cosine_distances (original) (raw)
sklearn.metrics.pairwise.cosine_distances(X, Y=None)[source]#
Compute cosine distance between samples in X and Y.
Cosine distance is defined as 1.0 minus the cosine similarity.
Read more in the User Guide.
Parameters:
X{array-like, sparse matrix} of shape (n_samples_X, n_features)
Matrix X
.
Y{array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
Matrix Y
.
Returns:
distancesndarray of shape (n_samples_X, n_samples_Y)
Returns the cosine distance between samples in X and Y.
Examples
from sklearn.metrics.pairwise import cosine_distances X = [[0, 0, 0], [1, 1, 1]] Y = [[1, 0, 0], [1, 1, 0]] cosine_distances(X, Y) array([[1. , 1. ], [0.42..., 0.18...]])