Confocal Ellipse Map (original) (raw)
map: z ⟶ f(z) = z + 1/z
, domain: a ≺ |z| ≺ 4
, morph: 1 ≺ a ≺ 2
.
The radial parameter linesr ⟶ r*exp(i*t)
, t = constant
, are mapped to Hyperbolasr ⟶ r*exp(i*t) + 1/r*exp(-i*t) = (r+1/r)*2cos(t) + i*(r-1/r)*2sin(t)
The angular parameter linest ⟶ r*exp(i*t)
, r = constant
, are mapped to Ellipsest ⟶ r*exp(i*t) + 1/r*exp(-i*t) = 2(r+1/r)*cos(t) + i*2(r-1/r)*sin(t)
All these ellipses and hyperbolas have the same focal points, therefore they are called “confocal”.