check_scalar (original) (raw)
sklearn.utils.check_scalar(x, name, target_type, *, min_val=None, max_val=None, include_boundaries='both')[source]#
Validate scalar parameters type and value.
Parameters:
xobject
The scalar parameter to validate.
namestr
The name of the parameter to be printed in error messages.
target_typetype or tuple
Acceptable data types for the parameter.
min_valfloat or int, default=None
The minimum valid value the parameter can take. If None (default) it is implied that the parameter does not have a lower bound.
max_valfloat or int, default=None
The maximum valid value the parameter can take. If None (default) it is implied that the parameter does not have an upper bound.
include_boundaries{“left”, “right”, “both”, “neither”}, default=”both”
Whether the interval defined by min_val
and max_val
should include the boundaries. Possible choices are:
"left"
: onlymin_val
is included in the valid interval. It is equivalent to the interval[ min_val, max_val )
."right"
: onlymax_val
is included in the valid interval. It is equivalent to the interval( min_val, max_val ]
."both"
:min_val
andmax_val
are included in the valid interval. It is equivalent to the interval[ min_val, max_val ]
."neither"
: neithermin_val
normax_val
are included in the valid interval. It is equivalent to the interval( min_val, max_val )
.
Returns:
xnumbers.Number
The validated number.
Raises:
TypeError
If the parameter’s type does not match the desired type.
ValueError
If the parameter’s value violates the given bounds. If min_val
, max_val
and include_boundaries
are inconsistent.
Examples
from sklearn.utils.validation import check_scalar check_scalar(10, "x", int, min_val=1, max_val=20) 10