CheckAttributeSelection (original) (raw)

Class for examining the capabilities and finding problems with attribute selection schemes. If you implement an attribute selection using the WEKA.libraries, you should run the checks on it to ensure robustness and correct operation. Passing all the tests of this object does not mean bugs in the attribute selection don't exist, but this will help find some common ones.

Typical usage:

java weka.attributeSelection.CheckAttributeSelection -W ASscheme_name -- ASscheme_options

CheckAttributeSelection reports on the following:

Running CheckAttributeSelection with the debug option set will output the training dataset for any failed tests.

The weka.attributeSelection.AbstractAttributeSelectionTest uses this class to test all the schemes. Any changes here, have to be checked in that abstract test class, too.

Valid options are:

-D Turn on debugging output.

-S Silent mode - prints nothing to stdout.

-N The number of instances in the datasets (default 20).

-nominal The number of nominal attributes (default 2).

-nominal-values The number of values for nominal attributes (default 1).

-numeric The number of numeric attributes (default 1).

-string The number of string attributes (default 1).

-date The number of date attributes (default 1).

-relational The number of relational attributes (default 1).

-num-instances-relational The number of instances in relational/bag attributes (default 10).

-words The words to use in string attributes.

-word-separators The word separators to use in string attributes.

-eval name [options] Full name and options of the evaluator analyzed. eg: weka.attributeSelection.CfsSubsetEval

-search name [options] Full name and options of the search method analyzed. eg: weka.attributeSelection.Ranker

-test <eval|search> The scheme to test, either the evaluator or the search method. (Default: eval)

Options specific to evaluator weka.attributeSelection.CfsSubsetEval:

-M Treat missing values as a seperate value.

-L Don't include locally predictive attributes.

Options specific to search method weka.attributeSelection.Ranker:

-P Specify a starting set of attributes. Eg. 1,3,5-7. Any starting attributes specified are ignored during the ranking.

-T Specify a theshold by which attributes may be discarded from the ranking.

-N Specify number of attributes to select