[Python-Dev] [Python-checkins] r87677 - python/branches/py3k/py3rsa.py (original) (raw)
Senthil Kumaran orsenthil at gmail.com
Mon Jan 3 10:57:53 CET 2011
- Previous message: [Python-Dev] [Python-checkins] r87677 - python/branches/py3k/py3rsa.py
- Next message: [Python-Dev] Tools/unicode
- Messages sorted by: [ date ] [ thread ] [ subject ] [ author ]
Sorry Folks. I commited to a wrong respository. I was testing it against the latest version py3k and I thought i moved it back to my original respository.
Apologize for the trouble and I shall remove it immediately.
-- Senthil
On Mon, Jan 3, 2011 at 5:47 PM, senthil.kumaran <python-checkins at python.org> wrote:
Author: senthil.kumaran Date: Mon Jan 3 10:47:09 2011 New Revision: 87677
Log: py3k implmentation of RSA algorithm,
Added: python/branches/py3k/py3rsa.py (contents, props changed) Added: python/branches/py3k/py3rsa.py ============================================================================== --- (empty file) +++ python/branches/py3k/py3rsa.py Mon Jan 3 10:47:09 2011 @@ -0,0 +1,181 @@ +# Copyright (c) 2010 Russell Dias +# Licensed under the MIT licence. +# http://www.inversezen.com +# +# This is an implementation of the RSA public key +# encryption written in Python by Russell Dias + +author = 'Russell Dias // inversezen.com' +# Py3k port done by Senthil (senthil at uthcode.com) +date = '05/12/2010' +version = '0.0.1' + +import random +from math import log + +def gcd(u, v): + """ The Greatest Common Divisor, returns + the largest positive integer that divides + u with v without a remainder. + """ + while v: + u, v = u, u % v + return u + +def eec(u, v): + """ The Extended Eculidean Algorithm + For u and v this algorithm finds (u1, u2, u3) + such that uu1 + vu2 = u3 = gcd(u, v) + + We also use auxiliary vectors (v1, v2, v3) and + (tmp1, tmp2, tmp3) + """ + (u1, u2, u3) = (1, 0, u) + (v1, v2, v3) = (0, 1, v) + while (v3 != 0): + quotient = u3 // v3 + tmp1 = u1 - quotient * v1 + tmp2 = u2 - quotient * v2 + tmp3 = u3 - quotient * v3 + (u1, u2, u3) = (v1, v2, v3) + (v1, v2, v3) = (tmp1, tmp2, tmp3) + return u3, u1, u2 + +def stringEncode(string): + """ Brandon Sterne's algorithm to convert + string to long + """ + message = 0 + messageCount = len(string) - 1 + + for letter in string: + message += (256**messageCount) * ord(letter) + messageCount -= 1 + return message + +def stringDecode(number): + """ Convert long back to string + """ + + letters = [] + text = '' + integer = int(log(number, 256)) + + while(integer >= 0): + letter = number // (256**integer) + letters.append(chr(letter)) + number -= letter * (256**integer) + integer -= 1 + for char in letters: + text += char + + return text + +def splittoodd(n): + """ Return values 2 ^ k, such that 2^k*q = n; + or an odd integer to test for primiality + Let n be an odd prime. Then n-1 is even, + where k is a positive integer. + """ + k = 0 + while (n > 0) and (n % 2 == 0): + k += 1 + n >>= 1 + return (k, n) + +def prime(a, q, k, n): + if pow(a, q, n) == 1: + return True + elif (n - 1) in [pow(a, q*(2**j), n) for j in range(k)]: + return True + else: + return False + +def millerrabin(n, trials): + """ + There is still a small chance that n will return a + false positive. To reduce risk, it is recommended to use + more trials. + """ + # 2^k * q = n - 1; q is an odd int + (k, q) = splittoodd(n - 1) + + for trial in range(trials): + a = random.randint(2, n-1) + if not prime(a, q, k, n): + return False + return True + +def getprime(k): + """ Generate prime of size k bits, with 50 tests + to ensure accuracy. + """ + prime = 0 + while (prime == 0): + prime = random.randrange(pow(2,k//2-1) + 1, pow(2, k//2), 2) + if not millerrabin(prime, 50): + prime = 0 + return prime + +def modularinverse(a, m): + """ To calculate the decryption exponent such that + (d * e) mod phi(N) = 1 OR g == 1 in our implementation. + Where m is Phi(n) (PHI = (p-1) * (q-1) ) + + s % m or d (decryption exponent) is the multiplicative inverse of + the encryption exponent e. + """ + g, s, t = eec(a, m) + if g == 1: + return s % m + else: + return None + +def keygen(bits): + """ The public encryption exponent e, + can be an artibrary prime number. + + Obviously, the higher the number, + the more secure the key pairs are. + """ + e = 17 + p = getprime(bits) + q = getprime(bits) + d = modularinverse(e, (p-1)*(q-1)) + return p*q,d,e + +def writetofile(e, d, n): + """ Write our public and private keys to file + """ + public = open("publicKey", "w") + public.write(str(e)) + public.write("\n") + public.write(str(n)) + public.close() + + private = open("privateKey", "w") + private.write(str(d)) + private.write("\n") + private.write(str(n)) + private.close() + + +if name == 'main': + bits = input("Enter the size of your key pairs, in bits: ") + + n, d, e = keygen(int(bits)) + + #Write keys to file + writetofile(e, d, n) + + print("Your keys pairs have been saved to file") + + m = input("Enter the message you would like to encrypt: ") + + m = stringEncode(m) + encrypted = pow(m, e, n) + + print("Your encrypted message is: %s" % encrypted) + decrypted = pow(encrypted, d, n) + message = stringDecode(decrypted) + print("You message decrypted is: %s" % message)
Python-checkins mailing list Python-checkins at python.org http://mail.python.org/mailman/listinfo/python-checkins
-- Senthil
- Previous message: [Python-Dev] [Python-checkins] r87677 - python/branches/py3k/py3rsa.py
- Next message: [Python-Dev] Tools/unicode
- Messages sorted by: [ date ] [ thread ] [ subject ] [ author ]