OutlierMixin (original) (raw)
class sklearn.base.OutlierMixin[source]#
Mixin class for all outlier detection estimators in scikit-learn.
This mixin defines the following functionality:
- set estimator type to
"outlier_detector"
through theestimator_type
tag; fit_predict
method that default tofit
andpredict
.
Examples
import numpy as np from sklearn.base import BaseEstimator, OutlierMixin class MyEstimator(OutlierMixin): ... def fit(self, X, y=None): ... self.is_fitted_ = True ... return self ... def predict(self, X): ... return np.ones(shape=len(X)) estimator = MyEstimator() X = np.array([[1, 2], [2, 3], [3, 4]]) estimator.fit_predict(X) array([1., 1., 1.])
fit_predict(X, y=None, **kwargs)[source]#
Perform fit on X and returns labels for X.
Returns -1 for outliers and 1 for inliers.
Parameters:
X{array-like, sparse matrix} of shape (n_samples, n_features)
The input samples.
yIgnored
Not used, present for API consistency by convention.
**kwargsdict
Arguments to be passed to fit
.
Added in version 1.4.
Returns:
yndarray of shape (n_samples,)
1 for inliers, -1 for outliers.