R: The Cauchy Distribution (original) (raw)
Cauchy {stats} | R Documentation |
---|
Description
Density, distribution function, quantile function and random generation for the Cauchy distribution with location parameterlocation
and scale parameter scale
.
Usage
dcauchy(x, location = 0, scale = 1, log = FALSE)
pcauchy(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qcauchy(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rcauchy(n, location = 0, scale = 1)
Arguments
x, q | vector of quantiles. |
---|---|
p | vector of probabilities. |
n | number of observations. If length(n) > 1, the length is taken to be the number required. |
location, scale | location and scale parameters. |
log, log.p | logical; if TRUE, probabilities/densities are given as logarithms. |
lower.tail | logical; if TRUE (default), probabilities areP[X \le x], otherwise, P[X > x]. |
Details
If location
or scale
are not specified, they assume the default values of 0
and 1
respectively.
The Cauchy distribution with location l
and scale s
has density
f(x) = \frac{1}{\pi s} \left( 1 + \left(\frac{x - l}{s}\right)^2 \right)^{-1}%
for all x
.
Value
dcauchy
gives the density,pcauchy
is the cumulative distribution function, andqcauchy
is the quantile function of the Cauchy distribution.rcauchy
generates random deviates.
The length of the result is determined by n
forrcauchy
, and is the maximum of the lengths of the numerical arguments for the other functions.
The numerical arguments other than n
are recycled to the length of the result. Only the first elements of the logical arguments are used.
Source
dcauchy
, pcauchy
and qcauchy
are all calculated from numerically stable versions of the definitions.
rcauchy
uses inversion.
References
Becker R. A., Chambers J. M., Wilks A. R. (1988).The New S Language. Chapman and Hall/CRC, London.
Johnson N. L., Kotz S., Balakrishnan N. (1994).Continuous Univariate Distributions, volume 1. Wiley, New York. ISBN 978-0-471-58495-7. Chapter 16.
See Also
Distributions for other standard distributions, including[dt](../../stats/help/dt.html)
for the t
distribution which generalizesdcauchy(*, l = 0, s = 1)
.
Examples
dcauchy(-1:4)
[Package _stats_ version 4.6.0 Index]