return false;
136
137 if (!FuncTy->getReturnType()->isPointerTy() &&
138 !FuncTy->getReturnType()->isIntegerTy() &&
139 !FuncTy->getReturnType()->isVoidTy())
140 return false;
141
142 for (auto *Param : FuncTy->params()) {
143 if (!Param->isPointerTy() && !Param->isIntegerTy())
144 return false;
145 }
146 return true;
147 }
148 }
149 return false;
150}
151
153 return ::isCallingConvCCompatible(CI->getCallingConv(),
156}
157
159 return ::isCallingConvCCompatible(F->getCallingConv(),
160 F->getParent()->getTargetTriple(),
161 F->getFunctionType());
162}
163
165 bool ShouldExtI32Param, ShouldExtI32Return;
166 bool ShouldSignExtI32Param, ShouldSignExtI32Return;
168 ShouldExtI32Param, ShouldExtI32Return, ShouldSignExtI32Param,
169 ShouldSignExtI32Return, T);
174
175
176
177
178 TLI.setIntSize(T.isArch16Bit() ? 16 : 32);
179}
180
181
182
183
186
187
198
199
200
201 if (T.isAMDGPU()) {
203 TLI.setAvailable(llvm::LibFunc___kmpc_alloc_shared);
204 TLI.setAvailable(llvm::LibFunc___kmpc_free_shared);
205 return;
206 }
207
208
209
210 if (T.isMacOSX()) {
211
217
218 if (T.isMacOSXVersionLT(10, 5)) {
222 }
223 } else if (T.isiOS()) {
224 if (T.isOSVersionLT(3, 0)) {
228 }
229 } else if (.isWatchOS()) {
233 }
234
242 }
243
246
247 if (T.isMacOSX() && T.getArch() == Triple::x86 &&
248 .isMacOSXVersionLT(10, 7)) {
249
250
251
252
253
256 }
257
258
264 }
265
266
271 }
272
273 if (T.isOSWindows() && .isOSCygMing()) {
274
275
276
277
278
279 bool hasPartialC99 = true;
280 if (T.isKnownWindowsMSVCEnvironment()) {
282 hasPartialC99 = (Version.getMajor() == 0 || Version.getMajor() >= 19);
283 }
284
285
288 bool hasPartialFloat = (isARM ||
290
291
292 if (!hasPartialFloat) {
316 }
317 if (!isARM)
321
322
349
350
351 if (!hasPartialC99) {
379 if (hasPartialFloat)
381 else
395 }
396
397
418
419
420
444 }
445
446 if (T.isOSWindows() && .isWindowsCygwinEnvironment()) {
447
480
481
482
483
485 }
486
487
488 if (T.isOSMSVCRT()) {
489
493 TLI.setUnavailable(LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t);
501 TLI.setUnavailable(LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t);
509 TLI.setUnavailable(LibFunc_ZnajSt11align_val_tRKSt9nothrow_t);
512 TLI.setUnavailable(LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t);
514 TLI.setUnavailable(LibFunc_ZnamSt11align_val_tRKSt9nothrow_t);
518 TLI.setUnavailable(LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t);
521 TLI.setUnavailable(LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t);
523 TLI.setUnavailable(LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t);
525 TLI.setUnavailable(LibFunc_ZnwmSt11align_val_t12__hot_cold_t);
526 TLI.setUnavailable(LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t);
528 TLI.setUnavailable(LibFunc_ZnamSt11align_val_t12__hot_cold_t);
529 TLI.setUnavailable(LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t);
531 TLI.setUnavailable(LibFunc_size_returning_new_hot_cold);
532 TLI.setUnavailable(LibFunc_size_returning_new_aligned);
533 TLI.setUnavailable(LibFunc_size_returning_new_aligned_hot_cold);
534 } else {
535
539 TLI.setUnavailable(LibFunc_msvc_new_longlong_nothrow);
541 TLI.setUnavailable(LibFunc_msvc_delete_ptr32_nothrow);
544 TLI.setUnavailable(LibFunc_msvc_delete_ptr64_nothrow);
545 TLI.setUnavailable(LibFunc_msvc_delete_ptr64_longlong);
547 TLI.setUnavailable(LibFunc_msvc_new_array_int_nothrow);
549 TLI.setUnavailable(LibFunc_msvc_new_array_longlong_nothrow);
551 TLI.setUnavailable(LibFunc_msvc_delete_array_ptr32_nothrow);
552 TLI.setUnavailable(LibFunc_msvc_delete_array_ptr32_int);
554 TLI.setUnavailable(LibFunc_msvc_delete_array_ptr64_nothrow);
555 TLI.setUnavailable(LibFunc_msvc_delete_array_ptr64_longlong);
556 }
557
558 switch (T.getOS()) {
560
561
562
564 if (T.isMacOSXVersionLT(10, 9)) {
567 } else {
570 }
571 break;
577 if (.isWatchOS() &&
578 (T.isOSVersionLT(7, 0) || (T.isOSVersionLT(9, 0) && T.isX86()))) {
581 } else {
584 }
585 break;
587
588
589
590
591
592
593 [[fallthrough]];
594 default:
598 }
599
600
601
602
603
604
605 switch (T.getOS()) {
614 break;
615 default:
617 }
618
619
620
621
622 switch (T.getOS()) {
631 break;
632 default:
634 }
635
636
637
638
639
640 if (.isOSFreeBSD()) {
644 }
645
646
647
648 if (.isOSLinux() ||
.isGNUEnvironment()) {
655
656 if (.isAndroid() &&
.isMusl())
668
669
670
671
672
718 }
719
720 if ((T.isOSLinux() && T.isGNUEnvironment()) ||
721 (T.isAndroid() && .isAndroidVersionLT(28))) {
722
733 }
734
735 if (T.isAndroid() && T.isAndroidVersionLT(21)) {
738 }
739
740 if (T.isPS()) {
741
743
744
745
753 TLI.setUnavailable(LibFunc_ZnajSt11align_val_tRKSt9nothrow_t);
757 TLI.setUnavailable(LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t);
758
759
778
779
828
829
867 }
868
869
870
871
872
873
874
875
876
877
878
879
880 if (T.isNVPTX()) {
885
886
887
888
889
890
891
892
893
894 TLI.setAvailable(llvm::LibFunc___kmpc_alloc_shared);
895 TLI.setAvailable(llvm::LibFunc___kmpc_free_shared);
896 } else {
898 }
899
900
901 if (.isOSAIX()) {
906 }
907
908 if (T.isOSAIX())
910
912}
913
914
915
916
921}
922
924
925 memset(AvailableArray, 0, sizeof(AvailableArray));
927}
928
930
931 memset(AvailableArray, -1, sizeof(AvailableArray));
932
934}
935
937 : CustomNames(TLI.CustomNames), ShouldExtI32Param(TLI.ShouldExtI32Param),
938 ShouldExtI32Return(TLI.ShouldExtI32Return),
939 ShouldSignExtI32Param(TLI.ShouldSignExtI32Param),
940 ShouldSignExtI32Return(TLI.ShouldSignExtI32Return),
941 SizeOfInt(TLI.SizeOfInt) {
942 memcpy(AvailableArray, TLI.AvailableArray, sizeof(AvailableArray));
943 VectorDescs = TLI.VectorDescs;
944 ScalarDescs = TLI.ScalarDescs;
945}
946
948 : CustomNames(std::move(TLI.CustomNames)),
949 ShouldExtI32Param(TLI.ShouldExtI32Param),
950 ShouldExtI32Return(TLI.ShouldExtI32Return),
951 ShouldSignExtI32Param(TLI.ShouldSignExtI32Param),
952 ShouldSignExtI32Return(TLI.ShouldSignExtI32Return),
953 SizeOfInt(TLI.SizeOfInt) {
954 std::move(std::begin(TLI.AvailableArray), std::end(TLI.AvailableArray),
955 AvailableArray);
956 VectorDescs = TLI.VectorDescs;
957 ScalarDescs = TLI.ScalarDescs;
958}
959
961 CustomNames = TLI.CustomNames;
962 ShouldExtI32Param = TLI.ShouldExtI32Param;
963 ShouldExtI32Return = TLI.ShouldExtI32Return;
964 ShouldSignExtI32Param = TLI.ShouldSignExtI32Param;
965 ShouldSignExtI32Return = TLI.ShouldSignExtI32Return;
966 SizeOfInt = TLI.SizeOfInt;
967 memcpy(AvailableArray, TLI.AvailableArray, sizeof(AvailableArray));
968 return *this;
969}
970
972 CustomNames = std::move(TLI.CustomNames);
973 ShouldExtI32Param = TLI.ShouldExtI32Param;
974 ShouldExtI32Return = TLI.ShouldExtI32Return;
975 ShouldSignExtI32Param = TLI.ShouldSignExtI32Param;
976 ShouldSignExtI32Return = TLI.ShouldSignExtI32Return;
977 SizeOfInt = TLI.SizeOfInt;
978 std::move(std::begin(TLI.AvailableArray), std::end(TLI.AvailableArray),
979 AvailableArray);
980 return *this;
981}
982
984
985
988
989
990
992}
993
997 unsigned Idx = 0;
999 for (const auto &Func : StandardNames)
1000 Indices[Func] = static_cast<LibFunc>(Idx++);
1001 return Indices;
1002}
1003
1006 if (funcName.empty())
1007 return false;
1008
1011
1012 if (auto Loc = Indices.find(funcName); Loc != Indices.end()) {
1013 F = Loc->second;
1014 return true;
1015 }
1016 return false;
1017}
1018
1019
1020
1022 unsigned SizeTBits) {
1023 switch (ArgTy) {
1032 case Int:
1039
1048 case Flt:
1050 case Dbl:
1052
1057 case Ptr:
1061 default:
1062 break;
1063 }
1064
1066}
1067
1070 int SizeTSizeBits) {
1071 switch (F) {
1072 case LibFunc_size_returning_new: {
1073 if (FTy.getNumParams() != 1 ||
1074 !FTy.getParamType(0)->isIntegerTy(SizeTSizeBits)) {
1075 return false;
1076 }
1077 } break;
1078 case LibFunc_size_returning_new_hot_cold: {
1079 if (FTy.getNumParams() != 2 ||
1080 !FTy.getParamType(0)->isIntegerTy(SizeTSizeBits) ||
1081 !FTy.getParamType(1)->isIntegerTy(8)) {
1082 return false;
1083 }
1084 } break;
1085 case LibFunc_size_returning_new_aligned: {
1086 if (FTy.getNumParams() != 2 ||
1087 !FTy.getParamType(0)->isIntegerTy(SizeTSizeBits) ||
1088 !FTy.getParamType(1)->isIntegerTy(SizeTSizeBits)) {
1089 return false;
1090 }
1091 } break;
1092 case LibFunc_size_returning_new_aligned_hot_cold:
1093 if (FTy.getNumParams() != 3 ||
1094 !FTy.getParamType(0)->isIntegerTy(SizeTSizeBits) ||
1095 !FTy.getParamType(1)->isIntegerTy(SizeTSizeBits) ||
1096 !FTy.getParamType(2)->isIntegerTy(8)) {
1097 return false;
1098 }
1099 break;
1100 default:
1101 return false;
1102 }
1103
1104 auto &Context = M.getContext();
1107 Context, {PtrTy, Type::getIntNTy(Context, SizeTSizeBits)});
1108 return FTy.getReturnType() == SizedPtrTy;
1109}
1110
1111bool TargetLibraryInfoImpl::isValidProtoForLibFunc(const FunctionType &FTy,
1113 const Module &M) const {
1114 unsigned NumParams = FTy.getNumParams();
1115
1116 switch (F) {
1117
1118 case LibFunc_cabs:
1119 case LibFunc_cabsf:
1120 case LibFunc_cabsl: {
1121 Type *RetTy = FTy.getReturnType();
1122 if (->isFloatingPointTy())
1123 return false;
1124
1125 Type *ParamTy = FTy.getParamType(0);
1126
1127
1128
1129 if (NumParams == 1)
1132 else if (NumParams == 2)
1133 return ParamTy == RetTy && FTy.getParamType(1) == RetTy;
1134
1135 return false;
1136 }
1137
1138
1139 case LibFunc_sincospi_stret:
1140 case LibFunc_sincospif_stret: {
1141 if (NumParams != 1)
1142 return false;
1143
1144 Type *RetTy = FTy.getReturnType();
1145 Type *ParamTy = FTy.getParamType(0);
1146 if (auto *Ty = dyn_cast(RetTy)) {
1147 if (Ty->getNumElements() != 2)
1148 return false;
1149 return (Ty->getElementType(0) == ParamTy &&
1150 Ty->getElementType(1) == ParamTy);
1151 }
1152
1153 if (auto *Ty = dyn_cast(RetTy)) {
1154 if (Ty->getNumElements() != 2)
1155 return false;
1156 return Ty->getElementType() == ParamTy;
1157 }
1158
1159 return false;
1160 }
1161
1162
1163 case LibFunc_size_returning_new:
1164 case LibFunc_size_returning_new_hot_cold:
1165 case LibFunc_size_returning_new_aligned:
1166 case LibFunc_size_returning_new_aligned_hot_cold:
1168 default:
1169 break;
1170 }
1171
1174 unsigned Idx = 0;
1175
1176
1177
1178
1179 Type *Ty = FTy.getReturnType(), *LastTy = Ty;
1181 for (auto TyID : ProtoTypes) {
1183
1184
1185 break;
1186
1187 if (TyID == Ellip) {
1188
1189
1190
1191 assert(Idx == ProtoTypes.size() - 1 || ProtoTypes[Idx + 1] == Void);
1192 return FTy.isFunctionVarArg();
1193 }
1194
1195 if (TyID == Same) {
1196 assert(Idx != 0 && "Type ID 'Same' must not be first!");
1197 if (Ty != LastTy)
1198 return false;
1199 } else {
1200 if (!Ty || (TyID, Ty, IntBits, SizeTBits))
1201 return false;
1202 LastTy = Ty;
1203 }
1204
1205 if (Idx == NumParams) {
1206
1207
1208 Ty = nullptr;
1210 continue;
1211 }
1212
1213 Ty = FTy.getParamType(Idx++);
1214 }
1215
1216
1217
1218 return Idx == NumParams + 1 && !FTy.isFunctionVarArg();
1219}
1220
1223
1224
1225
1227
1229 assert(M && "Expecting FDecl to be connected to a Module.");
1230
1231 if (FDecl.LibFuncCache == Function::UnknownLibFunc)
1234
1235 if (FDecl.LibFuncCache == NotLibFunc)
1236 return false;
1237
1238 F = FDecl.LibFuncCache;
1239 return isValidProtoForLibFunc(*FDecl.getFunctionType(), F, *M);
1240}
1241
1244
1245 if (Opcode != Instruction::FRem || (!Ty->isDoubleTy() && !Ty->isFloatTy()))
1246 return false;
1247
1248 F = Ty->isDoubleTy() ? LibFunc_fmod : LibFunc_fmodf;
1249 return true;
1250}
1251
1253 memset(AvailableArray, 0, sizeof(AvailableArray));
1254}
1255
1257 return LHS.getScalarFnName() < RHS.getScalarFnName();
1258}
1259
1261 return LHS.getVectorFnName() < RHS.getVectorFnName();
1262}
1263
1265 return LHS.getScalarFnName() < S;
1266}
1267
1271
1274}
1275
1277#define TLI_DEFINE_ACCELERATE_VECFUNCS
1278#include "llvm/Analysis/VecFuncs.def"
1279#undef TLI_DEFINE_ACCELERATE_VECFUNCS
1280};
1281
1283#define TLI_DEFINE_DARWIN_LIBSYSTEM_M_VECFUNCS
1284#include "llvm/Analysis/VecFuncs.def"
1285#undef TLI_DEFINE_DARWIN_LIBSYSTEM_M_VECFUNCS
1286};
1287
1289#define TLI_DEFINE_LIBMVEC_X86_VECFUNCS
1290#include "llvm/Analysis/VecFuncs.def"
1291#undef TLI_DEFINE_LIBMVEC_X86_VECFUNCS
1292};
1293
1295#define TLI_DEFINE_MASSV_VECFUNCS
1296#include "llvm/Analysis/VecFuncs.def"
1297#undef TLI_DEFINE_MASSV_VECFUNCS
1298};
1299
1301#define TLI_DEFINE_SVML_VECFUNCS
1302#include "llvm/Analysis/VecFuncs.def"
1303#undef TLI_DEFINE_SVML_VECFUNCS
1304};
1305
1307#define TLI_DEFINE_SLEEFGNUABI_VF2_VECFUNCS
1308#define TLI_DEFINE_VECFUNC(SCAL, VEC, VF, VABI_PREFIX) \
1309 {SCAL, VEC, VF, false, VABI_PREFIX},
1310#include "llvm/Analysis/VecFuncs.def"
1311#undef TLI_DEFINE_SLEEFGNUABI_VF2_VECFUNCS
1312};
1314#define TLI_DEFINE_SLEEFGNUABI_VF4_VECFUNCS
1315#define TLI_DEFINE_VECFUNC(SCAL, VEC, VF, VABI_PREFIX) \
1316 {SCAL, VEC, VF, false, VABI_PREFIX},
1317#include "llvm/Analysis/VecFuncs.def"
1318#undef TLI_DEFINE_SLEEFGNUABI_VF4_VECFUNCS
1319};
1321#define TLI_DEFINE_SLEEFGNUABI_SCALABLE_VECFUNCS
1322#define TLI_DEFINE_VECFUNC(SCAL, VEC, VF, MASK, VABI_PREFIX) \
1323 {SCAL, VEC, VF, MASK, VABI_PREFIX},
1324#include "llvm/Analysis/VecFuncs.def"
1325#undef TLI_DEFINE_SLEEFGNUABI_SCALABLE_VECFUNCS
1326};
1327
1329#define TLI_DEFINE_SLEEFGNUABI_SCALABLE_VECFUNCS_RISCV
1330#define TLI_DEFINE_VECFUNC(SCAL, VEC, VF, MASK, VABI_PREFIX) \
1331 {SCAL, VEC, VF, MASK, VABI_PREFIX},
1332#include "llvm/Analysis/VecFuncs.def"
1333#undef TLI_DEFINE_SLEEFGNUABI_SCALABLE_VECFUNCS_RISCV
1334};
1335
1337#define TLI_DEFINE_ARMPL_VECFUNCS
1338#define TLI_DEFINE_VECFUNC(SCAL, VEC, VF, MASK, VABI_PREFIX) \
1339 {SCAL, VEC, VF, MASK, VABI_PREFIX},
1340#include "llvm/Analysis/VecFuncs.def"
1341#undef TLI_DEFINE_ARMPL_VECFUNCS
1342};
1343
1345#define TLI_DEFINE_AMDLIBM_VECFUNCS
1346#define TLI_DEFINE_VECFUNC(SCAL, VEC, VF, MASK, VABI_PREFIX) \
1347 {SCAL, VEC, VF, MASK, VABI_PREFIX},
1348#include "llvm/Analysis/VecFuncs.def"
1349#undef TLI_DEFINE_AMDLIBM_VECFUNCS
1350};
1351
1354 switch (VecLib) {
1357 break;
1358 }
1361 break;
1362 }
1365 break;
1366 }
1369 break;
1370 }
1371 case SVML: {
1373 break;
1374 }
1376 switch (TargetTriple.getArch()) {
1377 default:
1378 break;
1384 break;
1387 break;
1388 }
1389 break;
1390 }
1392 switch (TargetTriple.getArch()) {
1393 default:
1394 break;
1398 break;
1399 }
1400 break;
1401 }
1404 break;
1405 }
1407 break;
1408 }
1409}
1410
1413 if (funcName.empty())
1414 return false;
1415
1416 std::vector::const_iterator I =
1418 return I != VectorDescs.end() && StringRef(I->getScalarFnName()) == funcName;
1419}
1420
1423 bool Masked) const {
1425 if (VD)
1428}
1429
1432 bool Masked) const {
1434 if (F.empty())
1435 return nullptr;
1436 std::vector::const_iterator I =
1438 while (I != VectorDescs.end() && StringRef(I->getScalarFnName()) == F) {
1439 if ((I->getVectorizationFactor() == VF) && (I->isMasked() == Masked))
1440 return &(*I);
1441 ++I;
1442 }
1443 return nullptr;
1444}
1445
1448 if (!BaselineInfoImpl)
1449 BaselineInfoImpl =
1452}
1453
1455 if (auto *ShortWChar = cast_or_null(
1456 M.getModuleFlag("wchar_size")))
1457 return cast(ShortWChar->getValue())->getZExtValue();
1458 return 0;
1459}
1460
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471 return M.getDataLayout().getIndexSizeInBits(0);
1472}
1473
1477}
1478
1482}
1483
1488}
1489
1493
1495
1496
1498 "Target Library Information", false, true)
1500
1502
1507
1508
1511 if (ScalarF.empty())
1512 return;
1513
1514 std::vector::const_iterator I =
1516 while (I != VectorDescs.end() && StringRef(I->getScalarFnName()) == ScalarF) {
1518 I->getVectorizationFactor().isScalable() ? &ScalableVF : &FixedVF;
1520 *VF = I->getVectorizationFactor();
1521 ++I;
1522 }
1523}
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
Module.h This file contains the declarations for the Module class.
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallString class.
static bool hasSinCosPiStret(const Triple &T)
static StringRef sanitizeFunctionName(StringRef funcName)
static void initialize(TargetLibraryInfoImpl &TLI, const Triple &T, ArrayRef< StringLiteral > StandardNames)
Initialize the set of available library functions based on the specified target triple.
static const VecDesc VecFuncs_MASSV[]
static void initializeLibCalls(TargetLibraryInfoImpl &TLI, const Triple &T, ArrayRef< StringLiteral > StandardNames)
Initialize the set of available library functions based on the specified target triple.
static bool matchType(FuncArgTypeID ArgTy, const Type *Ty, unsigned IntBits, unsigned SizeTBits)
static bool hasBcmp(const Triple &TT)
static const VecDesc VecFuncs_SLEEFGNUABI_VF2[]
static void initializeBase(TargetLibraryInfoImpl &TLI, const Triple &T)
static bool compareByScalarFnName(const VecDesc &LHS, const VecDesc &RHS)
static bool compareByVectorFnName(const VecDesc &LHS, const VecDesc &RHS)
static const VecDesc VecFuncs_SLEEFGNUABI_VF4[]
static const FuncProtoTy Signatures[]
static bool isCallingConvCCompatible(CallingConv::ID CC, StringRef TT, FunctionType *FuncTy)
static const VecDesc VecFuncs_ArmPL[]
const VecDesc VecFuncs_AMDLIBM[]
static bool isValidProtoForSizeReturningNew(const FunctionType &FTy, LibFunc F, const Module &M, int SizeTSizeBits)
static const VecDesc VecFuncs_LIBMVEC_X86[]
static const VecDesc VecFuncs_DarwinLibSystemM[]
static const VecDesc VecFuncs_SVML[]
static cl::opt< TargetLibraryInfoImpl::VectorLibrary > ClVectorLibrary("vector-library", cl::Hidden, cl::desc("Vector functions library"), cl::init(TargetLibraryInfoImpl::NoLibrary), cl::values(clEnumValN(TargetLibraryInfoImpl::NoLibrary, "none", "No vector functions library"), clEnumValN(TargetLibraryInfoImpl::Accelerate, "Accelerate", "Accelerate framework"), clEnumValN(TargetLibraryInfoImpl::DarwinLibSystemM, "Darwin_libsystem_m", "Darwin libsystem_m"), clEnumValN(TargetLibraryInfoImpl::LIBMVEC_X86, "LIBMVEC-X86", "GLIBC Vector Math library"), clEnumValN(TargetLibraryInfoImpl::MASSV, "MASSV", "IBM MASS vector library"), clEnumValN(TargetLibraryInfoImpl::SVML, "SVML", "Intel SVML library"), clEnumValN(TargetLibraryInfoImpl::SLEEFGNUABI, "sleefgnuabi", "SIMD Library for Evaluating Elementary Functions"), clEnumValN(TargetLibraryInfoImpl::ArmPL, "ArmPL", "Arm Performance Libraries"), clEnumValN(TargetLibraryInfoImpl::AMDLIBM, "AMDLIBM", "AMD vector math library")))
std::array< FuncArgTypeID, 8 > FuncProtoTy
static const VecDesc VecFuncs_SLEEFGNUABI_VFScalable[]
static bool compareWithScalarFnName(const VecDesc &LHS, StringRef S)
static const VecDesc VecFuncs_Accelerate[]
static const VecDesc VecFuncs_SLEEFGNUABI_VFScalableRISCV[]
static DenseMap< StringRef, LibFunc > buildIndexMap(ArrayRef< StringLiteral > StandardNames)
A container for analyses that lazily runs them and caches their results.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
CallingConv::ID getCallingConv() const
FunctionType * getFunctionType() const
iterator find(const_arg_type_t< KeyT > Val)
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
FunctionType * getFunctionType() const
Returns the FunctionType for me.
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
Module * getParent()
Get the module that this global value is contained inside of...
ImmutablePass class - This class is used to provide information that does not need to be run.
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
A Module instance is used to store all the information related to an LLVM module.
const std::string & getTargetTriple() const
Get the target triple which is a string describing the target host.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
A wrapper around a string literal that serves as a proxy for constructing global tables of StringRefs...
StringRef - Represent a constant reference to a string, i.e.
constexpr bool empty() const
empty - Check if the string is empty.
bool contains(StringRef Other) const
Return true if the given string is a substring of *this, and false otherwise.
Class to represent struct types.
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
TargetLibraryInfo run(const Function &F, FunctionAnalysisManager &)
Implementation of the target library information.
void setShouldExtI32Param(bool Val)
Set to true iff i32 parameters to library functions should have signext or zeroext attributes if they...
void setShouldExtI32Return(bool Val)
Set to true iff i32 results from library functions should have signext or zeroext attributes if they ...
unsigned getWCharSize(const Module &M) const
Returns the size of the wchar_t type in bytes or 0 if the size is unknown.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
void getWidestVF(StringRef ScalarF, ElementCount &FixedVF, ElementCount &Scalable) const
Returns the largest vectorization factor used in the list of vector functions.
bool isFunctionVectorizable(StringRef F, const ElementCount &VF) const
Return true if the function F has a vector equivalent with vectorization factor VF.
void setShouldSignExtI32Param(bool Val)
Set to true iff i32 parameters to library functions should have signext attribute if they correspond ...
void setAvailableWithName(LibFunc F, StringRef Name)
Forces a function to be marked as available and provide an alternate name that must be used.
unsigned getIntSize() const
Get size of a C-level int or unsigned int, in bits.
void addVectorizableFunctionsFromVecLib(enum VectorLibrary VecLib, const llvm::Triple &TargetTriple)
Calls addVectorizableFunctions with a known preset of functions for the given vector library.
void setIntSize(unsigned Bits)
Initialize the C-level size of an integer.
unsigned getSizeTSize(const Module &M) const
Returns the size of the size_t type in bits.
void addVectorizableFunctions(ArrayRef< VecDesc > Fns)
Add a set of scalar -> vector mappings, queryable via getVectorizedFunction and getScalarizedFunction...
const VecDesc * getVectorMappingInfo(StringRef F, const ElementCount &VF, bool Masked) const
Return a pointer to a VecDesc object holding all info for scalar to vector mappings in TLI for the eq...
static bool isCallingConvCCompatible(CallBase *CI)
Returns true if call site / callee has cdecl-compatible calling conventions.
void setShouldSignExtI32Return(bool Val)
Set to true iff i32 results from library functions should have signext attribute if they correspond t...
TargetLibraryInfoImpl & operator=(const TargetLibraryInfoImpl &TLI)
void disableAllFunctions()
Disables all builtins.
VectorLibrary
List of known vector-functions libraries.
void setUnavailable(LibFunc F)
Forces a function to be marked as unavailable.
StringRef getVectorizedFunction(StringRef F, const ElementCount &VF, bool Masked) const
Return the name of the equivalent of F, vectorized with factor VF.
void setAvailable(LibFunc F)
Forces a function to be marked as available.
TargetLibraryInfoWrapperPass()
Provides information about what library functions are available for the current target.
static void initExtensionsForTriple(bool &ShouldExtI32Param, bool &ShouldExtI32Return, bool &ShouldSignExtI32Param, bool &ShouldSignExtI32Return, const Triple &T)
Triple - Helper class for working with autoconf configuration names.
ArchType getArch() const
Get the parsed architecture type of this triple.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isArrayTy() const
True if this is an instance of ArrayType.
bool isPointerTy() const
True if this is an instance of PointerType.
Type * getArrayElementType() const
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
uint64_t getArrayNumElements() const
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isStructTy() const
True if this is an instance of StructType.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isVoidTy() const
Return true if this is 'void'.
StringRef getName() const
Return a constant reference to the value's name.
Provides info so a possible vectorization of a function can be computed.
std::string getVectorFunctionABIVariantString() const
Returns a vector function ABI variant string on the form: ZGV(<...
StringRef getVectorFnName() const
Represents a version number in the form major[.minor[.subminor[.build]]].
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
A raw_ostream that writes to an SmallVector or SmallString.
StringRef str() const
Return a StringRef for the vector contents.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ ARM_APCS
ARM Procedure Calling Standard (obsolete, but still used on some targets).
@ ARM_AAPCS
ARM Architecture Procedure Calling Standard calling convention (aka EABI).
@ ARM_AAPCS_VFP
Same as ARM_AAPCS, but uses hard floating point ABI.
@ C
The default llvm calling convention, compatible with C.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void sort(IteratorTy Start, IteratorTy End)
auto lower_bound(R &&Range, T &&Value)
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
void initializeTargetLibraryInfoWrapperPassPass(PassRegistry &)
Implement std::hash so that hash_code can be used in STL containers.
A special type used by analysis passes to provide an address that identifies that particular analysis...