multilabel_confusion_matrix (original) (raw)
sklearn.metrics.multilabel_confusion_matrix(y_true, y_pred, *, sample_weight=None, labels=None, samplewise=False)[source]#
Compute a confusion matrix for each class or sample.
Added in version 0.21.
Compute class-wise (default) or sample-wise (samplewise=True) multilabel confusion matrix to evaluate the accuracy of a classification, and output confusion matrices for each class or sample.
In multilabel confusion matrix \(MCM\), the count of true negatives is \(MCM_{:,0,0}\), false negatives is \(MCM_{:,1,0}\), true positives is \(MCM_{:,1,1}\) and false positives is\(MCM_{:,0,1}\).
Multiclass data will be treated as if binarized under a one-vs-rest transformation. Returned confusion matrices will be in the order of sorted unique labels in the union of (y_true, y_pred).
Read more in the User Guide.
Parameters:
y_true{array-like, sparse matrix} of shape (n_samples, n_outputs) or (n_samples,)
Ground truth (correct) target values.
y_pred{array-like, sparse matrix} of shape (n_samples, n_outputs) or (n_samples,)
Estimated targets as returned by a classifier.
sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
labelsarray-like of shape (n_classes,), default=None
A list of classes or column indices to select some (or to force inclusion of classes absent from the data).
samplewisebool, default=False
In the multilabel case, this calculates a confusion matrix per sample.
Returns:
multi_confusionndarray of shape (n_outputs, 2, 2)
A 2x2 confusion matrix corresponding to each output in the input. When calculating class-wise multi_confusion (default), then n_outputs = n_labels; when calculating sample-wise multi_confusion (samplewise=True), n_outputs = n_samples. If labels
is defined, the results will be returned in the order specified in labels
, otherwise the results will be returned in sorted order by default.
See also
Compute confusion matrix to evaluate the accuracy of a classifier.
Notes
The multilabel_confusion_matrix
calculates class-wise or sample-wise multilabel confusion matrices, and in multiclass tasks, labels are binarized under a one-vs-rest way; whileconfusion_matrix calculates one confusion matrix for confusion between every two classes.
Examples
Multilabel-indicator case:
import numpy as np from sklearn.metrics import multilabel_confusion_matrix y_true = np.array([[1, 0, 1], ... [0, 1, 0]]) y_pred = np.array([[1, 0, 0], ... [0, 1, 1]]) multilabel_confusion_matrix(y_true, y_pred) array([[[1, 0], [0, 1]],
[[1, 0],
[0, 1]],
[[0, 1],
[1, 0]]])
Multiclass case:
y_true = ["cat", "ant", "cat", "cat", "ant", "bird"] y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"] multilabel_confusion_matrix(y_true, y_pred, ... labels=["ant", "bird", "cat"]) array([[[3, 1], [0, 2]],
[[5, 0],
[1, 0]],
[[2, 1],
[1, 2]]])