BiclusterMixin (original) (raw)

class sklearn.base.BiclusterMixin[source]#

Mixin class for all bicluster estimators in scikit-learn.

This mixin defines the following functionality:

Examples

import numpy as np from sklearn.base import BaseEstimator, BiclusterMixin class DummyBiClustering(BiclusterMixin, BaseEstimator): ... def fit(self, X, y=None): ... self.rows_ = np.ones(shape=(1, X.shape[0]), dtype=bool) ... self.columns_ = np.ones(shape=(1, X.shape[1]), dtype=bool) ... return self X = np.array([[1, 1], [2, 1], [1, 0], ... [4, 7], [3, 5], [3, 6]]) bicluster = DummyBiClustering().fit(X) hasattr(bicluster, "biclusters_") True bicluster.get_indices(0) (array([0, 1, 2, 3, 4, 5]), array([0, 1]))

get_indices(i)[source]#

Row and column indices of the i’th bicluster.

Only works if rows_ and columns_ attributes exist.

Parameters:

iint

The index of the cluster.

Returns:

row_indndarray, dtype=np.intp

Indices of rows in the dataset that belong to the bicluster.

col_indndarray, dtype=np.intp

Indices of columns in the dataset that belong to the bicluster.

get_shape(i)[source]#

Shape of the i’th bicluster.

Parameters:

iint

The index of the cluster.

Returns:

n_rowsint

Number of rows in the bicluster.

n_colsint

Number of columns in the bicluster.

get_submatrix(i, data)[source]#

Return the submatrix corresponding to bicluster i.

Parameters:

iint

The index of the cluster.

dataarray-like of shape (n_samples, n_features)

The data.

Returns:

submatrixndarray of shape (n_rows, n_cols)

The submatrix corresponding to bicluster i.

Notes

Works with sparse matrices. Only works if rows_ andcolumns_ attributes exist.