[Python-Dev] More compact dictionaries with faster iteration (original) (raw)

Maciej Fijalkowski fijall at gmail.com
Tue Jan 8 15:49:52 CET 2013


On Mon, Dec 10, 2012 at 3:44 AM, Raymond Hettinger <raymond.hettinger at gmail.com> wrote:

The current memory layout for dictionaries is unnecessarily inefficient. It has a sparse table of 24-byte entries containing the hash value, key pointer, and value pointer.

Instead, the 24-byte entries should be stored in a dense table referenced by a sparse table of indices. For example, the dictionary: d = {'timmy': 'red', 'barry': 'green', 'guido': 'blue'} is currently stored as: entries = [['--', '--', '--'], [-8522787127447073495, 'barry', 'green'], ['--', '--', '--'], ['--', '--', '--'], ['--', '--', '--'], [-9092791511155847987, 'timmy', 'red'], ['--', '--', '--'], [-6480567542315338377, 'guido', 'blue']] Instead, the data should be organized as follows: indices = [None, 1, None, None, None, 0, None, 2] entries = [[-9092791511155847987, 'timmy', 'red'], [-8522787127447073495, 'barry', 'green'], [-6480567542315338377, 'guido', 'blue']] Only the data layout needs to change. The hash table algorithms would stay the same. All of the current optimizations would be kept, including key-sharing dicts and custom lookup functions for string-only dicts. There is no change to the hash functions, the table search order, or collision statistics. The memory savings are significant (from 30% to 95% compression depending on the how full the table is). Small dicts (size 0, 1, or 2) get the most benefit. For a sparse table of size t with n entries, the sizes are: currsize = 24 * t newsize = 24 * n + sizeof(index) * t In the above timmy/barry/guido example, the current size is 192 bytes (eight 24-byte entries) and the new size is 80 bytes (three 24-byte entries plus eight 1-byte indices). That gives 58% compression. Note, the sizeof(index) can be as small as a single byte for small dicts, two bytes for bigger dicts and up to sizeof(Pyssizet) for huge dict. In addition to space savings, the new memory layout makes iteration faster. Currently, keys(), values, and items() loop over the sparse table, skipping-over free slots in the hash table. Now, keys/values/items can loop directly over the dense table, using fewer memory accesses. Another benefit is that resizing is faster and touches fewer pieces of memory. Currently, every hash/key/value entry is moved or copied during a resize. In the new layout, only the indices are updated. For the most part, the hash/key/value entries never move (except for an occasional swap to fill a hole left by a deletion). With the reduced memory footprint, we can also expect better cache utilization. For those wanting to experiment with the design, there is a pure Python proof-of-concept here: http://code.activestate.com/recipes/578375 YMMV: Keep in mind that the above size statics assume a build with 64-bit Pyssizet and 64-bit pointers. The space savings percentages are a bit different on other builds. Also, note that in many applications, the size of the data dominates the size of the container (i.e. the weight of a bucket of water is mostly the water, not the bucket).

Raymond


Python-Dev mailing list Python-Dev at python.org http://mail.python.org/mailman/listinfo/python-dev Unsubscribe: http://mail.python.org/mailman/options/python-dev/fijall%40gmail.com

One question Raymond.

The compression ratios stay true provided you don't overallocate entry list. If you do overallocate you don't really gain that much (it all depends vastly on details), or even loose in some cases. What do you think should the strategy be?



More information about the Python-Dev mailing list