pandas.date_range — pandas 0.24.0rc1 documentation (original) (raw)

pandas. date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=None, **kwargs)[source]

Return a fixed frequency DatetimeIndex.

Parameters: start : str or datetime-like, optional Left bound for generating dates. end : str or datetime-like, optional Right bound for generating dates. periods : integer, optional Number of periods to generate. freq : str or DateOffset, default ‘D’ Frequency strings can have multiples, e.g. ‘5H’. Seehere for a list of frequency aliases. tz : str or tzinfo, optional Time zone name for returning localized DatetimeIndex, for example ‘Asia/Hong_Kong’. By default, the resulting DatetimeIndex is timezone-naive. normalize : bool, default False Normalize start/end dates to midnight before generating date range. name : str, default None Name of the resulting DatetimeIndex. closed : {None, ‘left’, ‘right’}, optional Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None, the default). **kwargs For compatibility. Has no effect on the result.
Returns: rng : DatetimeIndex

Notes

Of the four parameters start, end, periods, and freq, exactly three must be specified. If freq is omitted, the resultingDatetimeIndex will have periods linearly spaced elements betweenstart and end (closed on both sides).

To learn more about the frequency strings, please see this link.

Examples

Specifying the values

The next four examples generate the same DatetimeIndex, but vary the combination of start, end and periods.

Specify start and end, with the default daily frequency.

pd.date_range(start='1/1/2018', end='1/08/2018') DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq='D')

Specify start and periods, the number of periods (days).

pd.date_range(start='1/1/2018', periods=8) DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq='D')

Specify end and periods, the number of periods (days).

pd.date_range(end='1/1/2018', periods=8) DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28', '2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D')

Specify start, end, and periods; the frequency is generated automatically (linearly spaced).

pd.date_range(start='2018-04-24', end='2018-04-27', periods=3) DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00', '2018-04-27 00:00:00'], dtype='datetime64[ns]', freq=None)

Other Parameters

Changed the freq (frequency) to 'M' (month end frequency).

pd.date_range(start='1/1/2018', periods=5, freq='M') DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30', '2018-05-31'], dtype='datetime64[ns]', freq='M')

Multiples are allowed

pd.date_range(start='1/1/2018', periods=5, freq='3M') DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31', '2019-01-31'], dtype='datetime64[ns]', freq='3M')

freq can also be specified as an Offset object.

pd.date_range(start='1/1/2018', periods=5, freq=pd.offsets.MonthEnd(3)) DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31', '2019-01-31'], dtype='datetime64[ns]', freq='3M')

Specify tz to set the timezone.

pd.date_range(start='1/1/2018', periods=5, tz='Asia/Tokyo') DatetimeIndex(['2018-01-01 00:00:00+09:00', '2018-01-02 00:00:00+09:00', '2018-01-03 00:00:00+09:00', '2018-01-04 00:00:00+09:00', '2018-01-05 00:00:00+09:00'], dtype='datetime64[ns, Asia/Tokyo]', freq='D')

closed controls whether to include start and end that are on the boundary. The default includes boundary points on either end.

pd.date_range(start='2017-01-01', end='2017-01-04', closed=None) DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D')

Use closed='left' to exclude end if it falls on the boundary.

pd.date_range(start='2017-01-01', end='2017-01-04', closed='left') DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'], dtype='datetime64[ns]', freq='D')

Use closed='right' to exclude start if it falls on the boundary.

pd.date_range(start='2017-01-01', end='2017-01-04', closed='right') DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D')