RFR 7131192: BigInteger.doubleValue() is depressingly slow (original) (raw)
Brian Burkhalter brian.burkhalter at oracle.com
Mon Jun 17 18:25:33 UTC 2013
- Previous message: hg: jdk8/tl: 8016572: Pass CONCURRENCY=$(JOBS) to test/Makefile
- Next message: RFR 7131192: BigInteger.doubleValue() is depressingly slow
- Messages sorted by: [ date ] [ thread ] [ subject ] [ author ]
I am unable at the moment to copy anything to cr.openjdk.java.net so I am including the webrev as a patch below. I'll copy it to the online location as soon as possible.
The patch included at the end of this message fixes this issue
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7131192
Code review of the source and accompanying test was effected and all pertinent regression tests passed. Previous performance testing showed a massive improvement:
http://mail.openjdk.java.net/pipermail/core-libs-dev/2013-February/014697.html
Note that as correctness testing of 7131192 depends on the patch
http://mail.openjdk.java.net/pipermail/core-libs-dev/2013-June/017958.html
having already been applied, the present fix cannot be integrated until this prior patch has been applied.
Thanks,
Brian
HG changeset patch
Parent 35d5a218004fb1fc64c92fd3151d0a48d4f378e9
7131192: BigInteger.doubleValue() is depressingly slow. Summary: Replace invocations Double.parseDouble(toString()) and Float.parseFloat(toString()) with direct implementation of conversion from signum and mag. Reviewed-by: TBD Contributed-by: Louis Wasserman <lowasser at google.com>
diff -r 35d5a218004f src/share/classes/java/math/BigInteger.java --- a/src/share/classes/java/math/BigInteger.java Thu Jun 13 14🔞52 2013 -0700 +++ b/src/share/classes/java/math/BigInteger.java Fri Jun 14 14:10:43 2013 -0700 @@ -33,6 +33,9 @@ import java.io.*; import java.util.Arrays;
+import sun.misc.DoubleConsts; +import sun.misc.FloatConsts; + /**
- Immutable arbitrary-precision integers. All operations behave as if
- BigIntegers were represented in two's-complement notation (like Java's
@@ -2966,8 +2969,72 @@
- @return this BigInteger converted to a {@code float}. */ public float floatValue() {
// Somewhat inefficient, but guaranteed to work.
return Float.parseFloat(this.toString());
if (signum == 0) {
return 0.0f;
}
int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
// exponent == floor(log2(abs(this)))
if (exponent < Long.SIZE - 1) {
return longValue();
} else if (exponent > Float.MAX_EXPONENT) {
return signum > 0 ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
}
/*
* We need the top SIGNIFICAND_BITS + 1 bits, including the "implicit"
* one bit. To make rounding easier, we pick out the top
* SIGNIFICAND_BITS + 2 bits, so we have one to help us round up or
* down. twiceSignifFloor will contain the top SIGNIFICAND_BITS + 2
* bits, and signifFloor the top SIGNIFICAND_BITS + 1.
*
* It helps to consider the real number signif = abs(this) *
* 2^(SIGNIFICAND_BITS - exponent).
*/
int shift = exponent - FloatConsts.SIGNIFICAND_WIDTH;
int twiceSignifFloor;
// twiceSignifFloor will be == abs().shiftRight(shift).intValue()
// We do the shift into an int directly to improve performance.
int nBits = shift & 0x1f;
int nBits2 = 32 - nBits;
if (nBits == 0) {
twiceSignifFloor = mag[0];
} else {
twiceSignifFloor = mag[0] >>> nBits;
if (twiceSignifFloor == 0) {
twiceSignifFloor = (mag[0] << nBits2) | (mag[1] >>> nBits);
}
}
int signifFloor = twiceSignifFloor >> 1;
signifFloor &= FloatConsts.SIGNIF_BIT_MASK; // remove the implied bit
/*
* We round up if either the fractional part of signif is strictly
* greater than 0.5 (which is true if the 0.5 bit is set and any lower
* bit is set), or if the fractional part of signif is >= 0.5 and
* signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
* are set). This is equivalent to the desired HALF_EVEN rounding.
*/
boolean increment = (twiceSignifFloor & 1) != 0
&& ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
int signifRounded = increment ? signifFloor + 1 : signifFloor;
int bits = ((exponent + FloatConsts.EXP_BIAS))
<< (FloatConsts.SIGNIFICAND_WIDTH - 1);
bits += signifRounded;
/*
* If signifRounded == 2^24, we'd need to set all of the significand
* bits to zero and add 1 to the exponent. This is exactly the behavior
* we get from just adding signifRounded to bits directly. If the
* exponent is Float.MAX_EXPONENT, we round up (correctly) to
* Float.POSITIVE_INFINITY.
*/
bits |= signum & FloatConsts.SIGN_BIT_MASK;
return Float.intBitsToFloat(bits);
}
/**
@@ -2986,8 +3053,80 @@ * @return this BigInteger converted to a {@code double}. */ public double doubleValue() {
// Somewhat inefficient, but guaranteed to work.
return Double.parseDouble(this.toString());
if (signum == 0) {
return 0.0;
}
int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
// exponent == floor(log2(abs(this))Double)
if (exponent < Long.SIZE - 1) {
return longValue();
} else if (exponent > Double.MAX_EXPONENT) {
return signum > 0 ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
}
/*
* We need the top SIGNIFICAND_BITS + 1 bits, including the "implicit"
* one bit. To make rounding easier, we pick out the top
* SIGNIFICAND_BITS + 2 bits, so we have one to help us round up or
* down. twiceSignifFloor will contain the top SIGNIFICAND_BITS + 2
* bits, and signifFloor the top SIGNIFICAND_BITS + 1.
*
* It helps to consider the real number signif = abs(this) *
* 2^(SIGNIFICAND_BITS - exponent).
*/
int shift = exponent - DoubleConsts.SIGNIFICAND_WIDTH;
long twiceSignifFloor;
// twiceSignifFloor will be == abs().shiftRight(shift).longValue()
// We do the shift into a long directly to improve performance.
int nBits = shift & 0x1f;
int nBits2 = 32 - nBits;
int highBits;
int lowBits;
if (nBits == 0) {
highBits = mag[0];
lowBits = mag[1];
} else {
highBits = mag[0] >>> nBits;
lowBits = (mag[0] << nBits2) | (mag[1] >>> nBits);
if (highBits == 0) {
highBits = lowBits;
lowBits = (mag[1] << nBits2) | (mag[2] >>> nBits);
}
}
twiceSignifFloor = ((highBits & LONG_MASK) << 32)
| (lowBits & LONG_MASK);
long signifFloor = twiceSignifFloor >> 1;
signifFloor &= DoubleConsts.SIGNIF_BIT_MASK; // remove the implied bit
/*
* We round up if either the fractional part of signif is strictly
* greater than 0.5 (which is true if the 0.5 bit is set and any lower
* bit is set), or if the fractional part of signif is >= 0.5 and
* signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
* are set). This is equivalent to the desired HALF_EVEN rounding.
*/
boolean increment = (twiceSignifFloor & 1) != 0
&& ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
long signifRounded = increment ? signifFloor + 1 : signifFloor;
long bits = (long) ((exponent + DoubleConsts.EXP_BIAS))
<< (DoubleConsts.SIGNIFICAND_WIDTH - 1);
bits += signifRounded;
/*
* If signifRounded == 2^53, we'd need to set all of the significand
* bits to zero and add 1 to the exponent. This is exactly the behavior
* we get from just adding signifRounded to bits directly. If the
* exponent is Double.MAX_EXPONENT, we round up (correctly) to
* Double.POSITIVE_INFINITY.
*/
bits |= signum & DoubleConsts.SIGN_BIT_MASK;
return Double.longBitsToDouble(bits);
}
/**
diff -r 35d5a218004f test/java/math/BigInteger/PrimitiveConversionTests.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test/java/math/BigInteger/PrimitiveConversionTests.java Fri Jun 14 14:10:43 2013 -0700 @@ -0,0 +1,82 @@ +import static java.math.BigInteger.ONE; + +import java.math.BigInteger; +import java.util.ArrayList; +import java.util.Arrays; +import java.util.Collections; +import java.util.List; +import java.util.Random; + +/**
- @test
- @bug 7131192
- @summary This test ensures that BigInteger.floatValue() and
BigInteger.doubleValue() behave correctly.
- @author Louis Wasserman
- */ +public class PrimitiveConversionTests {
- static final List ALL_BIGINTEGER_CANDIDATES;
- static {
List<BigInteger> samples = new ArrayList<>();
// Now add values near 2^N for lots of values of N.
for (int exponent : Arrays.asList(0, 1, 2, 3, 4, 5, 6, 7, 31, 32, 33,
34, 62, 63, 64, 65, 71, 72, 73, 79, 80, 81, 255, 256, 257, 511,
512, 513, Double.MAX_EXPONENT - 1, Double.MAX_EXPONENT,
Double.MAX_EXPONENT + 1, 2000, 2001, 2002)) {
BigInteger x = ONE.shiftLeft(exponent);
for (BigInteger y : Arrays.asList(x, x.add(ONE), x.subtract(ONE))) {
samples.add(y);
samples.add(y.negate());
}
}
Random rng = new Random(1234567);
for (int i = 0; i < 2000; i++) {
samples.add(new BigInteger(rng.nextInt(2000), rng));
}
ALL_BIGINTEGER_CANDIDATES = Collections.unmodifiableList(samples);
- }
- public static int testDoubleValue() {
int failures = 0;
for (BigInteger big : ALL_BIGINTEGER_CANDIDATES) {
double expected = Double.parseDouble(big.toString());
double actual = big.doubleValue();
// should be bitwise identical
if (Double.doubleToRawLongBits(expected) != Double
.doubleToRawLongBits(actual)) {
System.out.println(big);
failures++;
}
}
return failures;
- }
- public static int testFloatValue() {
int failures = 0;
for (BigInteger big : ALL_BIGINTEGER_CANDIDATES) {
float expected = Float.parseFloat(big.toString());
float actual = big.floatValue();
// should be bitwise identical
if (Float.floatToRawIntBits(expected) != Float
.floatToRawIntBits(actual)) {
System.out.println(big + " " + expected + " " + actual);
failures++;
}
}
return failures;
- }
- public static void main(String[] args) {
int failures = testDoubleValue();
failures += testFloatValue();
if (failures > 0) {
throw new RuntimeException("Incurred " + failures
+ " failures while testing primitive conversions.");
}
- }
+}
- Previous message: hg: jdk8/tl: 8016572: Pass CONCURRENCY=$(JOBS) to test/Makefile
- Next message: RFR 7131192: BigInteger.doubleValue() is depressingly slow
- Messages sorted by: [ date ] [ thread ] [ subject ] [ author ]