ClassifierMixin (original) (raw)

class sklearn.base.ClassifierMixin[source]#

Mixin class for all classifiers in scikit-learn.

This mixin defines the following functionality:

Read more in the User Guide.

Examples

import numpy as np from sklearn.base import BaseEstimator, ClassifierMixin

Mixin classes should always be on the left-hand side for a correct MRO

class MyEstimator(ClassifierMixin, BaseEstimator): ... def init(self, *, param=1): ... self.param = param ... def fit(self, X, y=None): ... self.is_fitted_ = True ... return self ... def predict(self, X): ... return np.full(shape=X.shape[0], fill_value=self.param) estimator = MyEstimator(param=1) X = np.array([[1, 2], [2, 3], [3, 4]]) y = np.array([1, 0, 1]) estimator.fit(X, y).predict(X) array([1, 1, 1]) estimator.score(X, y) 0.66...

score(X, y, sample_weight=None)[source]#

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters:

Xarray-like of shape (n_samples, n_features)

Test samples.

yarray-like of shape (n_samples,) or (n_samples, n_outputs)

True labels for X.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

Returns:

scorefloat

Mean accuracy of self.predict(X) w.r.t. y.