linear_kernel (original) (raw)
sklearn.metrics.pairwise.linear_kernel(X, Y=None, dense_output=True)[source]#
Compute the linear kernel between X and Y.
Read more in the User Guide.
Parameters:
X{array-like, sparse matrix} of shape (n_samples_X, n_features)
A feature array.
Y{array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
An optional second feature array. If None
, uses Y=X
.
dense_outputbool, default=True
Whether to return dense output even when the input is sparse. IfFalse
, the output is sparse if both input arrays are sparse.
Added in version 0.20.
Returns:
kernelndarray of shape (n_samples_X, n_samples_Y)
The Gram matrix of the linear kernel, i.e. X @ Y.T
.
Examples
from sklearn.metrics.pairwise import linear_kernel X = [[0, 0, 0], [1, 1, 1]] Y = [[1, 0, 0], [1, 1, 0]] linear_kernel(X, Y) array([[0., 0.], [1., 2.]])