make_swiss_roll (original) (raw)
sklearn.datasets.make_swiss_roll(n_samples=100, *, noise=0.0, random_state=None, hole=False)[source]#
Generate a swiss roll dataset.
Read more in the User Guide.
Parameters:
n_samplesint, default=100
The number of sample points on the Swiss Roll.
noisefloat, default=0.0
The standard deviation of the gaussian noise.
random_stateint, RandomState instance or None, default=None
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls. See Glossary.
holebool, default=False
If True generates the swiss roll with hole dataset.
Returns:
Xndarray of shape (n_samples, 3)
The points.
tndarray of shape (n_samples,)
The univariate position of the sample according to the main dimension of the points in the manifold.
Notes
The algorithm is from Marsland [1].
References
Examples
from sklearn.datasets import make_swiss_roll X, t = make_swiss_roll(noise=0.05, random_state=0) X.shape (100, 3) t.shape (100,)