RidgeClassifier (original) (raw)

class sklearn.linear_model.RidgeClassifier(alpha=1.0, *, fit_intercept=True, copy_X=True, max_iter=None, tol=0.0001, class_weight=None, solver='auto', positive=False, random_state=None)[source]#

Classifier using Ridge regression.

This classifier first converts the target values into {-1, 1} and then treats the problem as a regression task (multi-output regression in the multiclass case).

Read more in the User Guide.

Parameters:

alphafloat, default=1.0

Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to 1 / (2C) in other linear models such asLogisticRegression orLinearSVC.

fit_interceptbool, default=True

Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).

copy_Xbool, default=True

If True, X will be copied; else, it may be overwritten.

max_iterint, default=None

Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg.

tolfloat, default=1e-4

The precision of the solution (coef_) is determined by tol which specifies a different convergence criterion for each solver:

Changed in version 1.2: Default value changed from 1e-3 to 1e-4 for consistency with other linear models.

class_weightdict or ‘balanced’, default=None

Weights associated with classes in the form {class_label: weight}. If not given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)).

solver{‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’, ‘lbfgs’}, default=’auto’

Solver to use in the computational routines:

positivebool, default=False

When set to True, forces the coefficients to be positive. Only ‘lbfgs’ solver is supported in this case.

random_stateint, RandomState instance, default=None

Used when solver == ‘sag’ or ‘saga’ to shuffle the data. See Glossary for details.

Attributes:

**coef_**ndarray of shape (1, n_features) or (n_classes, n_features)

Coefficient of the features in the decision function.

coef_ is of shape (1, n_features) when the given problem is binary.

**intercept_**float or ndarray of shape (n_targets,)

Independent term in decision function. Set to 0.0 iffit_intercept = False.

**n_iter_**None or ndarray of shape (n_targets,)

Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None.

classes_ndarray of shape (n_classes,)

Classes labels.

**n_features_in_**int

Number of features seen during fit.

Added in version 0.24.

**feature_names_in_**ndarray of shape (n_features_in_,)

Names of features seen during fit. Defined only when Xhas feature names that are all strings.

Added in version 1.0.

**solver_**str

The solver that was used at fit time by the computational routines.

Added in version 1.5.

Notes

For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge.

Examples

from sklearn.datasets import load_breast_cancer from sklearn.linear_model import RidgeClassifier X, y = load_breast_cancer(return_X_y=True) clf = RidgeClassifier().fit(X, y) clf.score(X, y) 0.9595...

property classes_#

Classes labels.

decision_function(X)[source]#

Predict confidence scores for samples.

The confidence score for a sample is proportional to the signed distance of that sample to the hyperplane.

Parameters:

X{array-like, sparse matrix} of shape (n_samples, n_features)

The data matrix for which we want to get the confidence scores.

Returns:

scoresndarray of shape (n_samples,) or (n_samples, n_classes)

Confidence scores per (n_samples, n_classes) combination. In the binary case, confidence score for self.classes_[1] where >0 means this class would be predicted.

fit(X, y, sample_weight=None)[source]#

Fit Ridge classifier model.

Parameters:

X{ndarray, sparse matrix} of shape (n_samples, n_features)

Training data.

yndarray of shape (n_samples,)

Target values.

sample_weightfloat or ndarray of shape (n_samples,), default=None

Individual weights for each sample. If given a float, every sample will have the same weight.

Added in version 0.17: sample_weight support to RidgeClassifier.

Returns:

selfobject

Instance of the estimator.

get_metadata_routing()[source]#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:

routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)[source]#

Get parameters for this estimator.

Parameters:

deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

paramsdict

Parameter names mapped to their values.

predict(X)[source]#

Predict class labels for samples in X.

Parameters:

X{array-like, spare matrix} of shape (n_samples, n_features)

The data matrix for which we want to predict the targets.

Returns:

y_predndarray of shape (n_samples,) or (n_samples, n_outputs)

Vector or matrix containing the predictions. In binary and multiclass problems, this is a vector containing n_samples. In a multilabel problem, it returns a matrix of shape(n_samples, n_outputs).

score(X, y, sample_weight=None)[source]#

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters:

Xarray-like of shape (n_samples, n_features)

Test samples.

yarray-like of shape (n_samples,) or (n_samples, n_outputs)

True labels for X.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

Returns:

scorefloat

Mean accuracy of self.predict(X) w.r.t. y.

set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') → RidgeClassifier[source]#

Request metadata passed to the fit method.

Note that this method is only relevant ifenable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside aPipeline. Otherwise it has no effect.

Parameters:

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in fit.

Returns:

selfobject

The updated object.

set_params(**params)[source]#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:

**paramsdict

Estimator parameters.

Returns:

selfestimator instance

Estimator instance.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') → RidgeClassifier[source]#

Request metadata passed to the score method.

Note that this method is only relevant ifenable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside aPipeline. Otherwise it has no effect.

Parameters:

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns:

selfobject

The updated object.