pandas.Series.isnull — pandas 0.24.0rc1 documentation (original) (raw)
Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN
, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings ''
or numpy.inf
are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True
).
Returns: | Series Mask of bool values for each element in Series that indicates whether an element is not an NA value. |
---|
Examples
Show which entries in a DataFrame are NA.
df = pd.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker
df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False
Show which entries in a Series are NA.
ser = pd.Series([5, 6, np.NaN]) ser 0 5.0 1 6.0 2 NaN dtype: float64
ser.isna() 0 False 1 False 2 True dtype: bool