DataFrame — pandas 0.24.0rc1 documentation (original) (raw)

DataFrame.abs()

Return a Series/DataFrame with absolute numeric value of each element.

DataFrame.all([axis, bool_only, skipna, level])

Return whether all elements are True, potentially over an axis.

DataFrame.any([axis, bool_only, skipna, level])

Return whether any element is True, potentially over an axis.

DataFrame.clip([lower, upper, axis, inplace])

Trim values at input threshold(s).

DataFrame.clip_lower(threshold[, axis, inplace])

(DEPRECATED) Trim values below a given threshold.

DataFrame.clip_upper(threshold[, axis, inplace])

(DEPRECATED) Trim values above a given threshold.

DataFrame.compound([axis, skipna, level])

Return the compound percentage of the values for the requested axis.

DataFrame.corr([method, min_periods])

Compute pairwise correlation of columns, excluding NA/null values.

DataFrame.corrwith(other[, axis, drop, method])

Compute pairwise correlation between rows or columns of DataFrame with rows or columns of Series or DataFrame.

DataFrame.count([axis, level, numeric_only])

Count non-NA cells for each column or row.

DataFrame.cov([min_periods])

Compute pairwise covariance of columns, excluding NA/null values.

DataFrame.cummax([axis, skipna])

Return cumulative maximum over a DataFrame or Series axis.

DataFrame.cummin([axis, skipna])

Return cumulative minimum over a DataFrame or Series axis.

DataFrame.cumprod([axis, skipna])

Return cumulative product over a DataFrame or Series axis.

DataFrame.cumsum([axis, skipna])

Return cumulative sum over a DataFrame or Series axis.

DataFrame.describe([percentiles, include, …])

Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.

DataFrame.diff([periods, axis])

First discrete difference of element.

DataFrame.eval(expr[, inplace])

Evaluate a string describing operations on DataFrame columns.

DataFrame.kurt([axis, skipna, level, …])

Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).

DataFrame.kurtosis([axis, skipna, level, …])

Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).

DataFrame.mad([axis, skipna, level])

Return the mean absolute deviation of the values for the requested axis.

DataFrame.max([axis, skipna, level, …])

Return the maximum of the values for the requested axis.

DataFrame.mean([axis, skipna, level, …])

Return the mean of the values for the requested axis.

DataFrame.median([axis, skipna, level, …])

Return the median of the values for the requested axis.

DataFrame.min([axis, skipna, level, …])

Return the minimum of the values for the requested axis.

DataFrame.mode([axis, numeric_only, dropna])

Get the mode(s) of each element along the selected axis.

DataFrame.pct_change([periods, fill_method, …])

Percentage change between the current and a prior element.

DataFrame.prod([axis, skipna, level, …])

Return the product of the values for the requested axis.

DataFrame.product([axis, skipna, level, …])

Return the product of the values for the requested axis.

DataFrame.quantile([q, axis, numeric_only, …])

Return values at the given quantile over requested axis.

DataFrame.rank([axis, method, numeric_only, …])

Compute numerical data ranks (1 through n) along axis.

DataFrame.round([decimals])

Round a DataFrame to a variable number of decimal places.

DataFrame.sem([axis, skipna, level, ddof, …])

Return unbiased standard error of the mean over requested axis.

DataFrame.skew([axis, skipna, level, …])

Return unbiased skew over requested axis Normalized by N-1.

DataFrame.sum([axis, skipna, level, …])

Return the sum of the values for the requested axis.

DataFrame.std([axis, skipna, level, ddof, …])

Return sample standard deviation over requested axis.

DataFrame.var([axis, skipna, level, ddof, …])

Return unbiased variance over requested axis.

DataFrame.nunique([axis, dropna])

Count distinct observations over requested axis.