LabelEncoder (original) (raw)
class sklearn.preprocessing.LabelEncoder[source]#
Encode target labels with value between 0 and n_classes-1.
This transformer should be used to encode target values, i.e. y
, and not the input X
.
Read more in the User Guide.
Added in version 0.12.
Attributes:
**classes_**ndarray of shape (n_classes,)
Holds the label for each class.
See also
Encode categorical features using an ordinal encoding scheme.
Encode categorical features as a one-hot numeric array.
Examples
LabelEncoder
can be used to normalize labels.
from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le.fit([1, 2, 2, 6]) LabelEncoder() le.classes_ array([1, 2, 6]) le.transform([1, 1, 2, 6]) array([0, 0, 1, 2]...) le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6])
It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels.
le = LabelEncoder() le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() list(le.classes_) [np.str_('amsterdam'), np.str_('paris'), np.str_('tokyo')] le.transform(["tokyo", "tokyo", "paris"]) array([2, 2, 1]...) list(le.inverse_transform([2, 2, 1])) [np.str_('tokyo'), np.str_('tokyo'), np.str_('paris')]
Fit label encoder.
Parameters:
yarray-like of shape (n_samples,)
Target values.
Returns:
selfreturns an instance of self.
Fitted label encoder.
Fit label encoder and return encoded labels.
Parameters:
yarray-like of shape (n_samples,)
Target values.
Returns:
yarray-like of shape (n_samples,)
Encoded labels.
get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Returns:
routingMetadataRequest
A MetadataRequest encapsulating routing information.
get_params(deep=True)[source]#
Get parameters for this estimator.
Parameters:
deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns:
paramsdict
Parameter names mapped to their values.
Transform labels back to original encoding.
Parameters:
yarray-like of shape (n_samples,)
Target values.
Returns:
yndarray of shape (n_samples,)
Original encoding.
set_output(*, transform=None)[source]#
Set output container.
See Introducing the set_output APIfor an example on how to use the API.
Parameters:
transform{“default”, “pandas”, “polars”}, default=None
Configure output of transform
and fit_transform
.
"default"
: Default output format of a transformer"pandas"
: DataFrame output"polars"
: Polars outputNone
: Transform configuration is unchanged
Added in version 1.4: "polars"
option was added.
Returns:
selfestimator instance
Estimator instance.
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter>
so that it’s possible to update each component of a nested object.
Parameters:
**paramsdict
Estimator parameters.
Returns:
selfestimator instance
Estimator instance.
Transform labels to normalized encoding.
Parameters:
yarray-like of shape (n_samples,)
Target values.
Returns:
yarray-like of shape (n_samples,)
Labels as normalized encodings.