pandas.DataFrame.apply — pandas 0.16.2 documentation (original) (raw)
func : function
Function to apply to each column/row
axis : {0 or ‘index’, 1 or ‘columns’}, default 0
- 0 or ‘index’: apply function to each column
- 1 or ‘columns’: apply function to each row
broadcast : boolean, default False
For aggregation functions, return object of same size with values propagated
reduce : boolean or None, default None
Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply’s return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned.
raw : boolean, default False
If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance
args : tuple
Positional arguments to pass to function in addition to the array/series
Additional keyword arguments will be passed as keywords to the function