ClusterMixin (original) (raw)
class sklearn.base.ClusterMixin[source]#
Mixin class for all cluster estimators in scikit-learn.
- set estimator type to
"clusterer"
through theestimator_type
tag; fit_predict
method returning the cluster labels associated to each sample.
Examples
import numpy as np from sklearn.base import BaseEstimator, ClusterMixin class MyClusterer(ClusterMixin, BaseEstimator): ... def fit(self, X, y=None): ... self.labels_ = np.ones(shape=(len(X),), dtype=np.int64) ... return self X = [[1, 2], [2, 3], [3, 4]] MyClusterer().fit_predict(X) array([1, 1, 1])
fit_predict(X, y=None, **kwargs)[source]#
Perform clustering on X
and returns cluster labels.
Parameters:
Xarray-like of shape (n_samples, n_features)
Input data.
yIgnored
Not used, present for API consistency by convention.
**kwargsdict
Arguments to be passed to fit
.
Added in version 1.4.
Returns:
labelsndarray of shape (n_samples,), dtype=np.int64
Cluster labels.