pandas.Series — pandas 0.16.2 documentation (original) (raw)

abs()

Return an object with absolute value taken.

add(other[, level, fill_value, axis])

Addition of series and other, element-wise (binary operator add).

add_prefix(prefix)

Concatenate prefix string with panel items names.

add_suffix(suffix)

Concatenate suffix string with panel items names

align(other[, join, axis, level, copy, ...])

Align two object on their axes with the

all([axis, bool_only, skipna, level])

Return whether all elements are True over requested axis

any([axis, bool_only, skipna, level])

Return whether any element is True over requested axis

append(to_append[, verify_integrity])

Concatenate two or more Series.

apply(func[, convert_dtype, args])

Invoke function on values of Series.

argmax([axis, out, skipna])

Index of first occurrence of maximum of values.

argmin([axis, out, skipna])

Index of first occurrence of minimum of values.

argsort([axis, kind, order])

Overrides ndarray.argsort.

as_blocks()

Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

as_matrix([columns])

Convert the frame to its Numpy-array representation.

asfreq(freq[, method, how, normalize])

Convert all TimeSeries inside to specified frequency using DateOffset objects.

asof(where)

Return last good (non-NaN) value in TimeSeries if value is NaN for requested date.

astype(dtype[, copy, raise_on_error])

Cast object to input numpy.dtype

at_time(time[, asof])

Select values at particular time of day (e.g.

autocorr([lag])

Lag-N autocorrelation

between(left, right[, inclusive])

Return boolean Series equivalent to left <= series <= right.

between_time(start_time, end_time[, ...])

Select values between particular times of the day (e.g., 9:00-9:30 AM)

bfill([axis, inplace, limit, downcast])

Synonym for NDFrame.fillna(method=’bfill’)

bool()

Return the bool of a single element PandasObject

cat

alias of CategoricalAccessor

clip([lower, upper, out, axis])

Trim values at input threshold(s)

clip_lower(threshold[, axis])

Return copy of the input with values below given value(s) truncated

clip_upper(threshold[, axis])

Return copy of input with values above given value(s) truncated

combine(other, func[, fill_value])

Perform elementwise binary operation on two Series using given function

combine_first(other)

Combine Series values, choosing the calling Series’s values first.

compound([axis, skipna, level])

Return the compound percentage of the values for the requested axis

compress(condition[, axis, out])

Return selected slices of an array along given axis as a Series

consolidate([inplace])

Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray).

convert_objects([convert_dates, ...])

Attempt to infer better dtype for object columns

copy([deep])

Make a copy of this object

corr(other[, method, min_periods])

Compute correlation with other Series, excluding missing values

count([level])

Return number of non-NA/null observations in the Series

cov(other[, min_periods])

Compute covariance with Series, excluding missing values

cummax([axis, dtype, out, skipna])

Return cumulative max over requested axis.

cummin([axis, dtype, out, skipna])

Return cumulative min over requested axis.

cumprod([axis, dtype, out, skipna])

Return cumulative prod over requested axis.

cumsum([axis, dtype, out, skipna])

Return cumulative sum over requested axis.

describe([percentile_width, percentiles, ...])

Generate various summary statistics, excluding NaN values.

diff([periods])

1st discrete difference of object

div(other[, level, fill_value, axis])

Floating division of series and other, element-wise (binary operator truediv).

divide(other[, level, fill_value, axis])

Floating division of series and other, element-wise (binary operator truediv).

dot(other)

Matrix multiplication with DataFrame or inner-product with Series

drop(labels[, axis, level, inplace, errors])

Return new object with labels in requested axis removed

drop_duplicates([take_last, inplace])

Return Series with duplicate values removed

dropna([axis, inplace])

Return Series without null values

dt

alias of CombinedDatetimelikeProperties

duplicated([take_last])

Return boolean Series denoting duplicate values

eq(other[, axis])

equals(other)

Determines if two NDFrame objects contain the same elements.

factorize([sort, na_sentinel])

Encode the object as an enumerated type or categorical variable

ffill([axis, inplace, limit, downcast])

Synonym for NDFrame.fillna(method=’ffill’)

fillna([value, method, axis, inplace, ...])

Fill NA/NaN values using the specified method

filter([items, like, regex, axis])

Restrict the info axis to set of items or wildcard

first(offset)

Convenience method for subsetting initial periods of time series data

first_valid_index()

Return label for first non-NA/null value

floordiv(other[, level, fill_value, axis])

Integer division of series and other, element-wise (binary operator floordiv).

from_array(arr[, index, name, dtype, copy, ...])

from_csv(path[, sep, parse_dates, header, ...])

Read delimited file into Series

ge(other[, axis])

get(key[, default])

Get item from object for given key (DataFrame column, Panel slice, etc.).

get_dtype_counts()

Return the counts of dtypes in this object

get_ftype_counts()

Return the counts of ftypes in this object

get_value(label[, takeable])

Quickly retrieve single value at passed index label

get_values()

same as values (but handles sparseness conversions); is a view

groupby([by, axis, level, as_index, sort, ...])

Group series using mapper (dict or key function, apply given function

gt(other[, axis])

hasnans()

return if I have any nans; enables various perf speedups

head([n])

Returns first n rows

hist([by, ax, grid, xlabelsize, xrot, ...])

Draw histogram of the input series using matplotlib

idxmax([axis, out, skipna])

Index of first occurrence of maximum of values.

idxmin([axis, out, skipna])

Index of first occurrence of minimum of values.

iget(i[, axis])

Return the i-th value or values in the Series by location

iget_value(i[, axis])

Return the i-th value or values in the Series by location

interpolate([method, axis, limit, inplace, ...])

Interpolate values according to different methods.

irow(i[, axis])

Return the i-th value or values in the Series by location

isin(values)

Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values.

isnull()

Return a boolean same-sized object indicating if the values are null

item()

return the first element of the underlying data as a python scalar

iteritems()

Lazily iterate over (index, value) tuples

iterkv(*args, **kwargs)

iteritems alias used to get around 2to3. Deprecated

keys()

Alias for index

kurt([axis, skipna, level, numeric_only])

Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0).

kurtosis([axis, skipna, level, numeric_only])

Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0).

last(offset)

Convenience method for subsetting final periods of time series data

last_valid_index()

Return label for last non-NA/null value

le(other[, axis])

load(path)

Deprecated.

lt(other[, axis])

mad([axis, skipna, level])

Return the mean absolute deviation of the values for the requested axis

map(arg[, na_action])

Map values of Series using input correspondence (which can be

mask(cond[, other, inplace, axis, level, ...])

Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.

max([axis, skipna, level, numeric_only])

This method returns the maximum of the values in the object.

mean([axis, skipna, level, numeric_only])

Return the mean of the values for the requested axis

median([axis, skipna, level, numeric_only])

Return the median of the values for the requested axis

min([axis, skipna, level, numeric_only])

This method returns the minimum of the values in the object.

mod(other[, level, fill_value, axis])

Modulo of series and other, element-wise (binary operator mod).

mode()

Returns the mode(s) of the dataset.

mul(other[, level, fill_value, axis])

Multiplication of series and other, element-wise (binary operator mul).

multiply(other[, level, fill_value, axis])

Multiplication of series and other, element-wise (binary operator mul).

ne(other[, axis])

nlargest([n, take_last])

Return the largest n elements.

nonzero()

Return the indices of the elements that are non-zero

notnull()

Return a boolean same-sized object indicating if the values are

nsmallest([n, take_last])

Return the smallest n elements.

nunique([dropna])

Return number of unique elements in the object.

order([na_last, ascending, kind, ...])

Sorts Series object, by value, maintaining index-value link.

pct_change([periods, fill_method, limit, freq])

Percent change over given number of periods.

pipe(func, *args, **kwargs)

Apply func(self, *args, **kwargs)

plot(data[, kind, ax, figsize, use_index, ...])

Make plots of Series using matplotlib / pylab.

pop(item)

Return item and drop from frame.

pow(other[, level, fill_value, axis])

Exponential power of series and other, element-wise (binary operator pow).

prod([axis, skipna, level, numeric_only])

Return the product of the values for the requested axis

product([axis, skipna, level, numeric_only])

Return the product of the values for the requested axis

ptp([axis, out])

put(*args, **kwargs)

return a ndarray with the values put

quantile([q])

Return value at the given quantile, a la numpy.percentile.

radd(other[, level, fill_value, axis])

Addition of series and other, element-wise (binary operator radd).

rank([method, na_option, ascending, pct])

Compute data ranks (1 through n).

ravel([order])

Return the flattened underlying data as an ndarray

rdiv(other[, level, fill_value, axis])

Floating division of series and other, element-wise (binary operator rtruediv).

reindex([index])

Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.

reindex_axis(labels[, axis])

for compatibility with higher dims

reindex_like(other[, method, copy, limit])

return an object with matching indicies to myself

rename([index])

Alter axes input function or functions.

rename_axis(mapper[, axis, copy, inplace])

Alter index and / or columns using input function or functions.

reorder_levels(order)

Rearrange index levels using input order.

repeat(reps)

return a new Series with the values repeated reps times

replace([to_replace, value, inplace, limit, ...])

Replace values given in ‘to_replace’ with ‘value’.

resample(rule[, how, axis, fill_method, ...])

Convenience method for frequency conversion and resampling of regular time-series data.

reset_index([level, drop, name, inplace])

Analogous to the pandas.DataFrame.reset_index() function, see docstring there.

reshape(*args, **kwargs)

return an ndarray with the values shape

rfloordiv(other[, level, fill_value, axis])

Integer division of series and other, element-wise (binary operator rfloordiv).

rmod(other[, level, fill_value, axis])

Modulo of series and other, element-wise (binary operator rmod).

rmul(other[, level, fill_value, axis])

Multiplication of series and other, element-wise (binary operator rmul).

round([decimals, out])

Return a with each element rounded to the given number of decimals.

rpow(other[, level, fill_value, axis])

Exponential power of series and other, element-wise (binary operator rpow).

rsub(other[, level, fill_value, axis])

Subtraction of series and other, element-wise (binary operator rsub).

rtruediv(other[, level, fill_value, axis])

Floating division of series and other, element-wise (binary operator rtruediv).

sample([n, frac, replace, weights, ...])

Returns a random sample of items from an axis of object.

save(path)

Deprecated.

searchsorted(v[, side, sorter])

Find indices where elements should be inserted to maintain order.

select(crit[, axis])

Return data corresponding to axis labels matching criteria

sem([axis, skipna, level, ddof, numeric_only])

Return unbiased standard error of the mean over requested axis.

set_axis(axis, labels)

public verson of axis assignment

set_value(label, value[, takeable])

Quickly set single value at passed label.

shift([periods, freq, axis])

Shift index by desired number of periods with an optional time freq

skew([axis, skipna, level, numeric_only])

Return unbiased skew over requested axis

slice_shift([periods, axis])

Equivalent to shift without copying data.

sort([axis, ascending, kind, na_position, ...])

Sort values and index labels by value.

sort_index([ascending])

Sort object by labels (along an axis)

sortlevel([level, ascending, sort_remaining])

Sort Series with MultiIndex by chosen level.

squeeze()

squeeze length 1 dimensions

std([axis, skipna, level, ddof, numeric_only])

Return unbiased standard deviation over requested axis.

str

alias of StringMethods

sub(other[, level, fill_value, axis])

Subtraction of series and other, element-wise (binary operator sub).

subtract(other[, level, fill_value, axis])

Subtraction of series and other, element-wise (binary operator sub).

sum([axis, skipna, level, numeric_only])

Return the sum of the values for the requested axis

swapaxes(axis1, axis2[, copy])

Interchange axes and swap values axes appropriately

swaplevel(i, j[, copy])

Swap levels i and j in a MultiIndex

tail([n])

Returns last n rows

take(indices[, axis, convert, is_copy])

return Series corresponding to requested indices

to_clipboard([excel, sep])

Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

to_csv(path[, index, sep, na_rep, ...])

Write Series to a comma-separated values (csv) file

to_dense()

Return dense representation of NDFrame (as opposed to sparse)

to_dict()

Convert Series to {label -> value} dict

to_frame([name])

Convert Series to DataFrame

to_hdf(path_or_buf, key, **kwargs)

activate the HDFStore

to_json([path_or_buf, orient, date_format, ...])

Convert the object to a JSON string.

to_msgpack([path_or_buf])

msgpack (serialize) object to input file path

to_period([freq, copy])

Convert TimeSeries from DatetimeIndex to PeriodIndex with desired

to_pickle(path)

Pickle (serialize) object to input file path

to_sparse([kind, fill_value])

Convert Series to SparseSeries

to_sql(name, con[, flavor, schema, ...])

Write records stored in a DataFrame to a SQL database.

to_string([buf, na_rep, float_format, ...])

Render a string representation of the Series

to_timestamp([freq, how, copy])

Cast to datetimeindex of timestamps, at beginning of period

tolist()

Convert Series to a nested list

transpose()

return the transpose, which is by definition self

truediv(other[, level, fill_value, axis])

Floating division of series and other, element-wise (binary operator truediv).

truncate([before, after, axis, copy])

Truncates a sorted NDFrame before and/or after some particular dates.

tshift([periods, freq, axis])

Shift the time index, using the index’s frequency if available

tz_convert(tz[, axis, level, copy])

Convert tz-aware axis to target time zone.

tz_localize(*args, **kwargs)

Localize tz-naive TimeSeries to target time zone

unique()

Return array of unique values in the object.

unstack([level])

Unstack, a.k.a.

update(other)

Modify Series in place using non-NA values from passed Series.

valid([inplace])

value_counts([normalize, sort, ascending, ...])

Returns object containing counts of unique values.

var([axis, skipna, level, ddof, numeric_only])

Return unbiased variance over requested axis.

view([dtype])

where(cond[, other, inplace, axis, level, ...])

Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

xs(key[, axis, level, copy, drop_level])

Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.