max_error (original) (raw)
sklearn.metrics.max_error(y_true, y_pred)[source]#
The max_error metric calculates the maximum residual error.
Read more in the User Guide.
Parameters:
y_truearray-like of shape (n_samples,)
Ground truth (correct) target values.
y_predarray-like of shape (n_samples,)
Estimated target values.
Returns:
max_errorfloat
A positive floating point value (the best value is 0.0).
Examples
from sklearn.metrics import max_error y_true = [3, 2, 7, 1] y_pred = [4, 2, 7, 1] max_error(y_true, y_pred) np.int64(1)