grid_to_graph (original) (raw)
Graph of the pixel-to-pixel connections.
Edges exist if 2 voxels are connected.
Read more in the User Guide.
Parameters:
n_xint
Dimension in x axis.
n_yint
Dimension in y axis.
n_zint, default=1
Dimension in z axis.
maskndarray of shape (n_x, n_y, n_z), dtype=bool, default=None
An optional mask of the image, to consider only part of the pixels.
return_asnp.ndarray or a sparse matrix class, default=sparse.coo_matrix
The class to use to build the returned adjacency matrix.
dtypedtype, default=int
The data of the returned sparse matrix. By default it is int.
Returns:
graphnp.ndarray or a sparse matrix class
The computed adjacency matrix.
Examples
import numpy as np from sklearn.feature_extraction.image import grid_to_graph shape_img = (4, 4, 1) mask = np.zeros(shape=shape_img, dtype=bool) mask[[1, 2], [1, 2], :] = True graph = grid_to_graph(*shape_img, mask=mask) print(graph) <COOrdinate sparse matrix of dtype 'int64' with 2 stored elements and shape (2, 2)> Coords Values (0, 0) 1 (1, 1) 1