(original) (raw)
%!PS-Adobe-2.0 %%Creator: dvips(k) 5.92b Copyright 2002 Radical Eye Software %%Title: paper.dvi %%Pages: 31 %%PageOrder: Ascend %%BoundingBox: 0 0 612 792 %%DocumentFonts: Times-Roman CMSY8 Times-Bold CMMI10 CMR10 CMSY6 CMSY9 %%+ Times-Italic CMMI8 CMSY10 CMR8 CMMI6 CMMI9 CMR9 CMBX10 CMEX10 CMR7 %%+ CMMI7 CMMI12 CMR6 CMBX8 CMBSY10 %%EndComments %DVIPSWebPage: (www.radicaleye.com) %DVIPSCommandLine: dvips -f paper.dvi %DVIPSParameters: dpi=600, compressed %DVIPSSource: TeX output 2005.07.21:2211 %%BeginProcSet: texc.pro %! /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[ matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{ statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0] N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin /FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array /BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2 array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get }B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub} B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr 1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3 1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{ rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B /chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{ /cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{ A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse} ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17 {2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{ 1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop} forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put }if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{ bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{ SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{ userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X 1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4 index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N /p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{ /Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT) (LaserWriter 16/600)]{A length product length le{A length product exch 0 exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot} imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M} B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{ p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end %%EndProcSet %%BeginProcSet: 8r.enc % File 8r.enc as of 2002-03-12 for PSNFSS 9 % % This is the encoding vector for Type1 and TrueType fonts to be used % with TeX. This file is part of the PSNFSS bundle, version 9 % % Authors: S. Rahtz, P. MacKay, Alan Jeffrey, B. Horn, K. Berry, W. Schmidt % % Idea is to have all the characters normally included in Type 1 fonts % available for typesetting. This is effectively the characters in Adobe % Standard Encoding + ISO Latin 1 + extra characters from Lucida + Euro. % % Character code assignments were made as follows: % % (1) the Windows ANSI characters are almost all in their Windows ANSI % positions, because some Windows users cannot easily reencode the % fonts, and it makes no difference on other systems. The only Windows % ANSI characters not available are those that make no sense for % typesetting -- rubout (127 decimal), nobreakspace (160), softhyphen % (173). quotesingle and grave are moved just because it's such an % irritation not having them in TeX positions. % % (2) Remaining characters are assigned arbitrarily to the lower part % of the range, avoiding 0, 10 and 13 in case we meet dumb software. % % (3) Y&Y Lucida Bright includes some extra text characters; in the % hopes that other PostScript fonts, perhaps created for public % consumption, will include them, they are included starting at 0x12. % % (4) Remaining positions left undefined are for use in (hopefully) % upward-compatible revisions, if someday more characters are generally % available. % % (5) hyphen appears twice for compatibility with both ASCII and Windows. % % (6) /Euro is assigned to 128, as in Windows ANSI % /TeXBase1Encoding [ % 0x00 (encoded characters from Adobe Standard not in Windows 3.1) /.notdef /dotaccent /fi /fl /fraction /hungarumlaut /Lslash /lslash /ogonek /ring /.notdef /breve /minus /.notdef % These are the only two remaining unencoded characters, so may as % well include them. /Zcaron /zcaron % 0x10 /caron /dotlessi % (unusual TeX characters available in, e.g., Lucida Bright) /dotlessj /ff /ffi /ffl /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef % very contentious; it's so painful not having quoteleft and quoteright % at 96 and 145 that we move the things normally found there down to here. /grave /quotesingle % 0x20 (ASCII begins) /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright /parenleft /parenright /asterisk /plus /comma /hyphen /period /slash % 0x30 /zero /one /two /three /four /five /six /seven /eight /nine /colon /semicolon /less /equal /greater /question % 0x40 /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O % 0x50 /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore % 0x60 /quoteleft /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o % 0x70 /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar /braceright /asciitilde /.notdef % rubout; ASCII ends % 0x80 /Euro /.notdef /quotesinglbase /florin /quotedblbase /ellipsis /dagger /daggerdbl /circumflex /perthousand /Scaron /guilsinglleft /OE /.notdef /.notdef /.notdef % 0x90 /.notdef /.notdef /.notdef /quotedblleft /quotedblright /bullet /endash /emdash /tilde /trademark /scaron /guilsinglright /oe /.notdef /.notdef /Ydieresis % 0xA0 /.notdef % nobreakspace /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright /ordfeminine /guillemotleft /logicalnot /hyphen % Y&Y (also at 45); Windows' softhyphen /registered /macron % 0xD0 /degree /plusminus /twosuperior /threesuperior /acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf /threequarters /questiondown % 0xC0 /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis % 0xD0 /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls % 0xE0 /agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis % 0xF0 /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis ] def %%EndProcSet %%BeginProcSet: bbad153f.enc % Thomas Esser, Dec 2002. public domain % % Encoding for: % cmsy10 cmsy5 cmsy6 cmsy7 cmsy8 cmsy9 % /TeXbbad153fEncoding [ /minus /periodcentered /multiply /asteriskmath /divide /diamondmath /plusminus /minusplus /circleplus /circleminus /circlemultiply /circledivide /circledot /circlecopyrt /openbullet /bullet /equivasymptotic /equivalence /reflexsubset /reflexsuperset /lessequal /greaterequal /precedesequal /followsequal /similar /approxequal /propersubset /propersuperset /lessmuch /greatermuch /precedes /follows /arrowleft /arrowright /arrowup /arrowdown /arrowboth /arrownortheast /arrowsoutheast /similarequal /arrowdblleft /arrowdblright /arrowdblup /arrowdbldown /arrowdblboth /arrownorthwest /arrowsouthwest /proportional /prime /infinity /element /owner /triangle /triangleinv /negationslash /mapsto /universal /existential /logicalnot /emptyset /Rfractur /Ifractur /latticetop /perpendicular /aleph /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /union /intersection /unionmulti /logicaland /logicalor /turnstileleft /turnstileright /floorleft /floorright /ceilingleft /ceilingright /braceleft /braceright /angbracketleft /angbracketright /bar /bardbl /arrowbothv /arrowdblbothv /backslash /wreathproduct /radical /coproduct /nabla /integral /unionsq /intersectionsq /subsetsqequal /supersetsqequal /section /dagger /daggerdbl /paragraph /club /diamond /heart /spade /arrowleft /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /minus /periodcentered /multiply /asteriskmath /divide /diamondmath /plusminus /minusplus /circleplus /circleminus /.notdef /.notdef /circlemultiply /circledivide /circledot /circlecopyrt /openbullet /bullet /equivasymptotic /equivalence /reflexsubset /reflexsuperset /lessequal /greaterequal /precedesequal /followsequal /similar /approxequal /propersubset /propersuperset /lessmuch /greatermuch /precedes /follows /arrowleft /spade /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef ] def %%EndProcSet %%BeginProcSet: aae443f0.enc % Thomas Esser, Dec 2002. public domain % % Encoding for: % cmmi10 cmmi12 cmmi5 cmmi6 cmmi7 cmmi8 cmmi9 cmmib10 % /TeXaae443f0Encoding [ /Gamma /Delta /Theta /Lambda /Xi /Pi /Sigma /Upsilon /Phi /Psi /Omega /alpha /beta /gamma /delta /epsilon1 /zeta /eta /theta /iota /kappa /lambda /mu /nu /xi /pi /rho /sigma /tau /upsilon /phi /chi /psi /omega /epsilon /theta1 /pi1 /rho1 /sigma1 /phi1 /arrowlefttophalf /arrowleftbothalf /arrowrighttophalf /arrowrightbothalf /arrowhookleft /arrowhookright /triangleright /triangleleft /zerooldstyle /oneoldstyle /twooldstyle /threeoldstyle /fouroldstyle /fiveoldstyle /sixoldstyle /sevenoldstyle /eightoldstyle /nineoldstyle /period /comma /less /slash /greater /star /partialdiff /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /flat /natural /sharp /slurbelow /slurabove /lscript /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o /p /q /r /s /t /u /v /w /x /y /z /dotlessi /dotlessj /weierstrass /vector /tie /psi /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /space /Gamma /Delta /Theta /Lambda /Xi /Pi /Sigma /Upsilon /Phi /Psi /.notdef /.notdef /Omega /alpha /beta /gamma /delta /epsilon1 /zeta /eta /theta /iota /kappa /lambda /mu /nu /xi /pi /rho /sigma /tau /upsilon /phi /chi /psi /tie /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef ] def %%EndProcSet %%BeginProcSet: f7b6d320.enc % Thomas Esser, Dec 2002. public domain % % Encoding for: % cmb10 cmbx10 cmbx12 cmbx5 cmbx6 cmbx7 cmbx8 cmbx9 cmbxsl10 % cmdunh10 cmr10 cmr12 cmr17cmr6 cmr7 cmr8 cmr9 cmsl10 cmsl12 cmsl8 % cmsl9 cmss10cmss12 cmss17 cmss8 cmss9 cmssbx10 cmssdc10 cmssi10 % cmssi12 cmssi17 cmssi8cmssi9 cmssq8 cmssqi8 cmvtt10 % /TeXf7b6d320Encoding [ /Gamma /Delta /Theta /Lambda /Xi /Pi /Sigma /Upsilon /Phi /Psi /Omega /ff /fi /fl /ffi /ffl /dotlessi /dotlessj /grave /acute /caron /breve /macron /ring /cedilla /germandbls /ae /oe /oslash /AE /OE /Oslash /suppress /exclam /quotedblright /numbersign /dollar /percent /ampersand /quoteright /parenleft /parenright /asterisk /plus /comma /hyphen /period /slash /zero /one /two /three /four /five /six /seven /eight /nine /colon /semicolon /exclamdown /equal /questiondown /question /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /quotedblleft /bracketright /circumflex /dotaccent /quoteleft /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o /p /q /r /s /t /u /v /w /x /y /z /endash /emdash /hungarumlaut /tilde /dieresis /suppress /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /space /Gamma /Delta /Theta /Lambda /Xi /Pi /Sigma /Upsilon /Phi /Psi /.notdef /.notdef /Omega /ff /fi /fl /ffi /ffl /dotlessi /dotlessj /grave /acute /caron /breve /macron /ring /cedilla /germandbls /ae /oe /oslash /AE /OE /Oslash /suppress /dieresis /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef ] def %%EndProcSet %%BeginProcSet: 10037936.enc % Thomas Esser, Dec 2002. public domain % % Encoding for: % cmbsy10 % /TeX10037936Encoding [ /minus /periodcentered /multiply /asteriskmath /divide /diamondmath /plusminus /minusplus /circleplus /circleminus /circlemultiply /circledivide /circledot /circlecopyrt /openbullet /bullet /equivasymptotic /equivalence /reflexsubset /reflexsuperset /lessequal /greaterequal /precedesequal /followsequal /similar /approxequal /propersubset /propersuperset /lessmuch /greatermuch /precedes /follows /arrowleft /arrowright /arrowup /arrowdown /arrowboth /arrownortheast /arrowsoutheast /similarequal /arrowdblleft /arrowdblright /arrowdblup /arrowdbldown /arrowdblboth /arrownorthwest /arrowsouthwest /proportional /prime /infinity /element /owner /triangle /triangleinv /negationslash /mapsto /universal /existential /logicalnot /emptyset /Rfractur /Ifractur /latticetop /perpendicular /aleph /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /union /intersection /unionmulti /logicaland /logicalor /turnstileleft /turnstileright /floorleft /floorright /ceilingleft /ceilingright /braceleft /braceright /angbracketleft /angbracketright /bar /bardbl /arrowbothv /arrowdblbothv /backslash /wreathproduct /radical /coproduct /nabla /integral /unionsq /intersectionsq /subsetsqequal /supersetsqequal /section /dagger /daggerdbl /paragraph /club /diamond /heart /spade /arrowleft /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /space /minus /periodcentered /multiply /asteriskmath /divide /diamondmath /plusminus /minusplus /circleplus /circleminus /.notdef /.notdef /circlemultiply /circledivide /circledot /circlecopyrt /openbullet /bullet /equivasymptotic /equivalence /reflexsubset /reflexsuperset /lessequal /greaterequal /precedesequal /followsequal /similar /approxequal /propersubset /propersuperset /lessmuch /greatermuch /precedes /follows /arrowleft /spade /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef ] def %%EndProcSet %%BeginProcSet: texps.pro %! TeXDict begin/rf{findfont dup length 1 add dict begin{1 index/FID ne 2 index/UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]FontType 0 ne{/Metrics exch def dict begin Encoding{exch dup type/integertype ne{ pop pop 1 sub dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get div def}ifelse}forall Metrics/Metrics currentdict end def}{{1 index type /nametype eq{exit}if exch pop}loop}ifelse[2 index currentdict end definefont 3 -1 roll makefont/setfont cvx]cvx def}def/ObliqueSlant{dup sin S cos div neg}B/SlantFont{4 index mul add}def/ExtendFont{3 -1 roll mul exch}def/ReEncodeFont{CharStrings rcheck{/Encoding false def dup[ exch{dup CharStrings exch known not{pop/.notdef/Encoding true def}if} forall Encoding{]exch pop}{cleartomark}ifelse}if/Encoding exch def}def end %%EndProcSet %%BeginProcSet: special.pro %! TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N /vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N /rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N /@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{ /hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B /@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{ /urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known {userdict/md get type/dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup length 20 add dict copy def}if end md begin /letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{ itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack} if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{ noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{ Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale }if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState save N userdict maxlength dict begin/magscale true def normalscale currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts /psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub TR/showpage{}N/erasepage{}N/setpagedevice{pop}N/copypage{}N/p 3 def @MacSetUp}N/doclip{psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath moveto}N/endTexFig{end psf$SavedState restore}N /@beginspecial{SDict begin/SpecialSave save N gsave normalscale currentpoint TR @SpecialDefaults count/ocount X/dcount countdictstack N} N/@setspecial{CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury lineto closepath clip}if/showpage{}N/erasepage{}N /setpagedevice{pop}N/copypage{}N newpath}N/@endspecial{count ocount sub{ pop}repeat countdictstack dcount sub{end}repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N/@fedspecial{end}B/li{lineto}B /rl{rlineto}B/rc{rcurveto}B/np{/SaveX currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end %%EndProcSet %%BeginFont: CMBSY10 %!PS-AdobeFont-1.1: CMBSY10 1.00 %%CreationDate: 1992 Jul 23 21:21:18 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.00) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMBSY10) readonly def /FamilyName (Computer Modern) readonly def /Weight (Bold) readonly def /ItalicAngle -14.035 def /isFixedPitch false def end readonly def /FontName /CMBSY10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-27 -940 1332 825}readonly def /UniqueID 5000762 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF17EFB0FFE6C69FEBA8389DCC1923D30683D A8CD93F7195D5A07BA2F18CB3FD5FFEDA4D83BF758062134D84AC0100187A6CD 1F80F5DC15B47D73F69655445AD218A8AD78C16EF96F385C9E2D46F8A330C7B5 A859EB0610C78FC5CE39715A1C5458D30498C0A339504A74C7E8F84B3DEC1516 B3ABAA0A06DEDCD5F9FEAA5AC4AE8D5A5BA5EC0B64784454F58049E13467D705 8F13A22BDED5F93EDDCAB7A1886A5168D25B120F8BBCC23546BC7398D4E3EC17 138921404C390EB84C3CC243C0FF3DEC9EBFFF3DEA73365F1E4BC2F3AB911B2F 780946F4F6F49935A54EF955D9894FEB37239C896CF98240162F6A6E9677EA24 06BEE1F04463C033047F7F972C560213C7A02BFEE5AE5AE5BF72377CED942A6D 8059E59CF03CD6782BD34BC02AA4FD1BA25A5CBE32569D7FED28EFB4C0F5F7C8 6DADC1A047CB514E19B36A84D4DB390FFE5B841C390666FE27C712E23E22FC84 A8670626E8B72700B9EE9F06F2121264C1CF69FEEC3E20897D0D9057032830FE A18A4BA2AD5CE10EE4FED4BB9E2A9C06965779827D7CBA93926793A7161454E3 C5AC6A3AAEB75EC64556142508DE6E37B71058F8B97C1A9B4CEBF74FBD2D6D84 F5DAA2B04AD30B313070B33789935E83DB470FAB8EC65165679F247964BD0C20 78291B6E13C29E8B86429C1B90C396729D6BDE4CCF24BE000390D798DA73BBEC AC5C9B1AC19B2C660CF1CDEC05289F6CAEF0E43465E3627DE26670BAA825429B 4B8FE57928267D5EBE38C5BF93F90304EB89DE120F81362FB5A3D374AB25B33C D03A8E9E176E41C964625E58A65EA958EF2B089933C06B71E29249A96D5A2395 DE687A0C60B837B5657D6DFCCAC085729E70132E2FB8165CE6DFB35E0D39B73C 38D58A7C31B0CFE03D8A24A2789715639F166D674706509D5CC098F8865DC65E B9A55E51A2D80E753845BDDC85F0746A63F9D3B7E081E0A6FA13CB37A753A76F 99FCD86C9786BBC30953455452EB28A7B35B3CBAF0BA4BDB4B424A7464E2F936 B3CBBF393C5978E02F9972E3606534A7F34349B3D08041C9B19CA021A935AAC7 4E71FD0707B4F9AF7A5CB87E4317D82BE4C0094337557A8B0A349A775E94CA11 5E7491DDCCCAA7EF3E4F1DF49EDC86BA60196D8B6482AEFAA5248FC292DFE7B8 5FEB296D6ED18DE717C6131D1F0BECDDBA35A5229A55BD28D3DB817BD56F2A7F 84429B8768B8FE5C5A1B758A72974A260ACD3BBD726EC0575C62B4226A4902E1 A6452724B39D4E93A7BFA4483D52696ED2D553F3C88B08FBCDBDABA235215EED 88BC348C296D418927E61716613AC3C5CE6A82360731A1BF027F96B78A532CEF BFBD065CABFD36904BDDE6CA6A32301E9502D572E5CD948F0C1642834BBD5E88 7818A9A9628CC97BD74DFA6A78E060B230FE5F9BA383D59EE1661C798EE26174 01D0F5B2AEADD26987E3EDAE731F926D9F807EC3016D63F76A0466EEA9010AB6 30B6904345225F57744B6FC8DA35D78CC4C5F278B2DAF13F29E31BE09EBFAA29 AC95B101DB9E1AF74C132600397A7865FF0C920FC6E2713D97325F4C5C2D76AA 604A4D7F322DEBFF60B692A558A275E8797535D3C8C03A06B7FBB1445DF6AB20 D5801290B60935FAFC7A8D86CDC648DD02B5F09C28C112CE9D9A27D1DF2F1678 9F6C3767943E473B3D1719688FB755C2DCAD5C7101480D4EB52497F8C3D2B8FE 3A62DC5BB7DD5F1C9091B3C35C47EBBD4C5760DA0990A79D40633D5AF644C19A 893F61A86B5EF5140968C7D2D20837BB6FD6389202317ACEC87F4830E7053B17 F87F4D2BA41AFFC9E46D640BFCBB856C8B7E1B4183224CE72119350122F1F093 365ABB4613F5CB15970681B5DF21A957AA254D975F415090853D4E4C7F12DC80 BC6EACEE5C9EE0C6EDC8FA8C1C2E0D7ED1743BFAE3874F12184AC45DFBF0365A E78985273F8C355C242D42ACC5D0BEA0E64AC598B75E49CCF76559E7E7145048 28D9FE4C 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMBX8 %!PS-AdobeFont-1.1: CMBX8 1.0 %%CreationDate: 1991 Aug 20 16:36:07 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMBX8) readonly def /FamilyName (Computer Modern) readonly def /Weight (Bold) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMBX8 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-59 -250 1235 750}readonly def /UniqueID 5000766 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5F05C11F9A72F5DA508C30BC4BF52C8B1EC5FB 7F9DDDD0964A6D59193A389D490DAA6F6ACD02CF71C06802F3AE5A001F2B3A6D EEB60E9DD26DBCE1D29C825A9BEFE3A6572E70DC7B60344C3E0C9C77ABE1804C 7ED61C544F0B4A3D6C7662DE8575C07BED3F6DBA7D64A9C8613AA152B74A140E AAD9B66E0FAEED6AF9D1820F361C1269A5E90519A3E6D40782E06778C0AFAA30 E8CEAB87054C4D156C1B14B4E8471D78648FDAC70A3B8ED474FA356393A77420 4211F60E397D2FEFC6A8D91A80C84EB9E38E663249FB91D5C8A5CBA68BA04272 5D5D42497E1CF5CA1E62EC2B139F5CD4D6318EBBA7AE28614D2D88709C2A3762 611524B8A1FFC7B0FCBAF77AD8159C354F4887DB1A27781DE0A4BA7DF2CE2025 D9278CED48584E8E6BDF30BFD24284BA1DF828B637BF84A02908BBCED67372C9 EF44711BC2B1DA343C8D9D27A9745525C774F5D639B7AEC197CEEDD06FD27923 35ED0D402AEEB51134665A47847429D91CF419CA9B09DC905F610F8DFC54E606 ADCDA19D5CC68A7BC7108EC9236C64205B23CE68B9BC38EF3E5BF9E0E6ADF404 7365C8D0436609438C82EEB2F356F79186DDF6C1C797D3C278108B1767D15178 C4C3E8ADC2482BAB9536AE8419E5CF3EE1B6E53BDCE2A83E2E485F496A562C10 B3F5A131BB19D1E5414C86C5F995521076340536E10613E42779FA15EFDB451F 53495CE8EFF239E4EC442E1439594549D45F5276F93D496C9AC712D762D0B702 E894290BA028837304AFDDD8BAA6564E9DC307A14A7A206550FADDC7784DE3BF 3390188BBCDDD929C82B1D7B529553BA75ACF5B385D31EE3902D96B2B5DDFFF1 9F0F90FD791E54128C1717F313486896868A34FAFF22E23CEF046D02C0880503 672707BC0244B02D9A8DE89E720835E18F80B082D328500A7E6A69402BA084C7 D252EB49813359DD42F357683D4BC91536B24A15FDC7FC90B22A424943057F4E 855C46E451D4FEB266BA73F82E809A5F9F2245F2F6071347B48EA3A3B449DD01 02364AEBA398AD791F6E0BACEF3044A1040FE694623C015B43EF57E12391441A 3E4CDD37050FC501B4558176FC04A5D5CA901EB15B31156553CE77081B2F285B 8614435B342B460D0DC9A054849F93FFF8D147D96A90066E78C95CE90A78BBB5 B3435E3CAC7C06389FE634744D364E3582E90018992C63D49743FB0846F8A568 2ED1B03CBAF1CB539CA7DD20263D1A5C73925E0C3FC122AED2726568AE5FAADF D0A573CC4712F7CB19B741990DFA3D4D70E5DA1E00A69DDA491ECF07F9C7FC6B 6D6EBB1E35368D3E4FF1F89FCDF5A6834721261C61143A42EECDA9E81633B793 30FA5FCE44BE 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMR6 %!PS-AdobeFont-1.1: CMR6 1.0 %%CreationDate: 1991 Aug 20 16:39:02 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMR6) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMR6 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-20 -250 1193 750}readonly def /UniqueID 5000789 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF4E9D2405B169CD5365D6ECED5D768D66D6C 68618B8C482B341F8CA38E9BB9BAFCFAAD9C2F3FD033B62690986ED43D9C9361 3645B82392D5CAE11A7CB49D7E2E82DCD485CBA17D1AFFF95F4224CF7ECEE45C BFB7C8C77C22A01C345078D28D3ECBF804CDC2FE5025FA0D05CCC5EFC0C4F87E CBED13DDDF8F34E404F471C6DD2E43331D73E89BBC71E7BF889F6293793FEF5A C9DD3792F032E37A364C70914843F7AA314413D022AE3238730B420A7E9D0CF5 D0E24F501451F9CDECE10AF7E14FF15C4F12F3FCA47DD9CD3C7AEA8D1551017D 23131C09ED104C052054520268A4FA3C6338BA6CF14C3DE3BAF2EA35296EE3D8 D6496277E11DFF6076FE64C8A8C3419FA774473D63223FFA41CBAE609C3D976B 93DFB4079ADC7C4EF07303F93808DDA9F651F61BCCF79555059A44CBAF84A711 6D98083CEF58230D54AD486C74C4A257FC703ACF918219D0A597A5F680B606E4 EF94ADF8BF91A5096A806DB64EC96636A98397D22A74932EB7346A9C4B5EE953 CB3C80AA634BFC28AA938C704BDA8DC4D13551CCFE2B2784BE8BF54502EBA9AF D49B79237B9C56310550BC30E9108BB06EAC755D6AA4E688EFE2A0AAB17F20FE 00CD0BFF1B9CB6BDA0FA3A29A3117388B6686657A150CE6421FD5D420F4F7FB5 B0DAA1BA19D638676E9CF159AC7325EF17B9F74E082BEF75E10A31C7011C0FFA 99B797CE549B5C45238DD0FADD6B99D233AC69282DF0D91EA2DBD08CE0083904 A6D968D5AE3BD159D01BDFF42D16111BC0A517C66B43972080D9DD4F3B9AE7FB 11B035CE715C1218B2D779761D8D7E9DEBE277531BD58F313EBD27E33BEF9DC5 50C7821A8BBC3B9FDF899D7EAA0B94493B97AFEAC503EB5ED7A7AB6CCCC950AF F6A29F479A2D64381EEF89EDD5FF966AA99B99DE93538FF55E471CDE2C53B4E4 8903A6741A6C277220A711308EAF916E9829A6C937C0E3EE676D84A59E0FEF72 DDE9BBB1579659EF8988185220D6953F25C02AE4707C1856107110A587E6F46A 2BF2E59A28254562F1C04C35AEC4F3666AAD6D5D6C2F3A071E654CCEC0CDD428 763CFAD39EDA6DC4EFA0472B017A94119FB133E4AB53E3D45E0B8EDA6828D47E 53928387245E87634F6A4865A3D760B7B9060CD93B1472537B47974E542F9C49 896E151C2420537814F3434DAB0582EF056B74F9880F595A4AB22E6FAF249C65 3CDBD6ACCD1AC9EBC0481FBEF8FFA93EC900E60F681BFD590B6C1366D68171BB C34C706D97C48EED9EEDA1831A21DCB602ECF730E7BFB1C1077C83BBAC19FFD8 2DDFF015CE5109E67141747ADF2FAC3ADA2ED39A737696A8F5C5052037BF34E1 31F3BA73128D3B1B553D91D1784CE3748DCBBB4BC1FCC1692D699B5D9B2C1F91 796426D9471984403F52A5684CCFFF64519C17B976ED1633FD93225EA60818F3 D29C4E1BFCE7C16A1A0ECA653B3344C0045EDCC857D0CDC498D82C1F59FD509A 25A02DD4E4BA2E07D7C723FE8390FFFB17E5D75C726E4164F964F2D8A89F47D1 483C518BCF8A49BCCCEF89361A195129FB97152C3F8699AD4FC0CCFBE347FFBC BAA90B389A9546E7DD0C35A302AE1ADD288236C1BB475DBC42AB412A480A1D3B CC4B90B4AABCE17999C94E793B02304D1A557C2DCA937E9286476E8C961D9340 B3E5E0078E5055781E2D14A2F90960D944FFF376AC8216FB9C15DC2D2AD81C0B 77809BD493B2E09167C1C47A5FEF0578311EFB1A40AF5741E0FBAA86A71C8FA2 E187CB05744072D67053050C868B6E99A759C77BF81AB5B2B8D8D035A3C4E133 87A534B136A9E4EB2AC755D382CEA8E693B1E80E69DA67DD2CA045319A4DED2C 422D79A05F5E4ADF4BAB453F27E55953389553DE9931B0F875AC15D9F9D56FAC 03A622A30113C4C7BEE4753C27CD32DC1C16BFF23C7CE05587BDB1C75D63C3B0 AA8B9258C61E0F1BCF47CBC71CB576D5DD3EC595740E4CCF6601926623ED7D90 7DD81A3E8FD5217CF97F4909D92FF4B330F8CA7AFBC01C2760EE93E7799C0A3A DA289CF65CFBFF465EE2A0004E804F153279FC7FA7EC40951F744C21750D10F4 58F51437C6FABF7F0DB499B78150463B1F42D40A694823A16B221828C7412D16 B88D59CD1129C95B880E31F18F8483E3FC90175E86A60DEA2ED9C12F2D08C6E2 A722C6F6C870AA222EF0E36855ED7513B8CC5FFD6114A21F5B6847186404039F 0611FAAD79C050C6FCFEF0E8FD1DFCCB817A9F4D3CA0A9FBA4800C873D9B4E80 630F1AB72F4476E93289ACA6A0ED378142E82B20F07797E6BF7EC0D5342AE73E 282475E5AAAD38BA8C4F8B5C27DA5529EE451F9AC5D7511E5F82E64F2A5DD81F 74B7C4765620314176F4CC2172128C9D16DCDB1F548DBEADEC835E3B26F717E8 57DFEBE040C04BA8C0FC7629C091A226A5A821C621EF2FB316086290D380F11A 6CA7FE66C3483355717B25CFEBEA2937C502716E3C48C17A0D0413E2F27D332F 68434AE11E0C9CE4B59ADA44DE69D77C935CADC833F80400B519CB26D4 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMMI12 %!PS-AdobeFont-1.1: CMMI12 1.100 %%CreationDate: 1996 Jul 27 08:57:55 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.100) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMMI12) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.04 def /isFixedPitch false def end readonly def /FontName /CMMI12 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-30 -250 1026 750}readonly def /UniqueID 5087386 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE D919C2DDD26BDC0D99398B9F4D03D6A8F05B47AF95EF28A9C561DBDC98C47CF5 5250011D19E9366EB6FD153D3A100CAA6212E3D5D93990737F8D326D347B7EDC 4391C9DF440285B8FC159D0E98D4258FC57892DCC57F7903449E07914FBE9E67 3C15C2153C061EB541F66C11E7EE77D5D77C0B11E1AC55101DA976CCACAB6993 EED1406FBB7FF30EAC9E90B90B2AF4EC7C273CA32F11A5C1426FF641B4A2FB2F 4E68635C93DB835737567FAF8471CBC05078DCD4E40E25A2F4E5AF46C234CF59 2A1CE8F39E1BA1B2A594355637E474167EAD4D97D51AF0A899B44387E1FD933A 323AFDA6BA740534A510B4705C0A15647AFBF3E53A82BF320DD96753639BE49C 2F79A1988863EF977B800C9DB5B42039C23EB86953713F730E03EA22FF7BB2C1 D97D33FD77B1BDCC2A60B12CF7805CFC90C5B914C0F30A673DF9587F93E47CEA 5932DD1930560C4F0D97547BCD805D6D854455B13A4D7382A22F562D7C55041F 0FD294BDAA1834820F894265A667E5C97D95FF152531EF97258F56374502865D A1E7C0C5FB7C6FB7D3C43FEB3431095A59FBF6F61CEC6D6DEE09F4EB0FD70D77 2A8B0A4984C6120293F6B947944BE23259F6EB64303D627353163B6505FC8A60 00681F7A3968B6CBB49E0420A691258F5E7B07B417157803FCBE9B9FB1F80FD8 CA0DA1186446DD565542BCCC7D339A1EB34C7F49246E8D72E987EB477C6DB757 99AF86CEBCD7605C487A00CD2CD093098182DC57B20D78ECE0BECF3A0BF88EBA C866DB19F34BBBED6634AFC0F08D2AFB2A92578A6F8B4ADCD6594737FF6EED7D 5B536DA9E3E2CADB40DB7C600EA4D100D33C3B92B1CF857E012C4EB370BA8295 55B50047CC8911C98FE1A7BA6CDEA82D34476286E7106C0E2FFEC2A6B0CF9800 CB808F330C55CA21A76167E5FB86EF854CB0FB4E8E5E3DF4514F1BD45D03F12C 49A19EBABCE7AC14F3DA880010AD0D76940020434BC312485735CE3116218939 78DC5B27598B4144F9FAF2653E109AAB787918BAB5AAB219D8B145C760996C3F 17A86E57DC87791B0EB5D81F63434CCD98079B971B4184403192C280D4DE83AE E817EB6A4706E49893DEBFB8C6D3764BFBB01E2EDDC13FC3FE938AB776FE34EF 5EA0AF4DA0FD4B7AC603101BA7A8E16F39C28574334074201C42F0864259BBE9 F59CE85D39E1EFCF95C614ADB482BE80518EBDDE5E81A3D3801DF29BAD2F5CBC C964A26249792050C05E494B77FFE50960E7CC5DD737AB7F1B943045B242F174 1DCA36EE4AEC2C891AF4C779624078C2C15C14DADAED66272CCAF70F4ECA0854 35818AE7BC6612189A711A7C250067260A28C9C2E864A3D72AA3305D7915778B 88CD0CCC1C88CB6BAC6EB1594910384DC92A25B7E8AF18E8274C9D80FBD8FC19 946974CD1E38C6930A1D2BDBE169E106A583F757C977415590D3F7D065111BF7 33181C710D2F06B5E28BED6A1019676E 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMSY10 %!PS-AdobeFont-1.1: CMSY10 1.0 %%CreationDate: 1991 Aug 15 07:20:57 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMSY10) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.035 def /isFixedPitch false def end readonly def /FontName /CMSY10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-29 -960 1116 775}readonly def /UniqueID 5000820 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964 7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4 A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85 E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A 221A37D9A807DD01161779DDE7D31FF2B87F97C73D63EECDDA4C49501773468A 27D1663E0B62F461F6E40A5D6676D1D12B51E641C1D4E8E2771864FC104F8CBF 5B78EC1D88228725F1C453A678F58A7E1B7BD7CA700717D288EB8DA1F57C4F09 0ABF1D42C5DDD0C384C7E22F8F8047BE1D4C1CC8E33368FB1AC82B4E96146730 DE3302B2E6B819CB6AE455B1AF3187FFE8071AA57EF8A6616B9CB7941D44EC7A 71A7BB3DF755178D7D2E4BB69859EFA4BBC30BD6BB1531133FD4D9438FF99F09 4ECC068A324D75B5F696B8688EEB2F17E5ED34CCD6D047A4E3806D000C199D7C 515DB70A8D4F6146FE068DC1E5DE8BC57034F0E066082A12B11F8BE89A026E65 91B43447E7278E0E62E66F023D427DA3AE586F12F2DD773341A7A3E5A75A7328 B26354FAC930A6E934A7D7CF5730D631D60D98DF787B34144305DC0D364F262F BD6D1EA0FAE2FE041D15C3A4350E854F5CCF27604D256EDF17F2E70C9AC8F5AD E674C7C911F71FC573C95378F45FFE34E54932C7856BC63B68E89FA6E37D3C81 90DCCE3406D803B92CC34A80DA7145D3D137C8BD7BA06CB4AF7B6D4CF15944FD A9A2F99133192BC1ED6AECC8C07914AD97EE2B3B68C6626BBD4D386A3887DDD4 50C7FDA518DF990326B9183FCF956C5B28CFE2DE520307AA2BA666A16C98BB6C AF2F081F194A2B80A3A1558DF39347213F94BD071B2A765B898EAB2D7B0EAED0 B29798F836B6EFAD637579324FB9DF237A749C264BF4758C32C2083B7823F79C A6B85FC7AAB6274106BDE0472D5CC367C8CE1D3AD12DC77162DE3CCC1364EB4F 4A24507ABDC3D462FF7E5E1D82D4A3843F13C42ADE626F3C51A87774332E7287 7F28A388E1C9179D2AC8337F41100E4279C81F97E25357340227660DBF215E71 00A6A8BDB249F4DB301D0696D152AB46A137362562B59D4A3E2E406F2BF1E987 07BC21C4D4B2642A67A263550D2C95232A6EEFE5187371500B545D92B39B54E1 DB827A75C3648A86CD99F99E8F7F33C977B90DB9AFDD33943ADB4D22209D55D5 0BE463E5C674347181D9511F61818B1559C790A31CC54285700FDB6710ADB73B A1F9F9933E1A65ACE68198796361DDAC1B9E8ED4A65B5B4953E82FD7EA4D8CBF 186F37CD60226343861D6D67AFC111D401739036F4AB8DDE06D41C6E6CB20F0A A495F12BBD8F0500082009B6653EF873AF152C217D95E8C7BE0BF101E7BBFF72 9D7D68354E2FB8AACD7472103DE825C2438160D12032D97C4B3DD6409FC14A5C 7D53A197B9B6488864F811010F0EFBD9241522450AA37C0EBC14E78165BB1D94 FAEFA5F5DC871E21E0B86571D60D60AE9DB3C78F0F8D9B4AE3210951F2646B51 80BD92C2E80B5F6415A7F3B5764556359C86462ACB3A62B52E2D210E23F18E3B 61DF6D41C17FB8B165D435550BBF4AA4091E95831E1AF64CAB19D16032B5B6EF F119003D71070955C8C8CE1E54627BFEFD0D541F70F54DA2DCB8C21861E81A17 BDB97A809148539F4FFE623155122879B24252DD6DA076F06CE67AAF464F8FA5 97B683E42E21D143E9E4397BF6E7887FCA95ECEA602E49327B18C8221511D328 1DCC1FA3F89E982A3596CBFD4368A38953132A7BF8377FE3FB650747CF555406 514B2E3E672608B7D3A6DC3C05B557193C80DD722997C56170508BCCD1DCADF9 394702CAB4BB9E9F2A1F3CB60CC88C420EF664F7E21D3799DCC3CBDDFB8B176F 4E44AADD7333E93193E21E272C6D34B02DB6E39FB4C65A0084E079CF51182E6C 96EAFFE9FC06244E045BB8A9503EC4E74BEDB5759C3274D0E3375C24EE2BB96A 74E5C3A5CF26E813346A7E5FC5E2678131E35974F3C2892C450BFBFF5518D90C A76258EA5295A535D881CF6956C0DAB660DC4EF7EDAF3717B0DB36FC040A4618 9898312A0D22CFC9B09D2EE8406987154FA1954FAA6F1A539E63ED8515576395 75EFE463EEEE1EDEBA3B03F176B664D398849DD63CD0EBC8B63813815D5A132D 620E2244DCFCF1C343D6D4F377AB509AAB3D503579EA2CF603DC3666999054F8 0489AB1F5AE687FBDCA9CD000FF66F7AE84AD0BCD216870E95EFB31FC20636BA C1DB878673383BC03CFFCF7D88B7E4A8E3D9D7DAF44AF1924693D04CDD960B9D AE1BB489D8E9082FDDE6DBC35D509FB52AEEEE4953B9120BC7D91A08B0B6B9B1 81053A3A0981940DFDCE8CBF0BA1E78F38EF81A33CD64A1E5A9A86FF8F9E4199 6C2FC81A707204FC63F9B398CE19253D94209D2238E269401F1CCA054E06508A E970335A723F3DD152661164A090BBDE306AD4D7AB88CBB8BE2AC05F06EA1989 1FE3A63E65A251BCB7FA2A1E9A410FEDF58BCC9FA7BB8F7580BF7E746B2DA000 F81002406AF8FE879125D45547F1114E16098A862106201F11FFAF0CE80B24D3 1D994C3418BAD5E3BE89B74E14D2CF1D0BE92755DCD7C8380E92F7292BAEC418 07D24B971B1E127792E8C053D22F78090B5CFEAE14A45FFE25F1988B9B200CCE 3D05C448A46030D729A05F8A345179067907D2846FA2BADE7EC7F0E664099FCD C9F04ABE62688AF3A2B71497AFB486560214A3BD342318D6F1A8BBF83380B1F9 85E5BB3435030AAC16DF728A74F6DB6858CB7772B32AD2FA899D632C1EFB8340 BB4D927608181C302F64CBD965744845A7984379972796A9D3A6FECB15037E2D 3E5AA32D3DC3893EC8CE8A29BA94804D8FB0AA8EC67C269CF522FCEC21DAC4CA 424B76C96219C71D63AEE1C222B0CBA321D0682D149CD6712B1CBF6083B6B9CD FC5FE7BC0021712D37F5193F8C6C8EBE9A21A346921E506D9EC60CC204B95C84 620D4E184972520FDBB9DCA9C279B4927B46B0AC95F8316394D5AA247EB1B0DA 6DC33D0ED410B50E53F6AAC16AD94455BD6085EE0428CAA95CA262B14AF53662 2BFCAA24AF910D68C15E2468320C49D31CDC2B88CBDA6F69564C1E929088B2BC E77869AFCC20DB645A28CAFD7CFA8353A9268EDE77BEFC5A695766FD167561BF 25B4D90EFE2BF32B04D745211BBD5BD5B554C414CC46CFABE17F01AF34B5C74F 44F9236E11A61C547AA67EC0F63AC6B6C8E78799DC3FD1E6CC11748D7F5FD147 F7C78D4D2D140343F8CA1D031D700E755ED8196CFBFADE8D16ABA075E7D5FA8F 7D8B23FD24F9E257CEC076451AF83BEAFE18EC51965171BF2143FB155C16A367 52BB29F4324F90AF7A9E7F670BF93939BF04560CC41F3107CDBA53518FE97B90 6BFCB2DDA70866D5634B16BC8CB335CE03AEF31D34540E77E6F639325C6E5049 BA7EF8E666DC9767841A3CBA9B488284EC428E7D7527AFE184EF278119537616 5950AD877EC782B6E1CB3AFBB92C2C1C57F1280D573874E4A117CB329F4B25A2 DB4B9433241F921FA6B26E9FE1911009648E58D1CE3FC296801B142367938823 96C30709F98C7960D5FF17DE23907D3E438FEDA1A7447A13D8A0358FB7EAB316 AB9609BDA45D94316DB07B2589B94F7249B891B87168839DCD9BB60E20C05C86 4AF9CC4F115431419DAFF6C3665A1DD4505E31D9A18D48F8E575F56632004CE6 0005C3FFB73C4F7120C90BC6549043118DF7F63FD3DD6297C0CE3437A603704A 4CCE1A32FBE04B61FAC7954897C3459D813086673DBB8A697038555CE9E8736C FDB8458FEE02124C74EEFAE1D34D8FAC77E998F2731091AB4A6B705625ECD888 D0C5ED886FF034995F93723FF8 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMMI7 %!PS-AdobeFont-1.1: CMMI7 1.100 %%CreationDate: 1996 Jul 23 07:53:53 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.100) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMMI7) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.04 def /isFixedPitch false def end readonly def /FontName /CMMI7 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{0 -250 1171 750}readonly def /UniqueID 5087382 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE D919C2DDD26BDC0D99398B9F4D03D77639DF1232A4D6233A9CAF69B151DFD33F C0962EAC6E3EBFB8AD256A3C654EAAF9A50C51BC6FA90B61B60401C235AFAB7B B078D20B4B8A6D7F0300CF694E6956FF9C29C84FCC5C9E8890AA56B1BC60E868 DA8488AC4435E6B5CE34EA88E904D5C978514D7E476BF8971D419363125D4811 4D886EDDDCDDA8A6B0FDA5CF0603EA9FA5D4393BEBB26E1AB11C2D74FFA6FEE3 FAFBC6F05B801C1C3276B11080F5023902B56593F3F6B1F37997038F36B9E3AB 76C2E97E1F492D27A8E99F3E947A47166D0D0D063E4E6A9B535DC9F1BED129C5 123775D5D68787A58C93009FD5DA55B19511B95168C83429BD2D878207C39770 012318EA7AA39900C97B9D3859E3D0B04750B8390BF1F1BC29DC22BCAD50ECC6 A3C633D0937A59E859E5185AF9F56704708D5F1C50F78F43DFAC43C4E7DC9413 44CEFE43279AFD3C167C942889A352F2FF806C2FF8B3EB4908D50778AA58CFFC 4D1B14597A06A994ED8414BBE8B26E74D49F6CF54176B7297CDA112A69518050 01337CBA5478EB984CDD22020DAED9CA8311C33FBCC84177F5CE870E709FC608 D28B3A7208EFF72988C136142CE79B4E9C7B3FE588E9824ABC6F04D141E589B3 914A73A42801305439862414F893D5B6C327A7EE2730DEDE6A1597B09C258F05 261BC634F64C9F8477CD51634BA648FC70F659C90DC042C0D6B68CD1DF36D615 24F362B85A58D65A8E6DFD583EF9A79A428F2390A0B5398EEB78F4B5A89D9AD2 A517E0361749554ABD6547072398FFDD863E40501C316F28FDDF8B550FF8D663 9843D0BEA42289F85BD844891DB42EC7C51229D33EE7E83B1290404C799B8E8C 889787CDC69C6F2AE63E19FB4633FEE6B85717F348606ABB4C5562CD78D376EB BDA868F6862312E44374D0FD96ED8504DE940D11C8110AECA79ACB5A63C5E4FA 532EC939E0E4604BFD78EA02A0C88DF04D33FCF9E5FD18CA36E50E028ABCFECA 753367536EF807530DF503E9F5F2D61AD5BD9FE7BA5BE2AE3B5C25E732C7F9D5 21083D0838A14CB010D5064C8479A14713C1D5A888AC37215E738E8B0583D562 B98EB4D5CC074EEACAD044906CBC3F7DE34308B4AE06A785EF15D691A893F05A E54AB3B030D985F15C9223C13A72C51DCD60BDA9534EA56DEB6F6534EB1C6A2A 8277354B010C4369C62D81781D29E882A8D040F57E1CE3D973C98B610166018A 7DB07E5D4DD326843E47A6507873CC4B4E0BFFC4C1CDF3F595EAB78314EE2C51 3B93204AE3CD0227DBDAC4A3E10FCF814D8248CBA245D124686A43060514EF9D 5C0F19A93360B81B50130CACB833422575A3A302F74043CCCFEDBC10DF7B6358 66D4610B3223B891A58C30EF7AD1212988454291E3FE2273760EDA5B2668FA1B 3ECFB9756C4DA8072398A9F704A8A448CDD6A43EFFBDEBEB9B3CA379B525CDAA DCEF9D85E3974C9F4145C3FA370F6BEF638343DBB187A1AE81CB9817C10AA337 7F3735CEC7926CF006A4BFB59F2C8F2306407347DDC6E14FC5F6ACCFBFE57DF8 D0C637D7308C09B5CC1AE2DB9AA69DAD39E998B4FF669E02E096C70D955D3026 CCCA2271D804E744EB6F4191856ABC99DFDD862850CB0F9FD65DFB762FCA8ADE 1125D0E5A547D6EE21EC7506CC556B738BBA7BA415C33A31CD8C567AA8AE269D EA1FB3F7B3556CA588FD82EF38DB0FE9C8EAAE19F74E1780493F1B5CA0E3F796 524C90BD2F1E6E29103111D83553346C2663AA576AF4B9008F3277B824035A9C 6900934D3BAF5568022E67576692FFA0A4DD2B3DBA3E12E00B0FCCC87C7FAA81 68C41157D7E21E0B941A1098A5528857D5A8DCD2DA6D6C7E03674E47B5F0A921 991BE564DDB476FC534874DABD182307472B64ED7521E39BEF941A16A7C92819 8873F92CF94B745C81D5AB72E07597D318CD2C36F423BA6FC31C3BF880A6B24E 6C79807815C0893A77A05D16A43607C1AB278342AC8BC7ECC9CD203CE4968C71 A59DFB590313B4930ED104A8BC50AC1C1DEF548959D7855E2EFC0F990E1CD20E E85D341C224C96089B1CB33C7F424EABC9FF1030BB78DD4057415A669612FDD3 13034507B1DCE5861599F54F47446083813AECFC9B09B720D0A7FC8AE07FBDEE 1A4D6B6F1C739F9BB7BF625805A9DB805BDAA6A553DC531C4E98DE6C2C6AB587 846D735B7B4DAB9F8190211B7B091AEA6D8C967CEE9AC5D615210F6D392B09AA 6F606EB8E70F01C4812134B62C4C4246887FC776E200DA73C1581C2B809FDB0B 98F38D2C4AE8834D18D34DCFA838F1B7F85B745C415174F86C6FC61AA3CC60B3 10A5A839528F75805A0C59F35CCE0C43F2D3A23A99A0E3280EBF1D2321BEA084 11DEE446EAAC97E44F997685ADF0E105F1350D7645E4970FB11A62FC6912B2C5 37F91C 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMR7 %!PS-AdobeFont-1.1: CMR7 1.0 %%CreationDate: 1991 Aug 20 16:39:21 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMR7) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMR7 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-27 -250 1122 750}readonly def /UniqueID 5000790 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF5B8CABB9FFC6CC3F1E9AE32F234EB60FE7D E34995B1ACFF52428EA20C8ED4FD73E3935CEBD40E0EAD70C0887A451E1B1AC8 47AEDE4191CCDB8B61345FD070FD30C4F375D8418DDD454729A251B3F61DAE7C 8882384282FDD6102AE8EEFEDE6447576AFA181F27A48216A9CAD730561469E4 78B286F22328F2AE84EF183DE4119C402771A249AAC1FA5435690A28D1B47486 1060C8000D3FE1BF45133CF847A24B4F8464A63CEA01EC84AA22FD005E74847E 01426B6890951A7DD1F50A5F3285E1F958F11FC7F00EE26FEE7C63998EA1328B C9841C57C80946D2C2FC81346249A664ECFB08A2CE075036CEA7359FCA1E90C0 F686C3BB27EEFA45D548F7BD074CE60E626A4F83C69FE93A5324133A78362F30 8E8DCC80DD0C49E137CDC9AC08BAE39282E26A7A4D8C159B95F227BDA2A281AF A9DAEBF31F504380B20812A211CF9FEB112EC29A3FB3BD3E81809FC6293487A7 455EB3B879D2B4BD46942BB1243896264722CB59146C3F65BD59B96A74B12BB2 9A1354AF174932210C6E19FE584B1B14C00E746089CBB17E68845D7B3EA05105 EEE461E3697FCF835CBE6D46C75523478E766832751CF6D96EC338BDAD57D53B 52F5340FAC9FE0456AD13101824234B262AC0CABA43B62EBDA39795BAE6CFE97 563A50AAE1F195888739F2676086A9811E5C9A4A7E0BF34F3E25568930ADF80F 0BDDAC3B634AD4BA6A59720EA4749236CF0F79ABA4716C340F98517F6F06D9AB 7ED8F46FC1868B5F3D3678DF71AA772CF1F7DD222C6BF19D8EF0CFB7A76FC6D1 0AD323C176134907AB375F20CFCD667AB094E2C7CB2179C4283329C9E435E7A4 1E042AD0BAA059B3F862236180B34D3FCED833472577BACD472A463E26637C66 FAD3F83D6DF42D2272506260CB761DD59CB9AD24DE4A642D19C3AF997AA659B6 8099E7D59BB44B111E1A932A8B579FD310191A56A0DB2CD18017C1366442F8DC EBA43FC3BD0DB552CA5251FCFE024E9A70E10BAFEEBFE0D2CF386448A9A80B11 3F764B6481F3B4E93CAB7CFF2777A02A6FDF8B6055AAFF40437539D3A39A6829 6981AC9443BF2E0F6FAD7C752E2176E6FC45B0E8DC832592C1945DFB758499D6 229DCB9ACB6E60335DA76D7E1282CCA3885C0594820652D79BA578CA33A1D828 4DFAB3F56394921DFD477C10748BB9E4DCF3279CC13D6ABA567E56B2EA89D929 CB1CA27183C3CD093CF0161375F11A9F70EA649406A7FFC9BFA35FB89C203DB3 7F33721A746ECC65B443C53CC9FB215576950EFF839F9014081BEC96188829EB 446A39BE7424E0264E5FC797CF192941A5021D6ECA0917295107A12FE7FCC6ED 0A5C44B3686D04AC5A5EBDC80F2C908C0FCD8A1AA44283E45D46ACE3E7FB1723 4571265D5D668E42DB8B709FC49C76F5BF80A54B4DCE65AFBE6549D9D550E413 4E9319A60716027AF3B6A6E4A3DC3E9F00BE2F6CFE65E33DBE8A5A1CCE3077BF 5C33B1FC222B655EF8A8768EB3C531AAB43F28CF5872DF70829EBCE9664E326B 46869BDAA51EF115701F8E704C91F3B23F1CDA897BE268F86B562AF0A3F74800 EFD87741A7E8A93513975FAC5AE048ED56233D5CF92F9C467D806F22256F3107 2A69CC899BF3A0933E2A4F4C8A5E6738B9DB6F89A291B82A0A17B3592DBA82EC 2746FDB4766507FAF58F5A4F57AD6CCA0F81EAC3FCE966A7B61D4DD9D33A54FF 2045B86C33D8D4729C0821AEF7AF38C1B859A2B9F4BF096913C1B0999F6ADEA1 6F329CC2B3357E4C4A8BC68EC139AD9A3496CA4ECE8BAD44F570E3C5F755D63D FC3A51B4504D806EA89EF5BD207F462EA521F3441576F73B4867974178D65191 CCB1E5F7D46E31098888C4D9B5CE444BBF7EEF5F20157A2006297B493A3BD700 D36EFEA45B0E568D4A1D71B5FBC565ABAAAC110C709ACE9F56DFE3B9B996BB18 FCF58620C6417CF6F8021A0ADDD0B0EFD29284820A01477EB7D459CACFEBA725 EC70206FA9CD3163562A66B49F71FE2405F403D3DBC418BE973DDF4F29F811E1 A08561F1B0B1A587537B28C5374778F111B701E3934E9425CAD6CCE2D8922A58 E2C8FB1C31908BE672CFFC4A29608332B490D3BEEE64BA553CC32E789EA75D9B B2D1EAC9D614B123595BEEFD91F0D6455194A4DEB70C3275BCA2CB955FEE5701 43453A62619B4C3EEB88B664D4EE2C9A34B04DF47EE555C45568195802E09542 3F5DE74F799C871179DE53B5CC183FE0AFE35094163014E0ED7277D64E349714 523A5EB58954AB552F1050413F34592A883124598654835D163607D8F4715C95 00B805C45879621DB93334F91D2D7C2131CB6061B5C31E42AAE01349351DBBA6 0D9C1B4020211CC702FF9E4590DF6E94BA701FF1276376FC29A8609CFE6F89F2 0FA4FB3A1210CC37697FD210AFD2A3C99F5940FC807CC80348B1CAD8512B9A83 F51F45D2D96C0768EB9723F66F16A40977C2B4D8A7AFC22AA40380B682E28784 780AF1695A90F8B26B038856E1AED477F77B3242D12939B428E5FA512BDCB6D7 07D63D1F4F6984042239F54E87790C8259314D2AFD39EDB24432B93BB3E24D81 103196D2673E2E41831D33116F15592C262088C31EEB46F8DA29DE3639D2F81A 49B3F8D232A1EE2C7DA43BA7A574301348B9B5DF8C71655BA48EF8028F74FD24 8C2F8317B8C0F34A328C56CC8D3DB70C51E8C765B09040A437A1A74C334FDC7B 2618B132D30B7BB2CDFA9CE1585A0E98A08CF298CC0E84A52CE7FAEFC0850324 2C5B3F0C2D9F7803509C5D74190CF337B77E3CFAA06B61672D8538CFF9866588 4BF370F7B26C42C2B2CA3BEEA87F04FBF029E55469E7AF655AE89494F6DBF89F AAF139C45090 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMBX10 %!PS-AdobeFont-1.1: CMBX10 1.00B %%CreationDate: 1992 Feb 19 19:54:06 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.00B) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMBX10) readonly def /FamilyName (Computer Modern) readonly def /Weight (Bold) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMBX10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-301 -250 1164 946}readonly def /UniqueID 5000768 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5F00F963068B8B731A88D7740B0DDAED1B3F82 7DB9DFB4372D3935C286E39EE7AC9FB6A9B5CE4D2FAE1BC0E55AE02BFC464378 77B9F65C23E3BAB41EFAE344DDC9AB1B3CCBC0618290D83DC756F9D5BEFECB18 2DB0E39997F264D408BD076F65A50E7E94C9C88D849AB2E92005CFA316ACCD91 FF524AAD7262B10351C50EBAD08FB4CD55D2E369F6E836C82C591606E1E5C73F DE3FA3CAD272C67C6CBF43B66FE4B8677DAFEEA19288428D07FEB1F4001BAA68 7AAD6DDBE432714E799CFA49D8A1A128F32E8B280524BC8041F1E64ECE4053C4 9F0AEC699A75B827002E9F95826DB3F643338F858011008E338A899020962176 CF66A62E3AEF046D91C88C87DEB03CE6CCDF4FB651990F0E86D17409F121773D 6877DF0085DFB269A3C07AA6660419BD0F0EF3C53DA2318BA1860AB34E28BAC6 E82DDB1C43E5203AC9DF9277098F2E42C0F7BD03C6D90B629DE97730245B8E8E 8903B9225098079C55A37E4E59AE2A9E36B6349FA2C09BB1F5F4433E4EEFC75E 3F9830EB085E7E6FBE2666AC5A398C2DF228062ACF9FCA5656390A15837C4A99 EC3740D873CFEF2E248B44CA134693A782594DD0692B4DBF1F16C4CDECA692C4 0E44FDBEF704101118BC53575BF22731E7F7717934AD715AC33B5D3679B784C9 4046E6CD3C0AD80ED1F65626B14E33CFDA6EB2825DC444FA6208BB535BFAD73F 31B5493D7E3501120A2D2658C06D07E66D6FCF874839C58DAC783FCEEACA7BE2 4053096A1DCD5B17FAEFCF252DCDDCD21230F881DB1610C7FFED2F5728D9E448 11DE70344B9F07BF3D87594327A24A1694517F78471D85FE9635A0F5EDE1FE68 B9A1619F298E71FA5F5968446270B4C3193DC50EE45899617387357C92FC188F A30CB08809DC6BC50B20EDB37953452F6653DC4E88F2CF6E93EC6968B878036C 6EC2CD975545CA4ED25EB096A3006D0A741AC388F04B00DE2653B18C99512BDA 1619A7850B543F668A1C36B35E04B0FBF632F92F872ABA7D57D89A691D2FD404 BF90D03657FFEAEF8579D9B64244095927C572FA90C64C8B709C5B7E4386A7C5 58D54A38291CB7AC5C950A0974C74AC62F92DAAAC1CDC69C59C2F18FF32DE52B CD70724C847F33E893F24CDECDAB5789904B3FF3E45FD1EE46375D0E8E17D119 4B1817A5D4B8DDD32EFB45B567DE081A7A9EA8CA97A434CDF2A2ACCAE877C3B5 6CB5A29F919EDF2C7C4880A94B09C4C5A7775EF53B6B7128F15BC6AA05F9450C FDEE641C9F45CCFF5114A2491504BD8B5A22FDB8C8C8CF84E39CC3AEAB3AB665 AF93AF3B798F016926ACE4529669AE8635D1817D818E2D48FC3009AEB06CAD57 306A8E0CE4B7C3BE16CA2AF27418433850E59F158859FFB7008272C44CB229D3 CE861D48CFA742C32DCC2D33E5E2AF0FA71486949E7C7B713D3BB37AD95ABD48 B1CC17BF386678EFA03AE2B2BF8873C5EAE44D2130221447A4661FF7C8F3E992 FBDE999171BAE0034509B486AD85273488908484E64DB0B61057FC791EA1EFCF BDD8FDB9C4634AFEB32C13DD654FC9430ABDE20211431EB91CBBEC858F1F6844 38489B4069535DF1AC43AE5B6B06E1BBD57A50C8A5DDBBDE563136CD8B911F41 7B8FDE52CAED96FF463BE43F8620AD07973FF7ED7B9B4AAD5E79E8C4D0A8B90F 3712C255F203D8E3A91C40B89F4F50E6F9489CF040DFD900EFB3A40E262EE494 507A8AA2C049BB0662D34D2BE61F39BD6634DB4FC259E8DAB4EAAC8B31860E00 A415B7A0AF9E05A6AF613448FF2BD148ABA3D67A07C8B595C092AA5B31407254 85561ACBFFA0B0DC38F23F5A61252C616B0B10A7BF9629BF8DCF4984C06690BA 631009B31FB1CA084DC75B3FF580D19A6D3207BB64921F5EA3A7DCC49F5C3100 54329A4AE3F9078289D92023A55E30397394C928D04B12EC2E3C8A3E011D491F 6F51DA09664857500ADF5F81BAA96AB7B214B952E82B1C347ED6FC643B1F8ACA 936D28625DF0CF609057401B39722AF44C4C361EED0A2D9F5FB13EC9E7B1CF76 AAF9ADF2871CEC4F112590940B36BF5FD6DFB80F04CB98AA85ACC934407359A7 A056487B910F275CB8A1A6102632F3676D769F93AE3CC6A7EBDAC951AB3D4561 BC06D84CE4FA85EEA6475EC104CB8D5D8682B5643B6A725D2A8CB36FEC4F9C5E CFF4785806A9FD5E2FA09B7BCACAE6D153527977E366F8A0971E2E247CACDA91 171DCCD2FE3EDE1BC42F685832844177A6203110BD35AFB997BDA4DDF7B37F0E 350C43613DD6BCE6B6EE055E3AD8FC7EB00B28F1B1062CA3BB7C81722C8467F3 DF0CAFC1A8EFAD821370E1C13407CA75FB4F3EAA3F6B67C4487BFDAF049255B7 355903C136323453C084A1352969BCA714888188542B525DAEC5EB1F17EF42C8 5323B3B4B01EE0821C21E6190C57BB1FA0E96350C0D4F5A448B517245D9D7F68 AA0D07D96C64FE68C4741FB02B8E0CE411C6EB26C87AF42BE1247D62F49B07B5 10B97C703A558983ED7FE72ADD28527684E9FB3C5790AF6E30EC08E8A1BE4FF7 AE9D7848C7D47126CFAA6A5EC9D266CF1FB7BDAEA215C2D046E1F5625ADFABFC 0A76585531717E4898284FF640F51F89E677E1D559F1CBE020B106CA424DAED3 B915F59726373B4328A836F79BA90E5F0293C157AAD09477DE504AE2E7BFA2B0 6BEAF48DAA616E6863F31F6C6821900B247AFEA257E56010CBE45E9903669269 0E289D1946210275048FC3CBF7849D2269E54A16A39A35A713C7D06E1EFF2646 C2AD4F0C3509E2A1F1664B6C4309CB3FE517C67DA0817B54B88BFA987FBE0DBC E1D92B04EF65DA87D74680DF4BD43954BD8DD1230EE12325CB69F7A43E8D13E6 D0CDEEB4620C425C77759F384B6C252DFDDDD213C0071217B33030E82C5D214A C9096CE68956F6ACA3B3DCF7B23C1D8F610B5A9DF7912844F31B4E6EB18ECAC6 83FC35E0B26FC20384E23C3CB5BAADD733E05625C589D668C86D26D189AF77A6 A2FC966FDE27E6DF95984E16F199D7CB67DA7EC57318EF580A93981C6D3004FD CD3112F501D28D5608CFE9E85B1539994715C70766DBAEA3B289B4DAC1C061A7 8CA8CDAA976D742B14AA043175551CF75CB767B8095FA9C71190B6A02F5B91AE 0315680F059B4AF3ED7394853DEAF7B5FD8A3737F15EDEB633F27B0F4DB13CA0 247B8EE6B503D388EE67D56A8D28A3533E51C7BA285306D7ECDCC35DA4C9CB61 CCCB0EC5BD696B04AF6103F83165A9ACC90700A727C40197BFA0866D9C39D685 01D3869002AF35CF9B63D15F6343E2E8F5D96762AA49B3F6E6EBC971A4F24893 E7134BECBCAB055E293EB1FBC8CE040846810070FDD75D55F54F115980FE5265 AAAEBD90FD7CB109F4B69BE3CDA56B265D0114286B5A5A35BAD7A5289A297B2F A8B6B2CD3DA5FE3CA8D810DF296B85BE48E3E5DA41EF12291A8771226D8CD160 88A8660F215775E34273B9FBC374CBBE4BE6E9BDE6C18FFEA5320861ABBD0C54 EF4FD41E7422A43226FC3820F2F8F3F4A696A895E5BF96894371184201F31D66 B70F3A726065177C5DA4AB51443B036BF232B6462C2087D495C025CF2041616C 9247BACF06B32D8127F54C51CDA75BBC2B6F84B28003053E00CDA01F3C9F5DA4 108574C5B354F9EBE77C604D4C2DD547A1E148D529111986F81E50879DD0A17B 2AA88AFBC5E0B645294A8B2F8608AB26D9953412EC4E2DE975019AF75169A9C6 5EB1C0F4FA4C6F07DF6D94D37618FECF88B635202B947DDBDB49616218035F68 FEF07FA14637180B3A7DE0E08EC1E5592FAD33292EE3C34DCD18625C05D83D54 44F5DD155450B45EFE93DC6938B214B223CAA0643E8757CAE55E1B759948D663 A6E18FE33D32BF0BBA467456ABEBF5E8EC8F56195644B7AA15F959C75FC255AD 337F59F9737E93918602A9B6ED4BC651E5B2F6A0156B32A98009C0B77DB337B1 0313EA3F222E6C0821EEB6FEAD9B099BC9C0A9446281E6E640D596592C9E70DF 096D2E6FAA0D55DB492D2D3B30D13EFADC9754427608A9BF97BFC4E48AACEDDD D0D522F8710C8A739E7656B666B02F0D67C2B4AA5DC8D153E56787EE5283BD50 A9CC2895E60D9D71248E273FAC64A16D087616F37F7F25E651D1B28BE0703E33 512EF2BE4E9D1BC627BBD845FD1FA27022789E5D476AB5B5D9FE2E4960767BC4 8F26B31269D81D66D650D42272893C58A621C9A82C5E43DF383DB558DD1CA952 3C7F7D13660A554217BB9A88B6B22550757896385DDB52211A6C013C3604067B 07AB662282DCEC91585EDBB00389343C3477D275556A10B03465FD1000C00B57 2DE8556179E8BE2B44B505049CAE0FE74CC5E4861AB190B620E792B35C736633 72CCA5042A8139F24A2E5C073D5222CE1B6EF3FDB9A42290AB415479D47441FE C252FD3400EBFF84E2C4E4BD17C9D158C7C3EB51D13E3E911BA75674926F 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMEX10 %!PS-AdobeFont-1.1: CMEX10 1.00 %%CreationDate: 1992 Jul 23 21:22:48 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.00) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMEX10) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMEX10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /parenleftbig put dup 1 /parenrightbig put dup 16 /parenleftBig put dup 17 /parenrightBig put dup 48 /parenlefttp put dup 49 /parenrighttp put dup 64 /parenleftbt put dup 65 /parenrightbt put dup 66 /parenleftex put dup 67 /parenrightex put dup 80 /summationtext put dup 81 /producttext put dup 88 /summationdisplay put dup 90 /integraldisplay put readonly def /FontBBox{-24 -2960 1454 772}readonly def /UniqueID 5000774 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF5B8CAC6A7BEB5D02276E511FFAF2AE11910 DE076F24311D94D07CACC323F360887F1EA11BDDA7927FF3325986FDB0ABDFC8 8E4B40E7988921D551EC0867EBCA44C05657F0DC913E7B3004A5F3E1337B6987 FEBC45F989C8DC6DC0AD577E903F05D0D54208A0AE7F28C734F130C133B48422 BED48639A2B74E4C08F2E710E24A99F347E0F4394CE64EACB549576E89044E52 EABE595BC964156D9D8C2BAB0F49664E951D7C1A3D1789C47F03C7051A63D5E8 DF04FAAC47351E82CAE0794AA9692C6452688A74A7A6A7AD09B8A9783C235EC1 EA2156261B8FB331827145DE315B6EC1B3D8B67B3323F761EAF4C223BB214C4C 6B062D1B281F5041D068319F4911058376D8EFBA59884BA3318C5BC95684F281 E0591BC0D1B2A4592A137FF301610019B8AC46AE6E48BC091E888E4487688350 E9AD5074EE4848271CE4ACC38D8CBC8F3DB32813DDD5B341AF9A6601281ABA38 4A978B98483A63FCC458D0E3BCE6FD830E7E09B0DB987A6B63B74638FC9F21A5 8C68479E1A85225670D79CDDE5AC0B77F5A994CA700B5F0FF1F97FC63EFDE023 8135F04A9D20C31998B12AE06676C362141AAAA395CDEF0A49E0141D335965F2 FB4198499799CECCC8AA5D255264784CD30A3E8295888EFBC2060ADDD7BAC45A EEEECDFF7A47A88E69D84C9E572616C1AC69A34B5F0D0DE8EE4EDF9F4ADE0387 680924D8D5B73EF04EAD7F45977CA8AD73D4DD45DE1966A3B8251C0386164C35 5880DD2609C80E96D1AB861C9259748E98F6711D4E241A269ED51FF328344664 3AF9F18DCE671611DB2F5D3EA77EE734D2BED623F973E6840B8DAD1E2C3C2666 DD4DD1C1CBB6B4446309621BA371A521AA5D66E5A9ABE07A801317469B675AA2 C0DDCEDF30C74D4A1BE90C14058E8086338EA5CFA576C0424F4B8A5AC241A710 E75F6145B3EC6A7C9BF891A817046148F8C19DF03CA12126A7C57579EEE81E24 D6E38F8008D1F770C91822A01F6A638438D6E22B2251669C1F504530651446CB C312AED93197B356CD4008451E325A5D4799D005D49B3CBD1C51B107F43628ED 0698870060D44738B1E4E326AF534B3A5B47AFC98B289D0BB06A87B76615CC18 D31A886F467E8566B7F6B6CDAF4C5C66401AB6B046763297F332195C071F6BC9 CD6D291A63A91DEA0656C3EF8F75FEBA07224DED3BA13F87AD4D226FCF2479F9 905212B281B6F27584B08CA42D1E38651A58281129B0609702BBEDA93CB85406 D5AF07486B8326AA7D8E7431FF12646F776B3A56E33B3F55C09772A7F307ED3A 223318DAC61993CC48049D924E1D940A2589632EBEF98BBD9242D2E8CB1BFE22 E83B79502725AD928123F67F8EC2A1F7DD029919ABE31CB4ED85C2856E2046F7 9A4D63F9995AD55FA45A983C4E9DC967BEF4D6F973AFA5EDB696A43873B052CF 1D85EF3E3F51D560AC14F69D79D8DCE3A63BEB8C8A21C0F268124B066B63D730 85816E7067DD09EA2E6807FE6D8DD88AC2A31DD0B24BC319C1E57A4C0DEEC271 D37CDE08CF72D3550AA7A2A13D8A844951C0C66CEF0A4CA7B9AFFF52DF677558 559783CC0493B3ABDE1BB7725AC81F0B4204D483B8DFA9FA8444A2732F6E7FED C9485C2EB1C465D624D300385B3A8706928BF6DA0ED85BB12D3EEA33CB655C73 8731CFFAACF31D79BBC0AA0A42F178D52F5AD75E663790D69D2D9BD0575A32EE A81CD6CF14005FCC03FB13B8F0AC2AE7F7E0190C4F8045A10D0E229DE768BF7C 2E5C168A035E33CC771260CCCCC51BD67C7C55821A9FEC9C8F7B2558B84CFEE5 A22DFE551054C23B2390DF33BE17BAF9BAD988105507166AF7DB3EA81297B54A E802B79B5CB9AD1F9F81470C9B25E05CA4D005E68FA8AA93EC5E4BEF92AC8E56 0784CCD37B18810C809D113BA69821971054739F489960CDCEE6E9862D7F466F B988640A853A106F226D5D2F319DA94EE37A89257E4D301718170CFFB3F84324 425CDCCA92BFD919AB09E7D55561E2E50BCC97E476C14A4DEAFEF4D78B9350AB B69521F81CFB5B5F820CAF324F8E09700949FB58B0FC8A63651105F10BAC8D1C 4DE1823C4704FD2682D16A1856E2C9A54DF498D2E5DED6DC1F636B750102BEBC E5472F81E6C9BF6C8F025D293913B2B90F1294726ECC1A0CC5945E6FBECB93C9 014FD30F4F6AE931F9CB9027F360E93579625CA089AF1D0ED607C4F1C071F6B7 F5415CE90D9DE1B69E697366A946FBBEA7C71B7AC08333EA9480955998C3E516 A9C28EF6CC7E1D52D0923A2D73B2BBEDA2964A7A95EDCBF5A0A97C23FA1EB696 D247D3F78A221432AE93C441FF5B7DDFA900212CC8910FE16F535C0BAB999AD1 0B1F15B2C199C207DC65F446364CF8BC340896A620A8DAE1EE42E669BC09EFD4 F0421C672860BF2E84A9121BB7F1DE613324883EDE4CB32D62A4388459AFB7DD E0B5E69CF19A95EEF531E043C1223F269BEBE1D2832E6C4022E34E8E1DF2D70A A4A9E4C9BBD9BCE3A2AAEF0969F36DAC72F76FB891971CE45377AFBD2741A866 2A7B7F71B7A5AACF7001B746CA3B5457FB64F7AE2845403A2E934F8860188F29 C49A978A2366C4D9FCEB62307636E4BEF398FC9E73F350CF9816F43DC8B2A784 4AF908F51D647C37EE10F24885B83AFF66C95F6534AA65FF0303FC5FD9837C60 49F20C785A0A985A84E6007E85278E24ED02841EF53548185F51F7578F36A88C FBDADB4CE7145178F0A85E9F4277881506A53B13D2733ACA80B13DBFCB56CC79 1ECD1480AB66572B3B54A64054EFFB5DC8AB200B90380FABA7D71381AC246AF0 CFD0854FEC0426B6A7B7111F72F3FB6A786AAAF26F4E34864B71DAFB60FD0FA1 F7ABB0A829DAEF49CE3A2D3A5CE6EA6AEE829488CA17AD3312A80D446D332726 276BD97F016021CC0146B34C1B1F5003FA4820E943F4AC4B7C0071DB4D8AC20C B2681AB27530EDBA3107C6E8AD6FD873DFC2AC2F15E7B9C6FFD12D26B59A934B 0C32D28732CB717E0DC6A6191911E64BDC948ED0ADF28C34BF59744051023593 86BC66344B735877F9F8F97326037C224011E6138D76535243C40E6D967E375E C3EB237E03BB67DFBEDCE837A7F4FD4FFC8EC31E1E7C14C6BDFFB8C38CBDE614 4F9A206E6E1DF7FABBA1DA3B52E665F03ABDFFD707A95FBA6686D687746911E5 8AA4A2F4EAC55611130DC416637442BF989B459CB4949EAA45B4482E15FD4DC5 FBA4FA95F0F1D89D3DB5820DC94AD2573CCAEA42611AD02F0ADF6B69C4E593A5 C9D349881066639CADF5664431948B4BAFA2DAE634235F37A1EF0B7F1EC2A4C6 16095CD1D0A4A3A6802CDBA69AA09BB50771915B0F619FFBAB6548BD2FAF697A 4B35B6751F19DE5374869CA661EAFD06CD377EA7854757A0397EC257C49B41DC B3936E95992727485E687A4936611D6436B3EF4322BCFC998A7D16A711DDC969 DDB7A308F530D12DB5314D265187B4143B2A12717D9C200195C607C9E7D479EC E7DFC89DDB18A77D022160C74B5BFE66E33D9F18A286E3BBDDCB62DF161E0C37 F7E1F3639BAE9A6CE0DF26AC907C7036E24083BB0EDDAFB844A7822C65129BDD 07CB8F585EC20B9A5525388B6591EFBEEC9BC08C0AE6509D007C1D6566D8AF08 2AFACA831C828A5F645FB6A367A9006CD2DF8AF2F1E9B55993899A4D4BE3D309 D3BD123B4E34DB2FD00A92AE35EBCCC3F4743645C08F0B6367D3CD35CAE2ED0E 0AAE511CE0A1BE50567BF584E4E6263C49B7A5637E4A5989D82B1C30B0CE00E2 F4C85B6C0546B631D23D1764BB2DBE74B631CC55C501A97D6D7D55BAFDD6A7E2 A9C04D87D29E5708C9A69D71AE8B8D86D47ECBDB2DD71181083BC41BDB33A5E0 77580C03736CE73C04F40BE9FE50FA6A1CCC32479474B37E9F0C4E4E5377 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMR9 %!PS-AdobeFont-1.1: CMR9 1.0 %%CreationDate: 1991 Aug 20 16:39:59 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMR9) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMR9 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-39 -250 1036 750}readonly def /UniqueID 5000792 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF7158F1163BC1F3352E22A1452E73FECA8A4 87100FB1FFC4C8AF409B2067537220E605DA0852CA49839E1386AF9D7A1A455F D1F017CE45884D76EF2CB9BC5821FD25365DDEA6E45F332B5F68A44AD8A530F0 92A36FADB679CF58BAFDD3E51DFDD314B91A605515D729EE20C42505FD4E0835 3C9D365B14C003BC6DD352F0228A8C161F172D2551CD1C67CD0B1B21DED53203 046FAFF9B1129167921DD82C5964F9DDDFE0D2686875BD075FC81831A941F20E C5CD90040A092E559F6D1D3B0E9BB71733595AE0EA6093F986377A96060BF12A A1B525CD9FA741FE051DD54A32BECD55A868DD63119A4370F8322CCBEC889BC2 A723CB4015FC4AA90AE873EA14DE13382CA9CF0D8DFB65F0ABEDFD9A64BB3F4D 731E2E1C9A1789228FF44116230A70C339C9819676022AB31B5C9C589AE9094B 09882051AD4637C1710D93E8DD117B4E7B478493B91EA6306FDB3FA6D738AAB1 49FBB21A00AC2A999C21445DE3177F21D8B6AAB33869C882613EA6B5EC56476B 5634181ECBF03BFEDB57F079EACE3B334F6F384BDF9D70AEBD592C8ECF21378B 54A8B5DBF7CB9282E16AA517E14843909339B5E7C55B038BF3BB493F3B884A1C C25F9E8FB912CBE23199AD9D2C3E573727701BA301526C66C3617B9514D6F11F 11930B1D97C17816C85B1BFD9B973A191B33CC3B391815AD14F1CBE935942AEC D4004E6BEF379066FD72209DC88D2E634E79BCC2B98C766CBD92C561F2703F8A 109E6C6CEC7B866F2FC7ADF646BF492E520319F3B949AB5D84AE990B33344A40 3971F58DFDF8D8D67FA0B8F2A0D884F8C09A5A721319B911DBA0A35903877343 C37BC36C5EB32353272D1E6ED5FCA611BE319A7E1E842CB7576E7A7E360FB06E 1A389BB0DE8D34D7E315354F974C5CD455DD810796E94A26FDE64A47702BDC0A ABABB6D81116A2E75C0940A75209274B3F99CD3718860DA2688B01404EB0BE3C B6EF944FC48712229D3936E9D2DBD53446592DB6A45C638F6781603881EAB58C AC9A0395CFA6FAE14C96AA933ED3A93CFB65A4F81607AF60B76637885EEA66EF 1D37E346DEED771CDC6C07DD1956F8063520945FC68C57028178081F3558D393 60ABCC28B5A5C68AF6374080BB0B1BDD7A8AE3333B648F40B02CEA9D4CDBF4F3 FB5AFCF58914F9D12DE9445965A082C8D23787838F7E63C54B3548405699312B 9566F8F66C5812CB2705DD1030026807C6274688AA3AC94DA69EB8580B14A31C D991F5C6C5FECE870F38106EBE010351F0D2C34562BC25BE08A9FF4900A604A0 CF33AA576A376BE963D6F812C906F8757B350959EEF4EA887C5DF5EFECD2C91C AC3B1FA463C0D1433589420A9FC2AB420DD1E51525C56D379CDF22EC0234DE9E 6C43AD6C83298E80AD1C06A9D8D77635B7AAFE582C05F982B1AA6C9F43F2A381 9ABEF1DAFEC954808622F5E86FF3B6AAE89968D1B883F1CF22B18DCC6B9659EB 990E51FD6938998818748697A7628F15B35ACDC886518CF77E92B5109A48F38F C85621259E61498535924307A227107ECF2FCBE05BD6637CFA49AFEBB1E8609C B165E5CF3AEC4211655166F264849658B42138F68C9A9EE3F2EAF65DAC8508 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMMI9 %!PS-AdobeFont-1.1: CMMI9 1.100 %%CreationDate: 1996 Jul 23 07:53:55 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.100) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMMI9) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.04 def /isFixedPitch false def end readonly def /FontName /CMMI9 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-29 -250 1075 750}readonly def /UniqueID 5087384 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE D919C2DDD26BDC0D99398B9F4D03D5993DFC0930297866E1CD0A319B6B1FD958 9E394A533A081C36D6F5CA5FED4F9AC9ADE41E04F9FC52E758C9F45A92BED935 86F9CFDB57732045913A6422AD4206418610C81D882EE493DE9523CC1BFE1505 DD1390B19BC1947A01B93BC668BE9B2A0E69A968554239B88C00AF9FBDF09CCD 67D3B2094C11A04762FE8CC1E91D020A28B3C122D24BEAACF82313F4604F2FEF 6E176D730A879BE45DD0D4996EF0247AEB1CA0AB08FF374D99F06D47B36F9554 FAD9A2D3CE451B7791C3709D8A1DDDEFBD840C1B42AB824D5A0DFF0E0F15B0B7 22AEEB877FF489581DA6FA8DA64944555101EB16F7AB0B717E148B7B98D8DBFD 730C52937E226545CF8DC3E07C5BA30739BAFCD0F2B44275A6D503F582C0FB4F 449963D0AD2FAFDE33BA3D77BCA9D1DF878DDAFCA2E22CC4BACD542B282164C7 97C2BDE318AF9D501CA21F6E662E7AAB75A5F24D2C182E598D175D44E88AB19A E7CD59584F95B389183EE21B525BF52A3F23C0FE5383A5565A19361D716F508C AAB78411CA5A4D27552CC1C435760D5A89D535B71C593E755C616661363308DA A683F54ED0C23FB2C225A008392B0B719F66F11A946A090B7C00B662A3C69599 B4ECB0CC70C85C4BBBF207E0026F6C7A19F2ACFB7A60804FC98A4BFFD7BFFF2B 9529E6D9D4238002BBC255BC62959D6F3381FE06E0621B879D5FE5B541D45A1E 759A6E7DC32B1D1632368D09A97039DF255B6492B1B2B7E2C1434E8306ECA7D3 5A79B6D614B4979F10988BC76ED53A5F45315CD7DA216221F842FD0F3E050DD2 BAC23C984D506D8F7D614BCB6B244F5F41321549BB0BD041FBF3053307168680 3435E9C9412FA65674DD19A6D45FBB08AC58C6431C23673E7DB47D0FFA491B29 BBE19CD7C6F128CE2A1C72DB508F2767B4F4E8AF94C858942ED196FD81FE497F F15DEAD792C1917B663B24366B0DD4FF91A2A25C07AC95DDA23D634280ABE67A B16E6F23284C89871A225F210ECCAF4183E1DF1660FB3090F9422A155A19EC0C 19A57254185CBC0F5977086EBDDFB649217C91052E21C77BF4FAF956A7B3ED4E 8369419F6D042AC780F7B95A422B20A1B3D2B031C106596090250A3CD70EA13B 1CED4620305D238C3835E23FE9C83B725A33EA235E4ED90A8FCDD21C990AAB95 ACFFEAFC559AD72622EB9D33153FFE95E3CD6694D537565720F67ABBE8C39DAF 998A2B7843214D2F1BEDD673BAA440FE02BDF8241E9EFD0CB118C8D8064E7BAB 6C550F48C2AA5D47736CBD732F26FFE95DD7EC26ADAED6089E96F7E24C04FB37 2BD365598C3653490EFEFF9F678ED84F36A977BF1C993EC217D72473270BF91F 0B0D6D6BDD15D2880F30999180FF45BF40D8B54B7DE7441E6B121EAEF2ED2383 60F46478FCE3C2D84228FB870B19F7FBA243CAF40202E018AF63384686DFB7FA F5A45D0D3985C89B547ED04EE06766295592C8563B561AFB118F0F1387EE2FDA 5CD976F733ADBE66A55D5B329287F0BC0AFE0DA43A08C1847C9B6AAC21B638AC C7AC23B7B32AF5FD51A559DD404A9A7492DA069D9FD566C4225D38F093EB5377 B5AD4E42593625EE266567A069FDFE81F7D3596B977EA73F922E92DA5C176294 D81A5462734D5EB1D13959BC3708032F507F0F1221EB434DA01AA80FCD6A2C1A 1F4AB21AAE87746BCAE9F26A7274C3C605791CD53D5FE3CC082D6FD1C887A156 C5642EF20577887BECFB054121BA024EE7606623DA70409B819DF4BCB67045BE 178454388DB00BDE5DEFF53F03931CC556CFA8EDB373AA07C433E1D7167211FF 4EC26D9BF92818682B63E36D3838AA19F6A35B9F24A9836038EAC1A41A8C48A4 A4AC23266157EAEBBE9C461F0E3DE5B212F88F968D2E214BC6DFB0124CD9DB5F 77777B41C044F5FF1A7374B1D58A6E6409CACDB0948F61B16C59A4D58E4265E0 0C1323F9E03644800C7CF63843CD6E858A9E02A1522CE6616A212177B264525F DC2EEF940538DCA4B1071C24F6A8DF7637C8B07A2A0A1B3F8A606279CC8DA1AB 7C8C3A92FA32922B5D96360B477D087BC9C0A534AE24DDCCDD48779B70C40355 67E9C5244AC17E36A84C724BF5DC921E85A7260A55039D31AB9BBEF4212F6992 6F19A4169EB9B80B2683AE772EE6BD3E1DF5260CFA4E0DAE67F593125B406EBC 987A1C24CD0FFF5986060CFA02738316771749F537FF8B1819E714ECEE9D654E 8EA0CDB3AF5DEE7FADA7523766197815D24A0E23B2118A46EF9903E05D12CF29 CF0D1E815414B9D2D23391F095AAE7DC9545AF1DFC5F6BA8C71853A159B506CA D466DF9B0D5DE9D8345E527B5A9777DBDACB3B1F14D30AEBBE2723BD9072BA4F 291D8D66AEDB907F01894A20ED988E882177AFDCE8F2C36F51D181074CA22EA4 CF80CB61999E71825A775B1550AE11838736DE73F85F21523DC5B40E35284499 5F4FDAE29751B8350EFF083FDB0F1021BF16363B1B01247EAC65112F2B02392F CAB51A61CEC01CD413CB54E2CD55A10EACE28611D1E60D40E84453DF87558E9B 40BDFF225BE2CC93F7F6896C098F27DE9C787A4CCADFC360314C8F4443663925 18BB52B7B76754DC5A03DE33EDAD3104D707210D6A0AB47A3612FB357B30E186 24AC9A97A13141FF3C17A40D6FD387AFAA1CAE2E1C47C0BBF89F654BA2EF7289 D2EBF5C303E6F6ABED4E4F38160DB0FE2E727DDF35F3870C05C5DD2AA8DD525D FE5DC9BC8AE67C8427B6D5007C472E20C77298EA894A30BC11F267CE3C0CB274 D43B44AAF8E3262B11FCA1E0827A0DF204E500511BEB03A781DB82B207AD63C9 B666513FB9062D1DDD725899D0E6FA3CFA87B1EE17C44DF6E4562D622A377E3C CEA39AC0EBFC215E14164FC82BEA88A2B282DE5758E6A4E5C4EA4E7419CA0597 46B5F65AF06A50EBFD6704ACE5AEB4D5DC034432BB30C1756330D987AEB6EEA2 524C1684D2A9BDEEFB83144C8C7D20B626CB9552F0FF18DA7BEEB0708C41DE04 B731A963B787FA4D49A9499DB89440782096EF075D206688B5DD746E5CC14450 96755A1BE1AB6382B301D42EED4E146309B8E56BA3D127C081E4F96EDB7AA48E 3E254E4D2BCE920D2EBB95E0C5100EEDD99A2ABCD948EEECA742851C7BACE244 02D4A2137D43E61A11449BDCB0792AE29B27090B93515CC8CC7F4E8C19DD00B1 1F27F396B67E50F71DD2 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMMI6 %!PS-AdobeFont-1.1: CMMI6 1.100 %%CreationDate: 1996 Jul 23 07:53:52 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.100) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMMI6) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.04 def /isFixedPitch false def end readonly def /FontName /CMMI6 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{11 -250 1241 750}readonly def /UniqueID 5087381 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE D919C2DDD26BDC0D99398B9F4D03D6A8F05B47AF95EF28A9C561DBDC98C47CF5 5250011D19E9366EB6FD153D3A100CAA6212E3D5D93990737F8D326D347B7EDC 4391C9DF440285B8FC159D0E98D4258FC57892DDF0342CA1080743A076089583 6AD6FB2DC4C13F077F17789476E48402796E685107AF60A63FB0DE0266D55CF1 8D0AD65B9342CB686E564758C96164FFA711B11C1CE8C726F3C7BB1044BBD283 9AA4675747DF61E130A55E297CA5F0182A3F12F9085AF2F503481071724077A9 387E27879A9649AD5F186F33500FAC8F7FA26634BDCE1221EC0ED0E359E5EA5E 6166526FEB90C30D30099FBDC1BC2F9B62EFEEC48345160804AA98F8D0AA54B7 A480E715426651865C8E444EDB798C7E11040AF6E5A7ED1888653C6DBF5E6169 70BCD9C063B63B561EF165BF3AF11F8E519F37C6FDA2827685739DE2C48B5ADE EE84F067D704D4511DBFA49E166D543CFD9ECD7417055D8A827F51E087CD2927 BAFC7E6CFBD70B0FE969F890A11149D3D44D422C3370495DA9951AEE7253A49F 3A9444C8CD9158D84117299F7F2332FEB0F94E6ED8BC7AA789A3219BC2F227D3 3B5BC75FB53B55D72AF4A6A7BB613FA235B11BB37D059FD87127CEF73D5B3FBF 9F91ABAD78BD9240BD9525EBA78095EA0BDB25D1A19E876F292882EAD5619D46 D20317A345D931F4FF4EAE6216C27044CBA525E3B917CEA25A04C120466C4B93 FC720E6BA832A06CCA0A3916CEF0968D49085AEBD243C41A448289A6F05CE3F5 79148DC112A3CC7E8FF810B8C1A09E05F496C0F1EBA334E42E05C376C98F5F69 C06C71BFC0A2F3AC9951CFBB143C66FB84F9C4ED27DF70869352D61BD5E11508 0797B87C76B5E6B51A001F9114E9D74CDA9B6803C24EB5020EA814AD06EF33FE E990AA58BBDE8488ECDB0FE28CD1DCAABD2B29CB62BD5BE4F74A5607185B4F61 2053BFD10C28CB353939A80C03A6D1A66B827A93FC9A6353F53849FCA3D39B7D DC95ADCF7EB0DF79CA958291A4DCEF3AC87BAD3E57B059F5799FFECF385F6A4D 60CA67FE51F0A8F3A73E6F0D9E742E77441D210CF1481A63EB5202D072CB81FC 1DFA7C28AD8F0521D6D4DA8D910FD613C21F5A7A7FCCB7D8ED29CD6E34E4A5BF 240C36213387AE185ABFA79A546DF76FFD37AB3EE72BF681D3F62E9132EE82D9 4073AE2F85B2BA7FF321054FFBCA50BAA06BBE0900B86356336124C0866F709B A1DE4142D4C8FBF781FCB7E5FDC1ABF230C7C31641D7D3DE7E1DB9D270526175 EF293E35334A770F5AB990B0B460045692C16D7AA9412C3FE3D7C9026BCAD2D6 57E0D2B06AFEF67A41BFD82B7EDD3669BCFD94C7920FD66772311F96D8E1DFB9 CE52B3C86E1A10902001358E12932AABBD23E4350658E8093A78950E92B21A8B 93BD7A0E557E797C9436902CF5A464EB4E537F7810F4D36E4A1FC8C30DB811F8 F9516531302B0AD57B95C9D9F39335EDAFC55E8ABE9575D7C8CE879FAE1F43AA DFADD9A0A2D5A2B3BD9775FAFCF398A965AA788487129AA9E8BAF08F53CAF38F DA96DEEB9D258378DD293748CEA7C78794AB0C62DC86FB129DC5025BF69EA171 ADFF806C6AFDE954B1655BBE46F2B2B749BF8541A61238A2646D3069FB14D209 18F88735AE64E5B784B86ED8851108253DD0B90F6ADEC1587B794945F165D414 208F8D3536EEAFF7BA4C13D3A5B36A21DABCA3B8D1048AC3638B52D9FFBEC0F2 07D39725C7E4674E9E8B82FAAB0656F57C307ED7C56D8A7B31E1BCA0D3ABAEF8 9BD95B93F99E25AB2574BA744DA2A1882BB7B6B52467E62FD78522D26780905E 381B380C5AE352A8D99CDDF454EE6774AFDB64AECA3BE2B82201461C847CA126 795A1BDC9AD9B039C6BD83EAE12D050C389DF799754A98E7E7A8C78962CC896A 70E6EB650DA26ED3CDDFBE9BA61AD2DB7757C64723BEFB21630A570DDFE959D3 5402E2C79C1019379E908CDF57DC7468BBC4ADC660D5A9E0CEE2003AF3170E70 6F07995F822013771EE3AD513605DB39D0CC4F5C3389353C773E6D6FBDC765CF 584A0FBA42EFEA3ABD1BB90C6663E3172336DA3D219DA61AFA6ABB7A1E2F6D48 1C5E0C5E4B0F4598CF5BA1F0247FB83045779421A003DB6B76BF5A42E70337B7 324B256AF24D4B83E5833C246A34538B60C6096DDF85C38360C3B80A7B0E208A 9F63107EF7893BE8E2FA0166C2980F29E21E2C2ED16D5C596351D96EC1410E30 ED6737FC333194EED4FF19031C49BA3AB4B36EBCDEB7CDA1247CA7E5CAF74F28 DD12030E6CC8360958EFE55F64888CE7B1225D0281532FC37AB7AC1C6DB7FDC9 26E1835F8C1685C9153D72B44D12CD39B858B5C3FA02F004E8394CE5B334DC90 B8E71B1597D5D1E119C41B49DFA0A679307DA0057CEA5BEFDA1084DF3E8E4B83 11C243C28B7EBFAA56F3E06099BCF026179711BE21BB7921DA73A1CF11EE9DBC F422E34739368D44AFE9A14391179CFFE06BD6611E164C57E0EEA2854FECF943 D55CA15A7C5338C850F305398D179F7A4DDC36C6245F68FA687933CEDCCAF4CF 1044CA29647C09FE5BECF31086B95650E502F37309B5E2FC7FC08B8E90A567BE 6E03AAA2B05FBE7C86E0376B3F74365E146DE11F7047F9C05FE766FE9CFA3D05 84FC7E4F6F6970520ACFD4993DEC7F561ACB0A9936091877F3B49F26EF29714E FE2D26896AC7A3998B52CF25CFF8AB2BF6DFB2383186B54D43761014AF30A9BA 461DFD7D62112AE69427D78A01B633A7F3B4E2EC2248C3F5DBDE93AE95FD6840 706EF3A5 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMR8 %!PS-AdobeFont-1.1: CMR8 1.0 %%CreationDate: 1991 Aug 20 16:39:40 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMR8) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMR8 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-36 -250 1070 750}readonly def /UniqueID 5000791 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF4E9D2405B169CD5365D6ECED5D768D66D6C 68618B8C482B341F8CA38E9BB9BAFCFAAD9C2F3FD033B62690986ED43D9C9361 3645B82392D5CAE11A7CB49D7E2E82DCD485CBA1772CE422BB1D7283AD675B65 48A7EA0069A883EC1DAA3E1F9ECE7586D6CF0A128CD557C7E5D7AA3EA97EBAD3 9619D1BFCF4A6D64768741EDEA0A5B0EFBBF347CDCBE2E03D756967A16B613DB 0FC45FA2A3312E0C46A5FD0466AB097C58FFEEC40601B8395E52775D0AFCD7DB 8AB317333110531E5C44A4CB4B5ACD571A1A60960B15E450948A5EEA14DD330F EA209265DB8E1A1FC80DCD3860323FD26C113B041A88C88A21655878680A4466 FA10403D24BB97152A49B842C180E4D258C9D48F21D057782D90623116830BA3 9902B3C5F2F2DD01433B0D7099C07DBDE268D0FFED5169BCD03D48B2F058AD62 D8678C626DC7A3F352152C99BA963EF95F8AD11DB8B0D351210A17E4C2C55AD8 9EB64172935D3C20A398F3EEEEC31551966A7438EF3FEE422C6D4E05337620D5 ACC7B52BED984BFAAD36EF9D20748B05D07BE4414A63975125D272FAD83F76E6 10FFF8363014BE526D580873C5A42B70FA911EC7B86905F13AFE55EB0273F582 83158793B8CC296B8DE1DCCF1250FD57CB0E035C7EDA3B0092ED940D37A05493 2EC54E09B984FCA4AB7D2EA182BCF1263AA244B07EC0EA901C077A059F709F30 4384CB5FA748F2054FAD9A7A43D4EA427918BD414F766531136B60C3477C6632 BEFE3897B58C19276A301926C2AEF2756B367319772C9B201C49B4D935A8267B 041D6F1783B6AEA4DAC4F5B3507D7032AA640AAB12E343A4E9BDCF419C04A721 3888B25AF4E293AACED9A6BDC78E61DA1C424C6503CC1885F762BAD847115C5B 46F77F99BFF35F7DE0C52B77EB2CAE99BFD03A141C1ECCCB0FD9E95FFFB41864 032D6FC9EBB1F0271A4E07FCF81962DA3F27A86EB2B88BC3A5DD616695EFC15D 0920D965E946B6F8B69AFE9F74021A5601BD91DDBDF4C8D40F13B123C58EEDFF 0F3739D8C46511AC3C99C4F929071D5062A7B4C7A7ED609C3EB59DC7627E529F 60FCC5ED3CF3ADE718B03F533CE8B6F1A3A84B618128881456DABC5B966813CD 5F6E74E0275FCD62ADAA1446AE8728DBC7CA58C0F479F37443CD262E9F7C1B27 3BB77BBB564D6064F38B2BEF997BAC331CE4DBC7267EEEE38445CEFDFF47B7C3 1965595AE4E1CC5AEBAE6B0A87EA4924D055AF1B2F3B9E3D87670C582BF16A2F ED2D6FEA0A14D581C96278770D303950EFAEEEA7ABC7671D5D4AD9C3344A12F1 8F8BF1BD1A46A20E797A0BC1B631CFE7765DBEBDDD7BA6FE34374D683DD5048D DFAAB3CA31231637331ECEF2733A0DA21BBF98F8108AA686CE53ED2FDFB3E41C 6277A802476552C8B574F905E079EE9B72ADDEE345674C0781286A909258AD6A A656FD8D5361E3C74A13B7862722F3DFCE7DCFCCABC930E7B432D61D5359A666 143FA68F02261BA19EC2B41A1ACCDDE3A47C908FEE2390641B6CAB2D180FA8FB 9829959FE4750EF95B0A5126146AB5BDCCC073E85A70D2277AD764AE8230898A BEC93A0FAF0928C8FED335E4122E058E0CDD20A532FFFB19B632D89571F91CAC 67295BD7141EFC7A3B8707E908AA44AD5E71E3327AB3C577077B435B0D251D2F 309DFCDCCEA330A35AFAC9D553C75B40D931A49DCB78A1DF5D4F22B2029EB2B0 2ED8A9FCA9441B20ED5B935C623CA3CA1043339ABCA4C354E2518C4EAC9E19FC AB3950354B456D3B06BE4A8C8022470CAC3B96A9D5F84B45D935141FF2585C72 3417BB9B911270FC4D4F4DBEEE62A47529716F7DC5992D0AADD438771858773A 3C4A7C6E6545C4D86A86944B5EC9EB16F6EEC8BE589C8F07944D27260EE783D7 CC3FD1D86B5DA3B369073A76EA25F189A5FBADBE8E48215EAD1EBFCEC543D3B8 5E52BCAEB17B3C3864C81666442DCD3917A7B6E031CA8F186E927A29CD855E4C FDF0723A41B1D170871139C7BC66220D92ED87F234E2BE648D06AFE881A54E8F C01EF41D360D0D2E88DDF425A8D306F14E4282101A502A23B0F6FD3921BF8276 E95B372F46CED0FD8ED64366E0B9CF684A5FA7DE55B2FC2B896700035B3251E4 6CE335FC37248B658B5D49721523E85CE729C9D861193BECC2AF56DBB84F0DF3 E54575BD48CDE49C2325AC416902170F4846A850FABD1A93523CD38B5F896C86 E6CC70E9554C150088696DDFD4BAE9AC2CC3920ECCB00E467EC76CDD15FE5E71 D8F3EA9B4699F0EA73879A174EA399F68397D2E90A862C53BA0C24C3C790C935 7DC84A9D174137D9A88ED027C0AAFFFBB80DED8BB28FB14350E0FD4EC82D1D4F 137CADCF19E0F306612851A97069A8C3DFD99822938F78BBFCBA71F149801913 F30D949392742B7A3706C359C27EBBCCDD41FB97CCC58768708594B11DC2C694 700EE2E72BAFA0280C9CD060E54280D85111C7682C1008ABCE34EF609437ADAA A7506F82F165DA98A1804B75D062E69D4F214417E4D0460AE599785ED5CDDE06 83C6EE07DA1DAD22CBE624F610671AC91F4D55A96D9C2A3EE2FC8F0E79606665 4BE353E6BEAEA2CBDBF3BCF7FE0309D467BB0D98388AA6CD6F31383F8925B77C 238117A5619DBB3A35780335D65D30523E47F8554E0E6265CEFBF5877368B53B E90EE6F7AA9576B376D498B598ED849B10DF049A12C3C847EEF746D7936FC68B 8B9717B0E41C49999D3A98A6BA53CA24AF1BFB8A812F36456AEF3F136C71DF1D 33F07DECE3E77FA9513403A9D54ED983D2AF926AE8B338661C3E51563B4628BA 3F9DF058C4D74249CDBD4C2760DE17E0E519B6E315858B19BA16AC3987EBBDCA 85DC96482A80191942AFDB7B3623EF7BA3C08D241FCE358265C0578FEADA0619 C88CE7DFA9D76B8F4B44815AEABC6334EBCC181875A73190BE4704327ADE3A8B 49865DBD788E47E222B129FA9E499FE7C439B43E07F556A5D55AADC972A8FC93 79BC2E1304379FA4A62108C9A6D3A90833488B37618508AFBA87EA35DCA60171 86F655088CCC85015570E8375D32845971B1EC166739B873CEC16E2A40F30EF2 CA10AD3889E839D4049B2B66960868067C0AA07F21AEAA3AC14375EBBAAE20C7 7EB3F4EEBE35114DE6D505D4790DBDDD526D2BED3DE8E9ABF231A2CD443DCC92 9E9D4DB6D060D3C66646DFD20342F8DD61BDA88EBE0E7774A729024A56282510 8C1B77581DE200BF8897210D30B568886247246666DDB2332CF7D2AF7F8D9490 B631F99053DB5E874A82D78EC4E16574C7A0A21EE68251238B62361270D48E73 3CA6A1E75D598648194369FDD8893D4CD47E35908FA2EE60B7E253787F9E48B2 941E7DFD85E85F1702A91542450DCE4A80A5FDCFBC9164CBB32ED0929F6019E6 C726512109CD480C60DC842084F8E8B3FE8521EB9217C07D781A23510408DBD6 01452A247E4A2729AC2FAB1A2736B328AA1013F1BCA7C1DCCE42D72F58C1E729 9D3F130EEA0D49AA857D8760C5256FCE988CF86828ABD00ACD3B54BDD6791E05 C799DD485A70B79EBEE0F77CF4E6543D5C61DF53EE64A80351C6728CC0FA07ED B1AA8CB6B2DEF80887644314B68CF67BB21485E557C4027F91CF4E72A04B3EB2 77CF53B6BAE637C0246A62734EB04573870A74CF36 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMMI8 %!PS-AdobeFont-1.1: CMMI8 1.100 %%CreationDate: 1996 Jul 23 07:53:54 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.100) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMMI8) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.04 def /isFixedPitch false def end readonly def /FontName /CMMI8 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-24 -250 1110 750}readonly def /UniqueID 5087383 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE D919C2DDD26BDC0D99398B9F4D03D6A8F05B47AF95EF28A9C561DBDC98C47CF5 5250011D19E9366EB6FD153D3A100CAA6212E3D5D93990737F8D326D347B7EDC 4391C9DF440285B8FC159D0E98D4258FC57892DDF753642CD526A96ACEDA4120 788F22B1D09F149794E66DD1AC2C2B3BC6FEC59D626F427CD5AE9C54C7F78F62 C36F49B3C2E5E62AFB56DCEE87445A12A942C14AE618D1FE1B11A9CF9FAA1F32 617B598CE5058715EF3051E228F72F651040AD99A741F247C68007E68C84E9D1 D0BF99AA5D777D88A7D3CED2EA67F4AE61E8BC0495E7DA382E82DDB2B009DD63 532C74E3BE5EC555A014BCBB6AB31B8286D7712E0E926F8696830672B8214E9B 5D0740C16ADF0AFD47C4938F373575C6CA91E46D88DE24E682DEC44B57EA8AF8 4E57D45646073250D82C4B50CBBB0B369932618301F3D4186277103B53B3C9E6 DB42D6B30115F67B9D078220D5752644930643BDF9FACF684EBE13E39B65055E B1BD054C324962025EC79E1D155936FE32D9F2224353F2A46C3558EF216F6BB2 A304BAF752BEEC36C4440B556AEFECF454BA7CBBA7537BCB10EBC21047333A89 8936419D857CD9F59EBA20B0A3D9BA4A0D3395336B4CDA4BA6451B6E4D1370FA D9BDABB7F271BC1C6C48D9DF1E5A6FAE788F5609DE3C48D47A67097C547D9817 AD3A7CCE2B771843D69F860DA4059A71494281C0AD8D4BAB3F67BB6739723C04 AE05F9E35B2B2CB9C7874C114F57A185C8563C0DCCA93F8096384D71A2994748 A3C7C8B8AF54961A8838AD279441D9A5EB6C1FE26C98BD025F353124DA68A827 AE2AF8D25CA48031C242AA433EEEBB8ABA4B96821786C38BACB5F58C3D5DA011 85B385124C396BC268CAE4984AC016B8B5D16C433A726765223F7079BA7438B5 7DA441ED7CBA2F3175237E6291B922C53E5035CCE2EDA114435FD5632558F254 4674419D75B5710518ABA8BD41BDCAA78A730B0831B7DE13C186AEE374FA0468 97C27F94288E35D8EA4E567EC57A1102A4BC1F52E1DE32847DAF98DE0DAF53EC 048BD9C2819412A05973BC67247E8A29C034E7BF4BE8A4DA58AA7BB10682C08E FC60FE9DDCE2C0CA040E1B11F8D5F2F21A91968D62CBA786BDBE97174CA69399 C077907C14A5F70363443B00DC88361B5F169C48EDEA6AC052F404EF0B3F46BB 381744A518C35457266B5FDD884300105F7EBAFB26D29DBC11E553E1A1534F74 C3417F18F85260A5321C122B99A7E1889544259A18C092C6E4DE62C53A03026A FB4807C1E30B4ABF06BC67508513E00C8F1A86D69680812B72C8E5FB10789F88 61B89180ECD9DAD6BBAB42C660297C07AE248018FEDAFBD46C8DBD09721C13D3 0B26464E2563EF419F7CD38AE5C7FE331B8DC3270E19D3B11EE77D6F9A9FC335 AB48B0DE1337AD700FE08AD4C96603B71594D63AB48741EDCEE0CE1D7D6A9FEC 7E1AF32DDACED0E9EC037C7CC9EF53766F8B3F93395AFC23C30E8C78FBA9838C 59918AF43C39E48F4753D3C3BC78B107F242FF5FCCAEE0B66F596E85EA66A772 EAE0FCC7518A57442EF0633D37E51C2CA793F7B3F84EA6D12F26CA00A8143002 06CDD48EC82BC26EF084F66084FF7035BF5CD2A828D586FBF6DFA9412CCC5812 764960396E6F8288DECF80BB9A66E70706C5201F9FD9F0DBE8C285F6460DDAD2 E9FC6437FC15C078F5F3D8F876377CA9E361101869055877771EA37B1561D915 42364D9D9CFE9D03CAC552702703032FF9E810D7CFE157F914CDCAEE3E97BE4E 2CFC9AA70BF309C042128908146A86EF9BED29AB8D82E7771C023F5A5FAD5B57 B86543638ED075ADD7A4F13B00145BDC6FB52B1198E703061B32ED8AD54107A4 809A2C3A06D378EC3F455A5FFD9946BDB5EF481DB0081ABD3334F183C9392BB8 7794274A649DDC672CD6C9C97D064F5E9204AD05860F64712BE52A1C525E80B8 49CFF4AB7EBFA258773C25C16E10BEF78773292772716BCADB8EC0C894406A48 D74155D0133C0E9C4FBB6304D90AA574B6690BB62B400D2F7C5189941931E89F 9B22B6A8E5AFDD765D1A87A223D158737AEFAB7FD1D8D36510F75B2773E5FC88 61114E3CA1D361BC08E04617CD492FDBAAAA730F1ABA2C13640B6E1EA4FE5842 02A73C9A29C08CA520A4B6EB6E9152652507FABBC03F521B28911E7BDB639424 ED33EDD64B93DF317FFFE681157A9DBECE9DDAB5A58B30090DC1E9AD00AB1473 2AEA767F9E62C15C2D7C75B1C61E30691A793399906C0F1D44926F6110C300A4 2A585551E922F7021220D6F469607A702753F1EB7506542F837A77E7F23CF441 B45E2B63E62401FFECE4466D7418AB3AD5E02C743C86BCC420572CC4806345EF 4351723106C0E345B0443AFB6B101D70CCA31B7DF057210F76D4B398FC5DA125 3B03143FC7A592E6B6BFB1134F571AD0A0B9504EF3EE702629B363E586B2FF46 A7D923F4D86A84E9C961424CFA04223CDBAE139CD5DE4D71F9B9604EF41A39A2 852930BF30295F6DE755E7DF48B8F2058DAD50699CD9AFDAAC0CB7F01057FEC1 098EA82A7D9760C07D493EFCBABA7464C0600537308D462289B2BAE5EB365876 260BF2EEBAB5459A03819BD67CF06574373E419DEC1952F61FF1428EBE0739E0 3EA03815E8353E47B9AC52688B23BEA66552FDE9494A187D62B5A2B97317D6CB 2F835639B3EBA8F2767BC312E0BF06D349A8D1B48D424F703E4E9D711FDA4ECE 0A99024DE22017F1FDBB0819A5D96AA2E6FFE2595BB900E89CA20364E88B9A53 EA6011EB2037AAED23BA0D445B5DE8E879CC98DDAF6100B7B4A30B53B1B31439 3D9D674DAD32567F3B0FD4285693A59D64264E8348DF95A9EB5CAD519F009518 72D79E9DCADC5E84B326B675239232C3FC3E6F7D185220A2E2EB913B04C87697 5F7CCCA224D96875C8CF99EC80537E19EFAF66A3E4F2F0BAB9FF7AA7A259093A AF338C7A856C88336BFD41EAAD11C41665D9E483F518C5ABB206C9B3D3B6EF46 A4F2E1F5DDB3FE4B64A2CEA7E1CE7D2ABEFADA89A4604F33C8A1B48C550D50A7 ACDADBEA36E478E7628E1FE85C4A85EDF302D3B28E3FD569B94223C651909595 3638F72D466EF8EAE78A5AC2C114F80EFFB6AF064E336C295C85478385025B9B 2F4C67B922A882E8015CBD6DA47D406F23E54348D84B60054082D0947E486FD4 EF37140C451DF2E3656A4EA3C6EBD8851A8005E634FDBA94414B7ADD07B53272 193D590E0D241767E73C98D700C4E09DC59E888A6137F8F137A6A2BBB8DFF6F8 23D56E9041EE6E4AD6B360CC1D178819473033AA5C33C9CFD64470C637171ACC E0A04E38B102E2E3AC9F7826FA953746616646B4AB0B2B4A05DB70891A11BD1E 2323DD403A8C63BCC75115CC32CC258F49EFEFABBD7AFBC1B71C18D3CFD98A6F A8029159CE3BBE6CD54D7D3D796EA39567FDF4D7788F7DA18AE225A186A0791E 62872A42C80262EBF7D67877F3B0DB3FEAA0875DC87BA7F0536448EC0D4A7867 F05542FBA16D97B619290EDA2380DFA44990948E89F766311EEFE8ABD6F2822F A1E9FC86B8A685BE5EDC67F04B1C9A67886E38BA0F3D453D3E52F6E3956DB861 2359162BDB035AF743775BFDD2B9DD51C7EFA24495D9835FEADEFF19A851620D BD8B38DC44B481A0C90A08AAF471471DB6A2A92EF165941FA07F20281C5D1CBA 1A83C5BC0C8F218B3B0BC3DAB8530CA79C56954A9860F9B7776D574CAA411EFA 8D600D5E28E6DC366D4182CCEE32979E5E65873AB333A9F96990119A9F5E0FEB 97477BB83079DFC0EB39BDC2AEBE84C8954ECFEA9B4C378919AC3886F8D58C9E 71D1CAA084A600D4ABB4B0976463A168E92001EEB39A7B766D8923421B6F6580 D30B84E2E56B3E38487A788EB806E063D4B46F6A93C0E63962A8F20F6C0C5B32 352E7D2674C97BBEA0EA99906C69CCA666210F17E86D7805122FB88ADC56A147 C985D29D180BB12304B5570FB67579F3020505A0B034C06BFAF50B81C497AF1A 07836AEF71ECFEE099CAAF2ACA0B0F18D498E3205B3EB0F4BF6C4CB1DE1187BF 7D7BF3EA61858E51F7E56E9C0EA9E268822D0CDBFE18114ECDD80A550B7F8E38 A10021ADD940D8305B044C707FA96CAE23CD2FF49473E14765B9DA093045B29A BE34169A383907390B081457C17C42AFA002E48A262758DBF87EE3D2CEA50A2F 49774D7D4543815E54D874DF166C6B45D9E9767B9B1A6C86C26D8A29DF721967 4A60F410041BE88F62AADEB83D97447A08C87023A0924DB277BD093185CE0A45 D4E44F80B837E171991118162BC8222333338A8FB8B831A0618FA0D68FAEDAF8 F95888D3886EFA3D29EFF893DE29E70C51EE26874320AE8565A62F4BE42681B3 9B86D862D2D8ECE90F6A84126C397F8E9B0831F9BDE4FC327935708ACA9C88D3 FC9048C89DF4D62EBFE7ABBD4D69FE7F3F562D312E01EBE06189FFD903FC8A5A 2390BD0C8B17FDB8257781E5E0F85E453AE1A24E58C3A74EA6E0F9B287F97359 8DB829F51708E6A927147F352F2CFA881AD2A523EB91EC54810610B70D6D0C2D A398C2BAB0913C7F2CDA7C263229191188D24D6B16FFE4827692BE7FBD91FBA4 2B485AE9CB6720AE70B8B0020D841D266DFE79C600D19932ADECDB3F007DCD7C 0471ACDD7244AB0D6876598F036712BB8CF9D64935B4F591E46C5B5116817568 DC2338758C1C7E670404E528A787385FE2620885769634AE4F60EB8EA8159CE4 38715D6BAF9F7062D53EE688650F51A9C083DA9808C230A32F446F9B3A13F38C C074443CB2E502418352027D0D474E0647308CED465CBAA2150FC30A083E4C85 B8AB2A9906BCAB196068834C69795B415B4B59239EEED2B1094B47903A982491 1B96C609F9A096B3486D6314FFAC4A49FBC3F555B41A1C2742E4F00783649099 E04BAA726F73001FEA1FFBAB1B5A0294AFD032575657DF2A58C1B3D976968591 6F0A726B314D4DD0848351ADE92E2C4F7532980B8E5D9915A10E4952EEE34586 F3014E46394F0A051F5FEA53EA390CC19631652735B254214D8DCD3A3AD74C45 2D59D335CA88829D0628CD5230658F42C66DBA172E6D5E733118C05674095C72 2B3297950459BD42DA8EFCDAE3CB6E1F83980DEB4243E5F2BFF353C12AE3E79F CFBA786C6EA54DB3CB5B6209A8737847E16AB33CD4584CB9107F3CEF1795AD5A 83EBB2C10CB3728555AE4D96E732259435515CD51271E3F9DF0893716CEBE30B 5B9A8E6B7F7EFEE64C528DB98E14B9D62EB1A7DA8265CAF9CAAC6B6BD1703296 3958074E363F5BD5F24F94DDFD8BE03D31383AFB3C8241B4867C20899EE8AAE6 8FE3AF2658155B85A5AD209D8B0DAE2B2E4D8AD87571FD725087B8F4114619DF 3FCA2FBAE2C8379E8896DA3F9B972D1920C93FA9563E79151287F8C5642FD1B7 3F8921C04D3AFD1FB7686DA3B5709D1E1D798B2D90F40EB520C704E8E051B437 EC265F94B4DA2DEF62D96A2CA3F8C25E5130E0AD91C5AF7D199299E6D380BD0A CCC3B1C95D7EFA0B43F67E0CD48206F449061E8C8B0DC450D7E65DA13B8EBFBF 216B182EEA9429950E42EB75A6A860D2AAFE3A950A04FF65CAABC0A2AC3873D0 CE04D2CBAE517B31AF64CC0C5FE4665AA891C4C85D9376E2F3FF1EE41F873F08 2B9530CE0FF23B5FC24E3C6A05BFAC94BD5D1ECC129B227EF6DD033BD5B88499 6EF3B630CD7A9F6AD13F87EDD786EDE53B98921F64B59437297158F5DEDC5084 0B108C8C94D84F9F4FF5D27BBD4BEFC121BE4C1EFB2B297163AB2CB71AFDDFF6 6043223B61D5B61ED9D347F607022A72AC38068D5D3CBC916B3AF4AAD70D78B8 57DEC52BA3E9A086A7DFBBA7D899BAF252DEE3A22292F7D284D77A11D3779886 0F95D6402064039CC8B9CFD9A6650304A35ED9F32D06FD63DAF52688356544CF 9333E219BA541F2ACB642F33C093BA6E785272C2BC5D0AA489626DF7445938B2 B594457AB6914309FE865D53B3FCDE581632D47F7F7C65028A8F2CCC1E4D66F4 C2CA29F78B4596332201367CDE9CFE0DCA213D346D8A134765B007DE9D813D4A 90C8610D32065B84095FAAF2EC214463E7A5D51B30A8B2576B5E67F14D3EEBA2 55B58209791E9188EB1931A6BAA8426CB0BFE2E0270D47141CF41ED33B42BFD6 C158B81B48896882FE60FCAAEE398965D0A7D1FC6E81892F46AC1C14ABB73C2E 996456A10D1BC8C13276D8E482D3D56A88DCD1071CACED33FDD0C284FF5476D9 462269142C7EB0D897F718E66102A7B1E68FD11B7206B6906C7801183701DFB6 106AF5ABD57F533711F2BCABFCD388751A12997222AA313F66701F2EF8688D41 6BAA3D07A6CAC267003773E5506833904CDEDA8C9D6949ADCEE16F4A9772A7FB EBF515898FB898B75A661F8ED7F8BE52013215F2F4936BCBECD9E4266673B5B8 34DF568EEC601A46E1E36CBC371123E34442D1447A7FE47C9897FB3F7C19A7C0 1C29695DB594146B74B602A98ECBB584D2430F9B2DA68623BDE34600A13CED5B CA3AD426EDECF57A2E461F4E6B0748B49D8B13454B6F2A2ACC408A0946F99E5F CAA9551F3A7A055AA2DC4049E49DF43473DF012CC5CB34BC9CCF3D3CF981E22B A4A075BBE3BC216B01AD318AB74E2F1D9EDA1561137A581E7DF32F73DCDE3FE5 9BF2839F1FE326450D0AFAA920E0347E57F408E741D39177D6E19E4C40B2D601 DE87DCC38096FA0FE48968835646CEE166ABBA44927AA768E74B1201A7A7A6E2 4D6C6E8AC739CD96FC523350A62577D3B452D61A6D1B85584CCD394194574158 76D35A6981969B1483A3A727A497148B4991C55FA68F787BEE175A0EC77C0885 4C7BE6BFF37BC35FA1A344337BCEC262EBFC327E23064B8034A1DEB24EEEF65F E0B48CD7692DFF165848006C93BBE069B05A1F9E3FB71E7D389F31AAAACAA8B4 2A311B7E4EC08FBB5995A7586733FD22037A18E7701C5A2C19085C485518D758 65C85CFC42063C0593C67FAB25ECE417BCB2A25FB07C106D2381E56A9BD14BB4 F41A29E00FF01D407D6408C5D201D96B2C2331F33346EA3B2B581CDF3E7BCC40 00249CFE6717B55DD4C4D278E04073E719A9037E7EF7D6C901A6D5509B76A740 10BD63FD035AF3198EE969F5D23BA28B84CA519F98FC3C739BD6C392B8D9DF4B 54F2BDF0C1D90C8CCCB7737575FD35D9DFB20517C87D383667C95D7A3335CD8A 818F29191A2CAC6380FBED0BCD656FBAFC9BEB08805F7DD147BFF4849EAB7551 66EFF94B99C4E03FF84CA3A99FC8C7D5C799FE444D959C7A25DF1B51C8BE469F AEF04B928A131555E785D326DF05973903BF19B705F0213F20C27EAE6D285FBC E875EC52307E2D94217BB661238AF1009E7C2632651694B0DAFF444BB5D87031 FE50DB72AB0BAF918515268B70F43DD0D1CDB80F9E3EAD0F51E3AAB3EF9A1E22 3579723EF7EF4A06EB758268DC6BBDDEF1A9CBDD1A4CF58F39FC145FCA84D071 ED4DCFF26829E870D550A824F9E78C96B8534D51942FFC2A4EC59A3C61563A40 269CBAF3308146B81102D04BFF4D820C1CF6C534467A4E443764DBBCEDC8F943 97294AEEF426B2BD4A3AC6A2967BA336C0ACE205693DB2109B09AA11816F0FC0 7BDB74AEAD8EAF8A5166432C51E2A601F6DEDF3C072691448320B9DF1927D8DC 56E9BC44CEE686BCFA10968655544F119E684FB792109358BD5EE00206103922 3977C87720735BB1A7C16CB5CF1A02951C1402B1E1F61B95B4AB39FC8E24AF49 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMR10 %!PS-AdobeFont-1.1: CMR10 1.00B %%CreationDate: 1992 Feb 19 19:54:52 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.00B) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMR10) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle 0 def /isFixedPitch false def end readonly def /FontName /CMR10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-251 -250 1009 969}readonly def /UniqueID 5000793 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052A014267B7904EB3C0D3BD0B83D891 016CA6CA4B712ADEB258FAAB9A130EE605E61F77FC1B738ABC7C51CD46EF8171 9098D5FEE67660E69A7AB91B58F29A4D79E57022F783EB0FBBB6D4F4EC35014F D2DECBA99459A4C59DF0C6EBA150284454E707DC2100C15B76B4C19B84363758 469A6C558785B226332152109871A9883487DD7710949204DDCF837E6A8708B8 2BDBF16FBC7512FAA308A093FE5CF7158F1163BC1F3352E22A1452E73FECA8A4 87100FB1FFC4C8AF409B2067537220E605DA0852CA49839E1386AF9D7A1A455F D1F017CE45884D76EF2CB9BC5821FD25365DDEA6E45F332B5F68A44AD8A530F0 92A36FAC8D27F9087AFEEA2096F839A2BC4B937F24E080EF7C0F9374A18D565C 295A05210DB96A23175AC59A9BD0147A310EF49C551A417E0A22703F94FF7B75 409A5D417DA6730A69E310FA6A4229FC7E4F620B0FC4C63C50E99E179EB51E4C 4BC45217722F1E8E40F1E1428E792EAFE05C5A50D38C52114DFCD24D54027CBF 2512DD116F0463DE4052A7AD53B641A27E81E481947884CE35661B49153FA19E 0A2A860C7B61558671303DE6AE06A80E4E450E17067676E6BBB42A9A24ACBC3E B0CA7B7A3BFEA84FED39CCFB6D545BB2BCC49E5E16976407AB9D94556CD4F008 24EF579B6800B6DC3AAF840B3FC6822872368E3B4274DD06CA36AF8F6346C11B 43C772CC242F3B212C4BD7018D71A1A74C9A94ED0093A5FB6557F4E0751047AF D72098ECA301B8AE68110F983796E581F106144951DF5B750432A230FDA3B575 5A38B5E7972AABC12306A01A99FCF8189D71B8DBF49550BAEA9CF1B97CBFC7CC 96498ECC938B1A1710B670657DE923A659DB8757147B140A48067328E7E3F9C3 7D1888B284904301450CE0BC15EEEA00E48CCD6388F3FC3BE18EFA2C389E5E30 A01122D4441EBDC07E8FF810DAC4B013B1B89F5E18548EFFA31C3777BB187362 FBBE6623184ECD991A057D130019D498D2ED4D2564124D648B1E0956E861DE83 22DE4B89AD33CEC6DD6BC2744D542521314697AC87F8582E18ACD9233CB483DE 3038D43DEE9C4101EC3001E16A8AB4DBF57849C544A743267A6C9B510BA2D4BA A94F5957E3FA951B817B69BEDF51BE484A6FA1B22079BB32D468F393A6187502 C4D904A26BA22D3EA5867045C5621797FB5B6216077AF948D21F19461C01EB6D 54A084D3DCC5ABC5DF3CADC870236751D9EF221AC1E7BD29FDC20E11094E2852 779FC5C0D5DB9D3C8E4443F64E4037AC19B46A1050451ECEB053DC8EB7B1FC8E 4B8175703FEC53549A80FA0B8B14AD07A99A7BEF99111BABBBEDB83B50CB2D6E 44036DA3DE4A6BB700E999AFFE7113645C3212BDB3012726F17580702C5090CB A65869AFACB7B0FF81D61AC2AE5A4D892C53DC943D22973255580EDBD0A55D53 61E30E9D3FC0CB33E0C2064E1854C7433CDB13B9CF015A94761624D46260BD77 D858BF5BB88D44319FBA90445BF329D3639843D0EA26BA7CAAE044A5CC973CA6 86D98EC4A7BCFB82F41ECEAC32BD3F624C2F7C3F309C363E6F5A7B44653DF23F F6A9FCCBCA68F82B20B0E4E5CD50D8C32C9C7B07CFAC3F0679CB4C01ED488725 F1C8EE3A7A82ECF9116238FC8F4D65BF191799D38BF19355F1363E260EECEC0F C75600D22E6C0CEDB446DAF9042CE208D8035F41A7546B97F45C1AADDCF897A2 063BF20DD369EA6FDA1B21A50C2C2262E28EB82274F859BAE22BF0791154889F B4E1AA0C31064C1477F32D78CDE53C10B121C31DF3A38285D94295847EF4A6D9 FE1590FB1C99ABA94CABFF1F9F105234D9D6EB4DBCF69EE93965D4CC8D86D956 93BAB0D35C8DE0627CA7548FBA62F36118324BDEDB48171C991D22F8B0C1D09E 7A65ADFBC5A95E0AB86FFB4F8771169DD47A3437A02EF556D9F32B061E78C54C 72B711D3EFD92B56C3AA4FCE302713F2D03E73FC22FB14DE2471C7EBE744A55D 65F3FB3C7726F68EA7F9EC07DCDCCAF5DC69E296AEB1A806F0222132EA46587E 2B877C80FFE810F076D00710C302B4E5E8AD40D6C48DCD0C910FE12D8CD6A6C6 A3E4A1518E2BCDF099DCD901277990BD79E971ED194CFDD4561D49B42A6F3816 5FC505ABDBC5EE6FD28B3A9C69849702F28FFA74F2544EE405FED6DCA669D921 F23DE443A2933992348FE7294C240B06976C2E9FE9CEE85E36B37AA074A50E5E 8B6F7B82AE7FA98BF3623D78C3EA43364248A9CB05BF310C1D28D42AE8C62D80 957FFB5B12F261C673AB9C4B4869DD0A9CFC4CBA2CE696AC4D710BECA3612B88 0E6C0D4687597F21C39DB6A2CA7C80E5410BFF7EA073A18B6176B97B441EDA83 737193F1F834FBFCC12DB96A3E6247E2D02E838D57FE5C1AFBF7F9021356223F DBBD463A10C99CF6086524C55D9060456FEE88390F4A79443B41AC81C4992EF9 E5594C1D7F09CE2FFCE4C9A83EA7AF76317AAB542383D86BA6CEFC0C43282620 F01E84CB626A882F7E7229AFC29A5C55A14568BE81E4B61357E3C26FF13EFBFD 0BDCF38A4A8893FAB690E102A16AEAE6A258660F7D15A91166F912B7A2141B58 DF730844193BD06D55A4AEB74AD4261F87A885CB5C4C5DEB63C6F3CF944A0B54 55D548D081538862EA8D433C746CF608F8B7E8488C685036B31A5DC3E882917A BAEEEC5CD76969E5A442E33CB7AAD0FB61BC98108CCF28DF08E01291E27D3820 B91332BE3B5C372DA1449BC06445F9EA3BEAD919A8789DC1BD54D2E460DD9C32 AFDD743426086C1E2F5425D83520C9A80C27356F9E4EE41FA24DFB89073BFAF2 8D51F0655750E2E20BC0FED90ED2982DACF5C1987E25997CBC2F792F558DBFFE 86EC04104CF1710D496D2987ED709BB9B1B5D3DCCF7BCEF1908B471191D5A174 5095D35B0CC5A72A1EC2BF2A6E813E4C1A9236657EE33ADA237D6127DD6B7D4A 80EF3C06A69047F623F106E16CF3D69BBB9E8D0C1BCDDE5E3C6EE07BAABFE2B7 4FFCC5B9535F2C71006B436300806F08F73A72C53692180ABCCF5AAB91BCD969 604E192871E2D6B94DBBAEE7BA42F9A385AA2B8FC4F467D051125D1BE7D91254 445277C8B9EB8F9C82330FB6D434B3A6338F9AF5ADB8AE932585BB41D0EEA417 2A6952F9979368FA33AA7753896EE8DD0AE3DF1042870520D2C603066802E047 4EF2B251C7D8AB095F0073235E8B02E98E6E21497A70A4EA639B08FD8D67118C D5B3AE83829EB8C9BBC4E92E6A41C33B6D7813C2228FFF88ED8AD182926F103E C1B50E334AB333F260EB798E029EF9ED33CEC30906FDC08741E319163307B932 D21431E4D8D131DBD1DABC7FC63196362CA58C9B74D4CB27105B81969505C00F FB953B8847B6238E8E20ED44FDC6880E70BDC1A88AEE1DE2A158C66AB1CB1DA0 06D5E5191C8A1FCC7AD6EA1B708EE82975B6CED201D487EE90794FD55E99DF4C 5E97EDF9194D6B2056993DC110B26D7B88A28056E96C3F1479F40A82C83B31A8 E36546F46781855C8353C913BA4B8164C84F039F5E276BC40DE67F3991F679A6 5A4871EDC97C00676AC8F90EA28A9328EECAECD1833A6F132F2F93FC3752F37D 9E04F1FD48AD72BCA6932DC914C0680BFCFBDD455ED06A89BCF86639A9C78A67 FC504D3A68AB11F1DF7011565556965C7899ABC6AA649E6585628646F2D929A6 ECEDABADFD0B7D27A00A1B7545281CC39ED925903754379E7548808043C924B8 FEC25D4977F1FCF20DBC49931DA4C078724F2A2349A367A241D3CF932A9394AC 91334588954E36731CB4A124E69D72FE645588BD0024FAE80596566CF5F11A53 BBBA690684E1C4455F945C688E0AE08398768BA53CA51F7BE80489289F937846 CA52BE110DC5382EFA492C081A6E3E5199811C41612E9129ED5AE0FD8354AD5A 7C2F06A0EB998030849942C9196CDF2BFA595A0D52F3AB2A8622E417774F92BB 6B274944B9BF0EF79FC7F11AAB2EDB6F0B7287FC869B6AD271E35C50CFD922DE 210603A931A05BA2C6F5F68C6039F75B3E9541FEE6BB69E97B3096D15F7271A5 93E3793B7C2322E805902455587AB0A305C7CF3036AE6BB8A6F229E4EFC716BF 9B42095587FB23C16287F002FA126776FCDFF7BCEA097E270E156302F409C70C BF40D88FD52EC5F50CA0FC25588EA9330FE1C61BE05E31EBA64D76870C95F3A4 AED35CD786846692D0E6E49E644D64C90CE9EA81194EC63F4934F65C01ED905B 950199270C22DD748479A72FCD6AE0A573AE72C24C152D69346C0206719861FB 1DC9684A7A3C9ED1E511088716FC902E93DF43C00B8ABCEBC3DAC1252EF3B9F2 9780CC8266A7E51113541E1E52273A5C26AF6A740AC34F60E956B353B40F9B7D 41ABD10991FAECB32A5719274DE72E4913BF560D460C6883EE132DB6C448BC84 566875B8EB87ACB86931E3AEDC2E62996AAE0CE89BF643486EA906BC4A91468E 535CE117CB81AEC8F543650466A2DE399A83DCCB011D031214367349934E06A2 90289573A989AC3F233697ABACABDD7D94C9B06A5B27D3291D0EFB6954C5E8F9 89DA412FCDC9AC5EFCEE18B980D038FFABDC7BF0AB6BBD5EF1DF5319F2B0A50C 4F0D0ED87467C8E0741BCBE9BF63E12228255042092D35D1763A45026A6C43F9 174FB553F3FCD7134CF36C0DCB29525FBA61EC612D2E081B2EA9532C5F034798 793825E2E96DB30C0E775C04FE14A48F078F3035301E2BDD98753A79305ABE17 3EA070C5EFD9FE490DCE9EA8390FB8DF7A518C74EB9225F9470897EC1D228D33 B1ED7638303948940509EC2F8B64640E8A26BC9218B34587DC587A4EDED7E5B4 EB9F2B17C1FB516CD81C8E9F2360EEBF0DD001086C9C35FEEC9565CB6B385C8A E4BFD0342984B34C2D1D685BEE3F448750C5B2ADACB148D7CF97A5D00F8AA342 470617E4ECE250C94C36DAAA64CB5251103B202083FBA84184901B09818F2642 DFC3B51EDC550C4A7224D99C748375263C4C2DDDD2E2A1254131275C6A6AA08F 5010EC0175D0AF719C5953EFE9086AD5B9D1055142CDA273E75792BA912B8AC2 6BF873E01F9E08172EBE9E74894B347AF81A84B30F01E621CC5414E0913F61DF 7B843CE6AA7C7572CBFB628455AB285409A55001E23F1A0A311DCAAC09D7D3B9 A57BFE712D97635C519359CA442A00DC88BAEE4051CAE2242CE93FED985396D4 CDDAFC302E93843073C25A88AD9EE07019139916C2EB3849876ACE0235605AE4 029E269BC1AF5DC11755DBB188B1C9B27391B6C8D3D721C07EC78B7CEE959EA4 5CF3AA255097EC2E3636F7D49756FEEE42E9A496C5F5E4C6BE326937A781FEBE 2E2B3113B603441CECECE91CB903F5E6B1D1CE11BE02D828C049456FFBADA29A BA7A8ADBC81BCE58259D02BFAA6A5FD034BECF41DF035BE819BC7B5ECA354C6E CC07271E8CC4D739B7473905D91DE99D434FACABEEA6202C8B76EEB5571A91E0 33A7E9D9499508D320863BD95000BB37027244CA2CDE30634315F3EE88F7F474 6A75BF3531A3F7763DF6D5574A2DEEC19E8E02F773E2A68348E414C24F53FD3B 18862F8919E1EA7CFF89E669DF44ED55F03E4BDAB864EE495819B99A7EBD1CD5 A85B20AE0CA6DC574A6F385C678405F622F94111380288ADAE3C1DB26734CFF3 52852F73015E72129BB42B9511D6B4D2E8358ECF6D023EDE67B67FC5E8641681 FDF82DFCAA5BEBEC1725B45D2BC5FF138B0B5FCDA379DFF6AD3406B276F72DCF 28736AF04C81F9572C55D71A36C93E9C91C76ED6A95EFE9FF15A0AD0F58ED4C3 F551DA30DBB4FBC5FBE39A6B0BB2084626816B4C7BBEFA630375B7E87E43B596 15398AFC32B27587F42BAB34677E70CBD14875E2A293745B08CA2EB4248F24D1 0D6A1FCBFBFF2272ADF6CFFD52F1946C4DE5658FDE2A5EB7383473C84B45B2AB FCF2F51DC8B59D65F0FC95481734CFB39500C99C60EC84E1419B19B22B15C277 00B117105151C4D18809F7AF7D7DE4BF73AAC813893AF2CBA9C26AD712B6410E DBEDE4D2A3F1A02D68EA400C42E04D7E7DA44705A9C87F48A607FE060CFB60C6 6426E29F532988855CE9F86D55197E88BB087347B51B86AED9975F77AB14426D 36319DB55FDC909E1EDF97975F841113F3232A413A930C8F2C91D73CDA116A6D C360DB58EB729D0FF764D89DB48DE8B137050EF12EAA967844BEC14415ABE22D 80D05D650DC6CE98C387FAC098F98672D4DDA7D825BF403AB16D08C4F2CF69C5 60B001277794EF2324E3B194D72EC170415AF43E013F65EC437861D6302F878B C2BCF711FD7B69FBCE47617A1D8E0170C45B621CCD5E63AA8D5AEEF0F53574C2 6D0AA6394AAD0BF69209591A5C38AAC6286726E356EFEB21AA1C48DF914B4F18 C4DEBF0A358D33C2367AD34A9458ADA7EEBF5F42C14BD647B0BAF82227C6A803 CD1372EA9512C57C849B990F44914402D6B3EF2D4B77EF5F80EF7CC187C7EAA5 66EE42E2D98655D06097CD1BB31EDE17B62F1414D9EE5562D791FB73972E5835 E340662E0B8421B29B7DF6EEC1F7CBEBE6EC0EF0A9F345BD9EE8ADF015A8DB5B 6FDBCBAE3CC4E15F10554A015DC18E4D190E70E472A495B1B50F112D42066852 30C6A08BB4A86C2C1B96D90D20CD18346EAE72EF53778119C021F282D9DFDADB E071C0413103D1847D5119743AF1A30A9C4D6A65C9FD81655FB4A95F18014A10 BC0745093FE00B5282772DD1FB471FCB3BF566210DFCF36903A189483E13B57C AA92E3E1747E840FB1FF4294BCF8CAA12209A6A8CDA3093E8A3CB33ADE1C306C BC2EAE710B99FF721627C84B28FD7EAEB42CA87023019BBF48BB699D1AFF7094 566D4DA1FC18D9955FA5D3E31A4925853E0B41A4202EFE244BA7B48B717CA5C9 9D03118F790970F3120A2D1D005ECD4D305F1ADAEEB90609292D5EA7F3642DDE 41D5208FFE07A49E870A047FA55BE614E4F1911B2FC625BC0DD8B536AFDC4FBD 15748143A7B7756EF1C86073249807A6FBEAAB2EAEFF8D5AA11CEC574B760117 3B7BEC9D26B126E70A4C959495A2F1D657BFFE1F6557740E2B51334DDF1331A6 CA02CF7F2D0C04C6470D21445B4A7B5312D5643F0500FA04B122C7CC65F81249 215A3178BAD86082D2A71F0688F83D24BA22D3ECB74C1089D60ADB95E83ACE7C 51D8BDD79D0641785D3AAFFAE2DBE8418CCDC61568C2BDE86DF39ED7F63AAA90 89C4E9228862DBEA9B66B6EDEB9FC7B28DE81582912F2D5BCA89B712070F2977 508EAF3FE330665F9A906D0EC3A24B16009150512B4274E4DCA22344684486D8 95C7189D530C7765CCE90D0278777502CAB1F70FBBC4C601DDA2C0CC9EB01599 3B6D70EB43EB41AE184715C2816A089A85873839969A0626F6A9D64063C13DA9 225731369CD99304297CE183495B7AAEB7A3762921770BEA05FAE22751629DBE D70B2AFC72851D5C68539526C8BC562F3E6B6E35E05A0DA7137986CA0A0EE7B1 BA081C1FEED08DCB340EDCBA61F513C06CE70159AD0B88F1E08B1F3299ED6572 D5699896E96FA713377C97997B7DD93BD276FD45A3970F9B3F24754C6BD7D1C6 0C9BEDF6620B2F8F719BACF8F8ACC2541825069B5B3CBE3F4B4980717244895E 973F84BC2C2D9228ADBCF96BB7AB06932628A671A57C7BA3DC4BFC463CA6A86C 16D41F3F024A70B2AEB07D0316A2A3B1BE490738717BCA6B6B2F91590002A902 E0D9FB519AB3F3A83E622BF12E8FEAB4281CACE22CB7667496826129067C12D9 2861A75294E915E99E3E7C1F6D21C894AC630E1E4BC2F3C84FF184022DB141A0 F3CBEBFF452EB80F4A66A1FB8AD6EA6CBA685B1DD394104A8657138D3F89 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMMI10 %!PS-AdobeFont-1.1: CMMI10 1.100 %%CreationDate: 1996 Jul 23 07:53:57 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.100) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMMI10) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.04 def /isFixedPitch false def end readonly def /FontName /CMMI10 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-32 -250 1048 750}readonly def /UniqueID 5087385 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA0529731C99A784CCBE85B4993B2EEBDE 3B12D472B7CF54651EF21185116A69AB1096ED4BAD2F646635E019B6417CC77B 532F85D811C70D1429A19A5307EF63EB5C5E02C89FC6C20F6D9D89E7D91FE470 B72BEFDA23F5DF76BE05AF4CE93137A219ED8A04A9D7D6FDF37E6B7FCDE0D90B 986423E5960A5D9FBB4C956556E8DF90CBFAEC476FA36FD9A5C8175C9AF513FE D919C2DDD26BDC0D99398B9F4D03D5993DFC0930297866E1CD0A319B6B1FD958 9E394A533A081C36D456A09920001A3D2199583EB9B84B4DEE08E3D12939E321 990CD249827D9648574955F61BAAA11263A91B6C3D47A5190165B0C25ABF6D3E 6EC187E4B05182126BB0D0323D943170B795255260F9FD25F2248D04F45DFBFB DEF7FF8B19BFEF637B210018AE02572B389B3F76282BEB29CC301905D388C721 59616893E774413F48DE0B408BC66DCE3FE17CB9F84D205839D58014D6A88823 D9320AE93AF96D97A02C4D5A2BB2B8C7925C4578003959C46E3CE1A2F0EAC4BF 8B9B325E46435BDE60BC54D72BC8ACB5C0A34413AC87045DC7B84646A324B808 6FD8E34217213E131C3B1510415CE45420688ED9C1D27890EC68BD7C1235FAF9 1DAB3A369DD2FC3BE5CF9655C7B7EDA7361D7E05E5831B6B8E2EEC542A7B38EE 03BE4BAC6079D038ACB3C7C916279764547C2D51976BABA94BA9866D79F13909 95AA39B0F03103A07CBDF441B8C5669F729020AF284B7FF52A29C6255FCAACF1 74109050FBA2602E72593FBCBFC26E726EE4AEF97B7632BC4F5F353B5C67FED2 3EA752A4A57B8F7FEFF1D7341D895F0A3A0BE1D8E3391970457A967EFF84F6D8 47750B1145B8CC5BD96EE7AA99DDC9E06939E383BDA41175233D58AD263EBF19 AFC0E2F840512D321166547B306C592B8A01E1FA2564B9A26DAC14256414E4C8 42616728D918C74D13C349F4186EC7B9708B86467425A6FDB3A396562F7EE4D8 40B43621744CF8A23A6E532649B66C2A0002DD04F8F39618E4F572819DD34837 B5A08E643FDCA1505AF6A1FA3DDFD1FA758013CAED8ACDDBBB334D664DFF5B53 9560176670817771C425343EE3614CC6D0D4E9BAB5F9AD36F70DA86F08E9455B CE690C1593EAD55132FE94DDF1722AE8EDA2D70BDE419ECCBE14D1E7D3AD7BAB 6E9EF8DC7904EA63842BB27BE4D4ACF193FB4F549A8CB57905DBE955F05BD866 C4C9C2583A0D03B4410B4FCC197D3356C2583E1F67354DB560F220F9EE2694E7 968C5E0180FB834192C2F9455E0F5EA0EC2E288D8C4B5E4932C1C83425D522D4 52E5AD92B3D98D314AEB4DB989A6055F2481A4A14002A1BEEA86A8A9EA67ABB8 88836D9BE7B8D8F218F360602C25673A7E3F86B9E66E71EAE27365EB93C7C834 C1656BEF4DD0AE5B6F61866A2D459A69B7C8CFA0F4C07F41DECAF5B43D6B1590 8A69981437EDA05B2C8B86AF767D9CD7C8D18E80083635F7D4CE4683144ED890 8FF94858F5C7DE82FC64F7663764A23E097B9845D06B12661C821BADD58FC147 CED5A31AAD70A8B81FA7D6636381EA768C262E91C4E3E014053F219A98ABA1D3 56BDD81162F0361C91320092F35832CC0E1C9ED39E02BE844526BEA833A660F3 5966360B66D479A3AE51BC5DFCBBF20C56B1DF018000D761D945FFA4D2289138 F555605101264B5332080F8B7203D6D65FA1A273450D2BA618390480A8E28CBC 37FC850D6C2F9F4B044CF895734024A8F1995F3CCFF94FC040001C3A698A0752 D5F66EFB0EDE7BB3031211A7E2F1C99BF2E92B5A70D783FD77B129858B06C3C3 1890E2A874A78713E5A6BC921F750E18181D4F03A3A985D4AF834E522ADEF47C 0FBBD9CCEA5F7BBD2F4168479C62AB81317CE95FFC274640E58B3E5D5C6554B0 44A54C9271496B4960F785D9059EB9D61D51CCEACF5B3F8C00A55D0E012EBAAF 4EC2F25F3DA3C761BD9CA291342E2DA5B917E1758D468BAEABA77C4860B5E572 FB2472DC93E5A96E0BAE88CB21B244EA7EFCD53EF116EFD1B39DA7B2EC43C4E4 36982EC7BBCBF049F816B5059CA63AF3B647C28A6AB575F3AF15DA1972948185 CAD55F8CFD66E5CD12ACB95DC0052D597EB44D20E2464D8F2942B0A18054B005 7E9574FE2A944E8768A79B661B17B043403ED0D64AF2F3EB86CFCF5E5F1ACABC ABC7225D0F1E9F1D88C8EE84FC54D0A32D83062FDD18CE3100751C4155C8A602 6226603DCDF2BF096921F57E322ED0CB30E0E5EF3BB7978C38688C9E157EE621 84E67DA5440818ED056A1E0636B115084DA8302A95643D91133DC384C2785A79 03406FD3404B6D0129F782C3EA5386D68E962743AA23FD9CC71D88130FC833C8 2DE092BBC4ADD6043EF081B7FB7643E496766ED734755D9E4AF09262DCD19EDE ADABD75C6691FE9C8206442CA320702D89362018293DC57D2ECEC6666B40BF3F 9F4A35816F0BD20B8A11DA50241E0EB3A185661FDB364515DEFFAA9AEB766549 3CA5F4B865E39FC5CBDEBA748981721CE0DAB00A59A11F664DDE927E3C444C03 618B1B89A902525A10C5E283F27DF7ADABE4FD8E07A6D26C3F6037C566EA101C 7415C2EBE9605C8FAA7A6B6AE47D31D35289DAB018D6B509F31E11F5D56C4AFF E160B4C17D76D7801011B1FFC0C7F51B13D07A8D7F08DA59AC61EA2CF4A769E7 64B35CADBB86BACA5EA54A694CDD3F090553A5DC166B9EE8DFABD5611A36D45E 19F24B3AB38D008F8A611981879CFC02254A22FFCE0A6921EFC503FABBECBF4A 105E7DCC5F38D93D1039B2A07D039FAAFA32AFD4CD3579F9A4056DADDD124552 2715A6D5FD5A7297842D76465B2BF2654630EA8F5708F4DBC3C49A14584D7BF9 D67B1503B8D6D6EE75148ACBF942E62B5833E9F1B3A00296E53BE4123C55BD23 556A285AC85951BD9D351A7EE141B096593F3352BB01D8F2A2BA25AE0F4A90C3 74E0B01BA506E5EE83B2D69DEBED3B3C405D44CE78D9B71CB4C7A924CE8069C8 7978B23F4821442A2289FE014B43E48A3DAE7726D10FE13E9F4B0C369C3433A8 72E360B7253F52B68363D38750144C0C3BAEC253FA48FE58A3720BEBB589C08A AA99876310FFCD4873FF4EFB1AE1D81A48D0C4F957DA6E61CCF1ABD1BB384F7C F264A73E66667067F70948AEBB33BCCB6228B7FBDA0BF5BC62DDF2D3DC64B617 1D5685F6D058187E82DBF55B8B8C4BEFACED9AC9E3CB43EBEA267922AB97BF47 5DF214307E85464D0A8C9985607440E608EDB2342EAA86A2CBC3F57886584606 54C7D3EDC300B4E8750CC0B94451E29758B0019ADC545223187EB905650D852E 49A251DE550FE1BB9A4DCD534315045A8A2DE8BF0B38656806DF3854118C61C7 EE1415BEE2564799B9ED3746287AFEF29B1F37D7880A7BA3EFA05D709BE703FF 4C08BC5BA0C0A59F06412820CCDDB7C72F5B17A30D51525E8537FE2734ED4A4F 072C5893265FAA57F6AC220A288833C9107AD8A715984C5136DC9C2CCA07DD51 D976C2500C6C494496C0BAC90A4CA1010AA4172E71788658FB62DC48BB5EB12D 9737920C20786044FE6911B73D8FC7B0B39FC8347EC284EDF4B218FCD7A12760 6FFFF56E9980D6B7075E484EDC0DFADDD2ADA43A23E79FB9278E913B9F119992 1A92C2EE9F226EC647876681E5A2C503140DF1DB7F5B8CC6FED14FEF8E0A7558 810C7E6ED6AFA191F5E1E51191464146A3FB25B8D7E407923B32282174CB7FCB 3F613072FBAF5E9858E627F026D978B414CEF877F0C6998B7FF509D2F0F19151 AD4F6381D961C9FA94728B304612246234842D51F525F4399EFC590429B0A40C F68F4262A5B93E4FA988C1CB46671246FD715230B2D70DC837A0C3FF6129D7E4 92FC10677674726F8E2FBC16C1C699F601DDBF7C26CCDA4F393F4A425A0C6AA2 BF0ECAD24016DBFC3C20D89704BB379BDFB4F0AFF74246888B4BD33474B41E63 7DE738FED1533E97A8E947E0BFA57E181535D8CF7BBA333950CEB7B8D921D5EE 2D2D525AAA1F0156B27A6221AF1A63394D6049A8E66AE15DCD7BD1FC91FE6D9B 69DE9823B4DEC40025920E13AFEC8863340A2FAE82966B8CD44A27118486C813 E679EA1D64E37FB862F2E144C26C2208E515A1302B5B327A24BE16C12F11EC56 69E8D90B25F787AB5054F95663B54D073F58F11FD458B31DE72EB6A26D99E1B0 C60FE3D5BE4AE0FA8FAAB1AAED227129E5694D1D3E9BB0D3D6F95F5FEB1867CD C829C6913B791DB6A73027E36ADC794AE939E45FBB9A724ED279885C43637EEB 485127655455D2ED211D4F984FCD513637EB3D5CD43907C7DE84912E6BB5987D 3155EF38503F121E727602C0A185D2D9470DAD4B2E752FF01754BB4FB4CB2817 2B00EC92D8502FE5D0AD0C17395A04C2A9021362A9ECB6035A0BBBE0C18F9F28 36ACCB91AB699EDE7626BC17AA353E3AF33B395AE158090714BD9CE83F28756E 6A5E1FC77763859220CC0636702759FA368D272F0B29B1F689DCDF7C86D8DEE4 A2BB3D05D6141C8FC01B0850A349814BEB547243B94F57FB7C34F4D482C97D8D E3F82E03AAE788AD9B85DA7A98CF52F2D9C2BEA9A637988902E786FE12C3002D 9DEC175B6DE111DF4B49B1FD15C061383B2B3907D3474B1A9052F7829A25ED6A 23B6344EACBE0518A151C1609B351AC832CCAEFC605AE44155F96829A847E911 952F40E24D20EFE6FB684FA989F98979000334C611D46637ECF39E2A10FFB63A 2C438098DEBCB427ECE1C0E35C1E51D36C085C09AD3503CC9F709389304F7D78 4F2EF81B3A4F042B79E658032ECADFDF3EFA44E71D0F98204226624A7C205390 7CDD14C3EDB98BE584FED7905448B85F87ADBDB133CF0FB150D3BE8F472565E5 16140C6BDF43F9667392FDF50F5D8EBEA7EA90CA43365553ECCFCE4273BC11A2 1FD945E3ABCA69F7B832233C3B434B1613C820081055C8A9E2C836A022C96986 8ACE49083035ABBABA10DAD1BBABC4AF6EFD4ED50FEA639A06EC8243AEE60AF1 7431707E08C20E7130620CCC585809A3555784AD42D1D4610F7F1C5AC86B301D 436510FFC69AF97044B277572DB77A66DAF997878F2B35C24FC0DB359454E784 16C416A6AAF0E6AB4EF0A5E50887CF3F7A0DC426ABC732CBBD5563496D62F6D9 4A696A4723571902CD273597BC437F6C8AE09F7954E230B6D6D561ECC4D63912 E82F52B0B6274DF9487787D8BF173C467ABDE3D52277DD998ED1AC8C03A7B936 ABB7B5D7171BB414F25A9D72299AFC4636D4E0120B8FED5C58A7A3872DE7AC23 95549527A7B5D8034E92BA7A54EDDDF0BD59BB8367DB40AEA714B11CD12E6DB6 E6482B4FA064992F3070F5BE313BDF1DCA4F9A4F98A2C56F6D96F831A83962E5 37C2CB08937BCEBE28BAA82A5E6120E0E813263F36C2269B2D8B7889EB8FB240 E046C5BBE3301B4D93BC77292C270FC02974FE1ADB2275FFE06D7716C370B228 C7AC3F7805C87187B92E0563A7EFE7B588FFF63021ED763690FDAC875BCF46E2 92FD5B98F130810CE0F61C92E04DB864D8384EF593E4BAE01E6B2A126050AA42 4819271E6420B77EBD9CD2B0D46E0A47F50D2342F818D3DC8601E4E8EBC08F7B C60F8DEA253661827AFD32862134B6F5077E1E5386AA73BA3E88A429C3A27915 EC4FB477A63ADA0B4152368B06B7BF6954D48A075C965679386DC9CA9F1DBAC4 C8AB27524EA608B25EA658E6681FD48DF35EC3D4085463755B8C59C0AAF4EFEE F77801C07858557792AECF58BBC1704E7C393EBEBC37FD9A9BABB1FBA27465EE F3DF0C2AB18DD098C9307AE1487C219C884D2D28681257AF9002F23B3716A259 27B4EE3CE96196E55B92BBB0A729E89B36D16A37DDC0ABE059DDE130BF8B072F 819A9C39AB308191183EF8E9C671348201729348BEC149F94503525B01CE59B6 0216BB27BD9FBCF5E5CCD6789BB536FE43F34E361A496DDDC3A5850EB1736706 E1C767DC23878E3CBAAC6F2F32529E30C0F1391C3C3EE8D58F8882FEFB208814 FCD7B5FD4E9BDB8A8A5E3C5869B1F27CCDAD9EDB692BA032C6D87054ECE170DC 244FACCF90FFB79F5F85CB85029209FCEE8305F6C5B730A5009CD9DC61BAFDED F6D1AD4D00812DBEBE14B8DC12BF78CE101401A5910FFE7DE3528EEE26935364 8CE9651C31E968F889AFD439251E8B4FA93C8815D72875B6DB243DC4264F0827 89BF1F65CB8A9670B2E64EF85FB3EE3DFAD56D5A4DBC439A0E72A887B8727732 04CE54DDDD6C05E544FA8E6E977EC3C50C96CB612BC98DFD96646F0FA3CF58C3 07E5B9EEC974A4424F3F3789D7E69D7815DE8CBEE896BB83BE136C4E67188822 2DC1C1295F28C7D371B7D618F440E47DC67600307028C94A4752A9EAA67706CE 11743180F428159F67CEB3D852A7D89CB63B2065D384271A720530861C851193 DF03FE9D676FFD0F24E80659AD192F8623764F418DD875D99C28D717677284B3 5262BC13F159E2A205EFD353C2170FD913BBB3EEF0E4B79888769352E171DD1D 797054B66B3096F14214D2A84AA81FC0B694BDAF763A6B403146362949297321 8A81586C3FCE98E9E9B9EEAB1893A66B9F770AFF2597184C14A8FFF3BEF226C1 F98D7DC3EB0F21365C2EDD58333A3B4E52CC83C4EB17DF6C3E848ACB3BBBE35D FF40D604885C519F918BBAA5A56C26B269FEA75FC75686AB3DFC26DE6EDDDD21 AEEDFEEB24627920AD98A55964D91EECA9CBE85B37C47284FB9F5935AE97A41E 4E903AEF9BDC30733C8BF8E931B0D4D6D82C0F59DA042C20B35A662A84E3C3FC 978771C9123F27DC10A054EF63F280101C845B7DB8CA83A347B84EF40E6FDE6E AAD0A9E9AB529EFD6491DEDDABB329D1F7853FD30FB6471FDCD2456FF32855E9 4BE01A984FA1D10AAB5B95636387A4AE8F80B9225B8E56919F6DAD3383C8D8B1 1B81CE67DEFBD3F6D483EC913BD0987518E2652F0371584D98E748BE836D4C42 BC36DDDACF424666DD6A006E419F93E60E0DFD934758C565987D3AB33CD3BC58 C118E8FDD5114AB0CC4EB916AB0308800E5606E956E49A2DA5F83BA7FD4CEADB 06BA64D0CEEB676F48DE864903C97AD199D58CD0F4DC3D3688A22B08CEB59592 1C0EC2DB91B774CCC48E4F42B48E4B5BE20CA365C1D6E7ADE6C92EA509A0224A 58C2A03BAD7EB57B324B4C0A4814DC0250010031833E480D2014F1BB0B43806E B0E309E36260352A070661517AF6718521164725F40C7D2A72B9F1B514ADD3BB 66EACAD0386DA9D4BCC1CBFF38D095587994A45FCD083A7995DE3E68F4801AF1 7FA4A26A5C2B243A00784C29580D7B42DE4378CCF2826D054CC5D9C42A1ED963 76926859A32BE4EB9EC03965F245FA2ED6F719F8F53C20DB078468C037A29EED 28E8C6136974961817B7FB878EF96CB63693F24CAC5AEA0B1B28F8244E3460AD 6C9A165AE7A0BE66646ABC0089FE138B7F9FB80454B45684CC9CE44244AB8168 27E88C2FBA6DC2E011D3DFDC9877E9F67ECDE6B98911098708BF5BCA58F71357 2C1476D55A5D7D118097138BC7982AFA5687A11DB2102658E2DC832A555E410E 3304A92E105284693C1CF7943599E029EA022AB32D139683A45F3901141A85BF 068D2681BCA6EFB40DF6C6A654DF8FFC62F0A5B66AA7B2BD034E46F773374899 87431C44E877477C153B72DEF8FE7447A90ABFB99F15184E11A276DE4E51A598 3FD81B9C358E38962D4C47765D6306851E8EF4021B9040447B146A856AB956CA 680BF909D531981C792F8F6119D59615984BBB6CF03CCD42FF784E9603EA68C7 4F184C12D75CB688DE880C1AE07E97A63DEA720EDCDAF9045C6F6C45F008F0CA 5AA6AC0AB692EA3CC92AC67AA5A805A646CD1721E09230E29CEAA59660007470 2B6EC2A9BAA71EEBB38509C3EB4F4EA73E638C1D3DFD0004E81C7870065305E3 99AE2E5AD680C70AFC86B2CAB3812F285C5A5E5FED7DA6F89600E874503F74A5 E908F5B3EB405EF0DEAA15E1EE003D988E75EDD724793BFC2DBCF21187ACB5F7 43002659C9F480D8D5EE7A8B5664F96F7D84E4E521AD27D024C8C1714D96278B 4EDFC32FFFC04FED68DCEF67DDE70A8AF62F01AAB3F68E0D277D4CDFB4AEF465 8F14E0C165DBD03900FFDBDA59CE669DC4176E9394E029F55F27C67A5AA57633 85DA10D2CEDE8D2263D0DADED0421FF97F6645C2FC0C9C2784A78510DF5DCDAF BDAAB6281B20268C28E8D149037C37DFC46A3E7611C097B6F1A3DC5BC795D69E 3B7A6AF92F6438522D486221087F7708D2F6A2FFC3F63682B3498D66DEAC1F16 11B8E28E91FCD7E7C5435366818100BD227C2D96BD69A9A4F17573BCF1BB604B 516885E1BE14FD0EC0D168D1EED4DCCFE5F979B16AABFDAFE19B73A74FE710AF 4DBB986868EBBBFC0D8F54EB62B83E5197C14B7E37856C4D5D252376063EE552 FBC27AE0EFA41CF3BA55B809104A7ABF79126B54B931F310ED8F5EFC1D9CFB2E 1821FAF08E6A5D71AE1F7A72446A1963A79AE5C13E621E9F94E57D38FA156F53 517AF34303B69BAD71BB41F145B90EE9F69D51D4348410DFEAEA3CF3A20049BF E7887DAE3D500ECD6990EC245B99F2D3A6366713BBB22F4773530CAEC37311BB 68FAD55AF67F02D7D7977FE07A73A54FBE5FFECB142BE8E8D25C066706780F5C 47414DEA9FE0D4D500FF56D40E97E47864FAD49D9C0968E1D37ACE4C9AE2A8D4 C13DB988A9A50A283453004E72BAEF93D966BA1F017B7B9A974F30BC835F0ABF 238B4C577F2B9F12A0FBD00D50C5BAE71D2DD494D11BBDEC9011B88B277F4FA6 4EB0AF0074BEA09139C61CDD5F5EC233FACFE05F43EF0D47B5FD28B3EC29CC77 9F5334F9C98A9AD37A8AB786C807E7D5AB7F59AF35C4ADBB3CF6E5654E23C3B4 EBC17154C56533B20869EA795A341E386A647E43515E7ED6FD09C1FA0525BC95 8C2F84DB23A4812B58287E86D7AA760A59662272ACCA06A6F6E7651AA747DD58 947BF9F0B6529E9EF62B7C46F3DA855573DADCB6453CA560DF1618CECF8A5CEB 830D543821A88E542A16F61866CE72B8372ADD31F701339860F8C1FBDEAA96D3 F385E037D4E802DEEB552E63ECB5185F9284016F2CFE58D206D5A35E216DB25A E80C712DDE0C46397F46C5653AB7047D1E8F92AAB99FE6C4EA34356DFCC565F8 EFA6BF8029B89C9BA20C209D7B866C16DA2503BBE27B1B7499C90F38FBEEDAA0 AF9A1421532C2C727C45D397A0B6AF1919C49A8AE60499B7ACED11837BEB7F98 78D5558E2DF90DCF424EACAF695BAE560D4BC5EA620A75B96E337E83D15692F5 0B3CFF45B60DDEBFA1DF1FF5DC8E000B93F932B784D522FD126FC5E5ABBD1EB9 65208D0566E0A1665AAFF47AAA787842D3A7216A1F15D637BE097DA35B0E2781 D4B3AFD9344F0D429F5D831990EEA868568EF8E460CA8D8CE91175A506F9F0D4 BA890CBDFBE494301E654801DCB0A3F1C3E464360A7BC70B77ADD51ABC7117DF 9F151EC5FF073A4B3EEA1491FF5CD236EEE433EDB548317942BD5E97E00501A9 275901062B49CFAC7E89F963BD0E3E2C4B976FA41D263064127A566C912D3079 C054F56DAE43DEF0E514E4EDC848775122DCD58962381EC5654F2F1A9284F4BB 1066EAFC850BA5E8F0CB2BF289F15BE82F80C11C1F146D5EB12BD39BEA70CCDD 724F5E9F3FC719196BA74F22D0A9FEB853441F96F13F62ECCAD8B74CF76E1272 281C7F0F441B579FB18B603F9477CC4EDA6890E1CDC3B60A482BBBAC744BB809 B45B468605BDA2CD4260604A8672E990726C5CB714FEFD1F64A9E001C27A4B80 F2E8C74CFC457F0FBC657843B55B63B5F5998C00C91C6779C42CFE1ED70E5976 D3B289FE1A3E198FB2DFE72ED775A2A2CE88A7C304779118FFC1631068F27BCA 715CD12D5307206C159389CADD4A4618D885443B1ABC5E9BFF1FBDE5AEEB2CA1 C16DD4A1B8FDA16ACE711D05441E9F379BAE79D66EB6D87ED65801DFEA4790B1 47C270C78DB276B058CC81053EA94D038F0546FBFFBBA4A3DBB67B8D67AF8D07 DCB1C7BC1208120B191713A8F53425046332EEDA6F555FAFF8BFD1F38005DB2B 2884D0B269AF03E200EAD49094E320C9295C9F898D6384A60F7D568815B2959C 04D7550AE761D78EFFE2394AFCE27B6679BFC87DB8ACA807FD1084057B22809A 20A7F433A6AD8A5232E0E6664EB111EB6230E502FC33B8A96514F4C0EDF71B8B DAC728202131CA3301BADC1884783A8D0C2001433639AB4A455C05245DF6C229 88B0A8D4E265859A047080EF87A3AD5EA840296CCB8182D8ABE761D944CE8F7A D21300FE0B52D2BF5E62139BF67604D9F3B4B1617BB00165191F2D671ADC1AF8 7B88F2FF6DF5175FCC3F65CE3C4A5D19B7793A744A59EDAAD535C0A62B4C94EF 3AD6D5A3B762638C6F630C2C17385EF54A93F2818DC156AA85D35748E4518E2E F0FFB25E9CF4F851B2222DA3B573E11214BFE86505600DF6BF411CE288890C62 B731B471C60CC706E9500D501059F84B9935922199F821E7A2ECD08C2A2D4ADC 0D84A54A7A3B2FD6BCAE3980DAE48D4B0BE3506327D56905CC846F230A8C4CA1 6E632B622467DA10EF03E45DD1333FFEABF7A397B0E8E079CD77554FE9B3F96E C3B1BF9CA2C51F7710C5C3C6E980E775FAFD8D1609B5DE4E581AB1DBA57A882B 0FE54ADB1B672E9DB70AC15683E313BA8419F1C3578A6725C80562B1BC61D031 67487F29D5944E069AFFE58A174E53E201714D5D07CB5B1415EE425C4DD72221 366642EEE8956C9FD6021B5C43EE37109D8AEAF0C69E8D61EC1C86ED7A928F94 AF47EB4C4DB25F44B6719CAF559BFDACE22AF399EDADDF28799932DE07FD871C 53BCC6A968C4CAF08ED95EC6B792671BF8B9757833535824C6B27BD68A45FB9B 981DCEF1A5FBA3DB446EA53C34D51E74D1D465ACA3C2FB3941690E61616F928D 4396D2B07BE2DD8496386BDD450D76FC9A91195E9A11B3402C9BD3051A281FBC BE61C1119E5C4DE35B562D185F390CE5816869AF612CB460C344E717E1D81C1E FCFC39183EB2FCBB0E442208FC090E244FC31AC2DA38A67A9A58EAE372FDDFA1 2E1E4429766A953400C2CB8E132F2F0AD6476DF195F6E8229638AEACC00941A5 2C135E576BEE9595ECD1D29DBD9C5C9940D0BF6ED3A10965F43D13B4E3301922 6815A4950A0A3B340B63EDCD9CF94BA6DE410F982CE6F02B49393614E15548F3 034C002EFD8A6D8F4B4B1351F42CB8AA640D76B1E1523196B6A27F0DCCE2E00D B901455B81CFFAC402E1901728393D1DCCEA768E38BDF3B8DDB2B8E74A97C3CD 5136D0AD5EB60CBA8AEA72BABF60E781819247BEF3DC5ACEC37640D18E75E076 21A0D176C5117E648BE1C468C7DC9D36E98FBE83EA1A0770A2A7714FD2FC7EED 939FD9AF13ADA35FDB737792E2A3B43BE4BCD8E94D6034663E650CAD8D789F82 4B9F746A7C27BC0BB1833840026483791CD9A3BC3A28610065D688F88D8AE109 CD7700FE01E70CB4FB43C2EE910E593D8F153D9FEB714A6126AB7BDEF6A200A7 94B94A029BDA83C9D074789C546613A46ADE9DEC19C253561FF34AA5802ACC84 E1E294F4796CFC79D6DCF78AD6A30D0ED8C8BC5F181C164F95531B9CE350DC81 1AAE273542F9D6FBF3FF4A48FB6BC37D11AD200FEC3C847455207465E4B0F0BB 57603FE2A04B5F186E771043A61CF174D9C855232E9DF25A82D476DA5B6BBF0B DB427211B22939A7A82C080D0E037355DDE56D23FC22A6AF78BC113BF292671E 431DB7548E38DE2507C0AB8CEE36B23E7AFCA2D66D886E1887CF3A8FA8DBB8E4 7E5518921DB7EF740B1F0834BB0BF0DB3A37A6D6074CD9162FCC92191D15D029 D3A950AA4F4C6683BBE06A9B02073D6FAAA260080D7D63E7E995811FA4548BA8 8040802E56F87F6A5931BA8DF26C6646C7A36F298D453BFCE2856F2E99F9CCE5 7A3A5165D2E0D18D64637C3455E386549A581FFF1F19D5F55D2C151D2BA0D068 2EBA8F713572DFBB4DB59AB6EF1E177ED5BDFE7466E9D7FFAEEC2C78F5B56C91 AFB1679E2FD35884B4B34F6445437430CAF01BC6D46EA816C5D9A4CB02A15828 14F886006A83256AEBF70D1DD27748C280673C26041EC15B38FBA08DD1D18C9C 4F225DD67CBED099DE548B268849448A90942C0DAE41D297B9D4D4DF15EACF28 246597EC6CF63E23C273D953AAF3D4A64B68A442D03F2EC24C0B28C8A17439FF 74D8134571BCBBAA02A37991CE9DCA45BCF3903C48A3A02D4CB69BC2CD038AA7 47EF29EA70D909735411BA096F4A6040332470F2EF741C50C163CBC037FFEA9D 95FE5612A3411B232125562DA0ED7BC827BE7C4BEE30F7C9B91724ADE1AEA380 5D4E741A192C6CCBE1797395A83701E42196ED0C964760A2EC28059B631CA866 09294E33F9048A89E124F0F54F383F3193F4673A00F0E434F9F880F8A4BDCB89 D3C18CD5460FAE08AF9E03ABA1204002856C6798ED745306C66D8DFBDA5B1621 67F9E330695D42A4FEBFAC9262D5B922893E2DC5330C06F110C45FCD79382F1B 6EC96005EAC451D1A10BF28AECA75B5A7BD9C421DE3035D40EF04A7D2042DC14 76D37458F4DDD1408534CBE30883223CC42CD738336B3B020F73DD189D3FC871 E52CBC8DCD4A30982745BFCF5EAFC444B375E6E51D4A819ADDB03BC5BFB7E8C2 CC9A24D12962EE7F328C998CC736CD48CD3157D6E80E8C975CF2D71787F9761E 7104085909638CF6AE296138258CD6065420C55DFDB070A792B7F1F17D14680A F4A0981CC363316316D9153EEC1812A3F9252A35374664F74913CA3CE509A8D6 0A57D9FE44E778445F9086DEF5AAB30DFF5962800A30CA82B3977B396117E9E5 12C2A12D37BD2DFE581C7BFFE673C05ED0A7A1833B2E13D69263CC1E123E6307 D99CBD2CC099996BB3042FCDECD44422F5D320DCCFC52D5C42E17D12FEFA3D90 F7B2B378CE5965CC5337B0201D4AB0F23E864C7C79225C0EDE6A65F6EBD3F60A FFEF4FC9283D18E1FE198F4B1BDFB97CD3D77684B08CB9D75B527C6118A80F04 34C84EEB83156E355F0866352D6E19D88EBBDD2B18A0F7594569103930D44CB7 D1703200B51A5426B979BE3DC704218C1B41772FD8CB2C00570C6DE4B3D30FAC DF86D9719382DE5C1369C0C5CDE13138DC33D129E08B5A88337270E089BDC1D6 263BC3C295AD870BD826B1719C84FB598B32A79B3474CB766C8E0CB317D894CF 3F30AA473380F700464C6C9CB68B8FFDDBA075E33F70E16FA5A95543CC80218A C02BDF2028431EE0BE2F583CE30B217718014658E8C2512BB8EA058C1AB08EF2 92ADEDBA1D54CEF94D16848BA4F2AF4ACC6148338B7248EDEF8C1912A674F9DE 8726715DD07236A07991DF11427658E76A8A5A322CB52F77E704113AE58AF94D 1DB03B46FE07EA77885A2C38E707F173565B46D3ABD0C4DCEF82B15277247B31 AB5649C64DED56CA088DF483BBC645C00A48F3E0EAD342DC2271DA14B876F0D7 80EA52CC6D4CCD48E6F499F9E13FCD6066CB64991259735454EF25A99566444B FF278D17DF10A04DF3137B7203B84514970EC14CC8D55CB02651E27DDDAD6C7C 0206D42DE4E2F89000C4510F1F5F0BE79F8C281A736E0206A7BA7028D6516DF8 8C6C7FCD9940A47CBAAB4711CC220CE011E16842EB03DD1EBFE4226362EC676E 9A9CCF4D0D8EE6B4CEA3019BB7D6AE355F89AD427D6C791546B684CE897D950E 2BE103D07C568705921A889793ED3FD48495D1A63D8903075E96B4AA0B3CA144 5742C3A24F98A2D5724C76ABFB9FC5F1643070B622E3907584ADAFC6E7ECAF7E 4441B03D8BF2D11E321392DEBA0062EB42A5310DEBF459DEAA4D3228F255C3AC 890018AB81220F1FF9C13547C068C740CD262B28933998EA49D4751FDE25E320 37C69C52C1F76B3ACA510B5B9B053CC9C84409BC 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMSY9 %!PS-AdobeFont-1.1: CMSY9 1.0 %%CreationDate: 1991 Aug 15 07:22:27 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMSY9) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.035 def /isFixedPitch false def end readonly def /FontName /CMSY9 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-30 -958 1146 777}readonly def /UniqueID 5000819 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964 7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4 A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85 E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A 221A37D9A807DD01161779DDE7D31FF2B87F97C73D63EECDDA4C49501773468A 27D1663E0B62F461F6E40A5D6676D0037D33F24E2FAC2B0009AD3C8350CDF8CC 65BCA87979C36D14CB552E9A985E48BE4E88ECA16DF418749AF04FDD2B0E1380 D281BB2476BB45FF30946B247DFD7F57305FA87E50CA338121C71CDFDF927A9C 77FF14CB4A1D6D80356FB1171ED38C37702350497B44E42CE31DB2F493807DAA 15B887C671199A54C4C1294BC520F5538C15556BC43C9F62342B121C6DCD6C5F 491DA47FF360201EE21C08A781ED0589A6DF91B99FE118B9B29E4F068672E52F 1A06C514D91C4C937D4E642503392B1CD1BF5AF0BCA28EBD840AD76CC39AD7AA CF2C057D436A245217829DB786A3D592C0F5A073E44D137405B0D44F7D7356F1 DFE3D933072E0CA836B5B72B1DDEB8FF86D5F9A2AFDEC789B2FBDAC307F2DBF7 2B5BE20870A423F84FFC79294384F021307323F91A19C5289C16CAEE93868976 859780DD9191F3534B9C06E004BAF94DB8AE573D6CFA3B439586644D49DFDE61 31D87F2AAB64D6E439E40696598E4E3C25D6A2FFD76A472308428E9ECEBCB3F5 CE78CA1AD3DA80ECD57846302E38355214B4DF01269732E9F6F96C592037D041 6A069EEA385F29600E43C6E58F1912D3A9952A59585F2EBA9E813A0FDBD15FE9 1784C78E134CF36E038AE679D498EC8C33DC4B0164CCCA8813C307B0181F313C C8A2413DB5CFF0E223E5BF34FE93B8D5F16C6CCFE6C1BAFF4D72DD9A1FE34A19 3C66E441E5CE3F2DD9627E8E7FFEB430448DA85DF73A96E9756C409C0BFD6B88 BE25AAD9E8A9D5AC9D940A630E 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMSY6 %!PS-AdobeFont-1.1: CMSY6 1.0 %%CreationDate: 1991 Aug 15 07:21:34 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMSY6) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.035 def /isFixedPitch false def end readonly def /FontName /CMSY6 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-4 -948 1329 786}readonly def /UniqueID 5000816 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964 7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4 A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85 E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A 221A37D9A807DD01161779DDE7D5FC1B2109839E5B52DFB7605D7BA557CC35D6 49F6EB651B83771034BA0C39DB8D426A24543EF4529E2D939125B5157482688E 9045C2242F4AFA4C489D975C029177CD6497EACD181FF151A45F521A4C4043C2 1F3E76EF5B3291A941583E27DFC68B9211105827590393ABFB8AA4D1623D1761 6AC0DF1D3154B0277BE821712BE7B33385E7A4105E8F3370F981B8FE9E3CF3E0 007B8C9F2D934F24D591C330487DDF179CECEC5258C47E4B32538F948AB00673 F9D549C971B0822056B339600FC1E3A5E51844CC8A75B857F15E7276260ED115 C5FD550F53CE5583743B50B0F9B7C4F836DEF30FA8174C963E076E79FDC8BCFD B4200A34BB7F70036CDA62BC4315CA986216DDA60103A7878028EF310DD1168F 7500EC86258E8878D5251D65E97F4A7294A67A9FFFF6CBD79ECD609CB2809D85 4A6E1DC9230EC93C75FE0C8BA65806CF5E8A484BBB6F3A6B85A9BE84D7A589FD 1BDAF326CB000E9055739E06A7F333763CD85CBEBC6FC1B744207F9EB3EB1E61 E79D7AE4A771F28347C997D157866CE072FD968855DB1F5D267BB44B556DBB27 E578018E51672FF1F5492E0389DE055591745A0C965CF3E316D39E39731C883B D6164CBC18E366E132921581E5D1490E33B0A74B6069D02A90D08CC2E2EB8D95 7A214EA72682E98A3596DF730A93278820B2DC46E0DB164397A9EF81B462CBB2 94CC558461BE6F03408175195CFDAD7B2D8AEB114593E45B4B474D4EE395ECEF EE4716481F7DE57E28A6C7EEDE90C42844DD54076676FBCC98822CC14A19A2C1 F69F9DFCA7EE11F0AE2E36CF0AE2DA39E48AAD2389C7DCBEFEA65E85A3E42D26 86F3E028B815B640B2EFE44EFE27D9220022F1F24F9015A8BEF705918D8321B8 0A326B52874DAAC460DE0892B90554F94F994D12C217282D854FAE527D42245D AC3D97C2BCE7FB9CEC0FA6F931A5F9C0F4BA93D8ABF3F5FDA439C6682D6E0CD5 B37D1A12F00DAED7D02E38D9DF4D4425FA5163455D041B545F7DFF65B18B3EC6 61B0F4FDAFD58DAE18FD019CBFE3B209B62F961AD5915A24FE266DC9C27C4EC2 B9AE12B319ADAC29F9C2EF64287F33314A6C178EBAC2C8FFC5591463300679DD D22D98B6350C9CFC7A409588B6158D8FCF5B631D947B8AE94B438BEE1DFB9A47 2DB7CBFE9D28FCA9090AF3F74FB57C60DC4A4A4BCE93026580BAA085175628E6 D64E5F03903C1208911612A2E60EFC7D83D8282E897F6DF42E156AA461D28AE6 884BB1312330B437617978891130C0D37D07936C146424541AD749D6A39A12F8 F1075337704B5513FEDE8CC8B2A7A7C977740EFA327E2ED9BD335662AB0AEAD9 26DA07E323A7E32AB4CA791281BCA4DAFF36A93F91FDDE2FAD774FB6FD21C371 0755679AD319FB5787AA37C1658549884297B36E2257F68E2A4687709226130C 996EE84016DAEE0B8B1BFC344E6B01189ACA0D21EAE0561350E17F9FFC561B4C F38FDFA9E1761EA890146525306720ECB2E1C5876F7E8F5C51BC6A269355E8DD 07CE94BDE6FF6B02C77B5A26E55A02C7857190AE900EC48AD1271DBF22998450 1F470980EC9C77976303F90E0DDBBCC004393AEB957233AF0823EE8E1AA12305 13ED1A32E2B8930EA0ED6D52EB1031BD3F63CF03050B48EEB83F4D4D7B5A6CBC 180661FC4185E37D2611BAE609F3A7EC1C8172B025FBBFEE772EC1B1BA416513 A37E6E2258CCD4B1588744B12BC867EADE449F146396FA9EE12103B66ECB1FF8 EE56572E0FE9DC51D0C14763719590907D6ACC72C99ADA984C035C596E5DFA19 0975916580FD4D441FDCD502A01B8AC5D734DEDB0DDC7F5EDAE459A062738DCE 364A3C6FBF6911EAAEC6CE90C8BBF669E5560D3A4E4629C27A0B6F8A6ACB4829 715990DA3E60781CCB9E1B309E7FDB0B93D474EB1108D6D9B0155FBF398B60E2 622D60F65E2B37ACA1DD70B4E5AA67329031E83DC399DF1C918A7CE13B103791 62478991A8AC99FF02BA16E49C38AB5FFD8C020273BE56878D3634E2DB9A19BC 5FC412FD0F9404438FC081B91180C2D1ECBCD0EFE378C8AB7F3A058D10975205 015BA897EFF6C8DCB760D57A310CA58EFCB42338051FCC9B34721F 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont %%BeginFont: CMSY8 %!PS-AdobeFont-1.1: CMSY8 1.0 %%CreationDate: 1991 Aug 15 07:22:10 % Copyright (C) 1997 American Mathematical Society. All Rights Reserved. 11 dict begin /FontInfo 7 dict dup begin /version (1.0) readonly def /Notice (Copyright (C) 1997 American Mathematical Society. All Rights Reserved) readonly def /FullName (CMSY8) readonly def /FamilyName (Computer Modern) readonly def /Weight (Medium) readonly def /ItalicAngle -14.035 def /isFixedPitch false def end readonly def /FontName /CMSY8 def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 0 /.notdef put readonly def /FontBBox{-30 -955 1185 779}readonly def /UniqueID 5000818 def currentdict end currentfile eexec D9D66F633B846A97B686A97E45A3D0AA052F09F9C8ADE9D907C058B87E9B6964 7D53359E51216774A4EAA1E2B58EC3176BD1184A633B951372B4198D4E8C5EF4 A213ACB58AA0A658908035BF2ED8531779838A960DFE2B27EA49C37156989C85 E21B3ABF72E39A89232CD9F4237FC80C9E64E8425AA3BEF7DED60B122A52922A 221A37D9A807DD01161779DDE7D5FC1B2109839E5B52DFBB2A7C1B5D8E7E8AA0 5B10EA43D6A8ED61AF5B23D49920D8F79DAB6A59062134D84AC0100187A6CD1F 80F5DDD9D222ACB1C23326A7656A635C4A241CCD32CBFDF8363206B8AA36E107 1477F5496111E055C7491002AFF272E46ECC46422F0380D093284870022523FB DA1716CC4F2E2CCAD5F173FCBE6EDDB874AD255CD5E5C0F86214393FCB5F5C20 9C3C2BB5886E36FC3CCC21483C3AC193485A46E9D22BD7201894E4D45ADD9BF1 CC5CF6A5010B5654AC0BE0DA903DB563B13840BA3015F72E51E3BC80156388BA F83C7D393392BCBC227771CDCB976E9330253ACACB1811D98821C8EAA6108C84 166B38517E9B46A5EA642FD82269E52F710FDC3F31F77407FD3FE9E1325685D6 3F9513CF20C7B0F890D32A2E4769688F11300805BC98B38FEAD1AF4550111574 199405555F33E815BCB82BB9861107CDCBCFDF46C4DF83956393BA5C06DE1102 4E1675AE8D4A16EE5FEA79589B3AD34F5FC525F9462A2D306B9FE5CBBA2E10CF AFEC1AF97C8764F461357236C1522E97BE5AFA03E14492AB7391C4C73A0FD6D1 B8CCFAFB5CD13D0F7F2F03911F30A367D08556345CB38C245AAB47C13CD58348 F7F3556129409C6B32B4BBA5EC9B2A0B4B4CC88A46A50772328E8E151FF64117 F1CA272363AA515DD3E0B9F481A1328047EAFCDE2BE20D2A2CDB825E794450AC 5C9DB8120AB132CD78B4B6FE97E963524FEC6A66213C6096BC4B6F4630302A12 BA99CA64A8FC6F84B9674EAD2616EE773FA40E812907054FF7CE1508E17C4796 10AD13C6D364BE2E119D85C4A81024BE60BDA09D318C3271603DADABF682FA56 832E69E522E13AA35B19BE88DF3D0DFAE4E7B91C01EB0E487B28D4C61EC02264 27E61598DC6FBFCCA1F94063CCD3881C233978E1AFEEEB2A6F6EF571105D99D7 F43F8348BEB17441F67CAFC0F8560E68E55B6D27DD7392F7280E02BE3266A5D0 EA8AF125FC240349FA71BAEFDAFBCA094FE55B9BAB913CBB7EE4CE90F4D00720 9BE085895BC7EFFB2653DA13040F72FC14218E1E810BB7B7205360611388D299 A49A2344B4642CDE7B0E6D9C706745D94F073259555797419F1D356D5B49EED9 8CC87323E068D90C62B0F910947BA40856827F8DC6EB495C5176FE513AD57850 36EF77E34A2FF35D4644F05B2BF1D8392C10991559516821497A3E22611AB702 19C0C766B6F3FD78AD9C4ED323468E67B91CE466A3AC26CAE96C94D9583E6F10 AD616FE977E31FF23A8AA1D2680943FB460FAB54E5D11C9699DB1CA1EC0F4FF4 70C9B63E803F3FE4A39077DC075F44A914CF4C62D47B8A6EF7F2AD28507563D0 BCACEA57EEDAB9E811C61B47ABA3B32540F767C137F80B3A016BB8D805854F7D FC888F2D6C172F72D662B4E3B220606500077D3B8C0DC36CFF723CC74E43054A 8C7CFFAA2B421C3A00D34E7CAC93FFC781A2E129DBA22F1F2033D11F6E486690 2ADF09656F2F32BE334004E80266B7548FB5EBF13C064AE9897D6450A01D551C D54A2CFB6B66BF39B6777C8D57C9AB2BE04374C689D7A11418327337473F61E1 092F507DA1F906D365517E50A18DBF36B12CD10806834E5A9F9F3AB2C0C13314 CDCD79185654BABC21DCE4BEEB0295C8F3564D1D0772C3371F1AE1D55A3C2274 6D70CA9844EC8DA5F4C78D8376B7684E0CE16304EE86726B5066101DE06E670B 6B4E785F56609FCC095A92E171D5F104067E9D4DD359E8427E38FF4A2E910857 01653768456F2E7AC5443187EBADB6C112B2510F5C713F27516AA91C27525AEA E47C4B245CFB1C42FEE8B8FE491E08AEA559038A3CAE0400EA5B85DD82D2C4B4 473764100DF8A26DFC168A494652ECD5F641126EEDCADFB01E5E5D871DC8DEFF 5AD5F227B80A0298C4EAFAE253505116F3D8AE34B21CF26B379B476BFE96C9FD 7E1193438EEC30A63E8ECAD318738FE196A27D01D0F2C6B2EBDA381A1A0C0323 7E4CCAC94F3787B989970CBD2B91571AE59836BBC3D071F0779F21A5BFCCBB1B 136793FFA8BC14C09C69EA89E44CB5A312C349E7FF9A72716AAD75E403BFAC75 3B558DC78E7FF4FF1F4524FED98A06C12E81671B008A50ECBA2143C68C65E68E 428932318C97D29BE0E943C732FD50B4F16B9E0D8BCF763411E6668CE76359F6 B5C20E2B269B6930350D7E1F1648199CA8D97AC91DFF36F022118A88B9072E0D 17999A553C2CB6256A8FBD287270914073EF02F9FD73B2919C3CC4B8ACA7BA5E 2E96F49A4CAA3A1F425C32366DE26A3B1B9CE369D8B938D50A910F7C22B3078E DEB596A51374F01FF77B711CB8E3553D6F655E01A2D499D1EA1F8D07490C9BA5 330719062B70B7D01DA6595AE43D6674BF6D57A0E9F4202C70BC309CCC1BD6DF 2EA89C98BBBED602DA521C7DBFA094D6C06A8741AC520FB8A9DBA78191ED7E5B 140B0423CE09C7D5B3FB4AE21A8F9076A46DB6E5787AF8FED742DECD38021DF3 7D25D922B9481B4480A2C3A36757B8C6234EB0A3A74E50D403D7EBA3285E03EB F9300B5AF961CCD706B0CA8BA94AD6D890774B7EA586E10296FF5F57F1FCEB4B 4C158CBE5AD71C93A230B372973091739753BB12AD72320C889EE0E30149C12D D1956EE2FA6A1DA8002260F79C4FD3A39F58B741494176953D922FB3EF4930D2 DD6AB271023EEF2D4D3CA4A4CA4E930D4A223B95A4AD2F4F71E76478608BDB32 A91AF72BE20793 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont TeXDict begin 40258431 52099146 1000 600 600 (paper.dvi) @start /Fa 179[72 5[74 3[68 66[{ TeX10037936Encoding ReEncodeFont }3 90.9091 /CMBSY10 rf /Fb 161[41 44[41 49[{ TeXf7b6d320Encoding ReEncodeFont }2 66.4176 /CMBX8 rf /Fc 201[30 2[30 30 30 5[47 1[24 24 40[{ TeXf7b6d320Encoding ReEncodeFont }7 49.8132 /CMR6 rf /Fd 148[51 107[{ TeXaae443f0Encoding ReEncodeFont }1 99.6264 /CMMI12 rf /Fe 255[65{ TeXbbad153fEncoding ReEncodeFont }1 83.022 /CMSY10 rf /Ff 159[28 18[63 4[54 12[20 59[{ TeXaae443f0Encoding ReEncodeFont }4 58.1154 /CMMI7 rf /Fg 201[33 33 33 33 33 33 7[26 26 40[{ TeXf7b6d320Encoding ReEncodeFont }8 58.1154 /CMR7 rf /Fh 171[66 7[57 76[{ TeXf7b6d320Encoding ReEncodeFont }2 83.022 /CMBX10 rf /Fi 165[46 1[120 6[78 88 12[73 73 73 73 14[73 73 30[50 50 14[38 38{}14 83.022 /CMEX10 rf /Fj 165[64 5[73 1[78 79 71 2[99 63 2[40 1[82 66 3[74 17[52 48[{ TeXf7b6d320Encoding ReEncodeFont }12 90.9091 /CMBX10 rf /Fk 194[60 10[38 38 49[{ TeXf7b6d320Encoding ReEncodeFont }3 74.7198 /CMR9 rf /Fl 142[34 39 2[68 1[40 40[58 43[46 22[{ TeXaae443f0Encoding ReEncodeFont }6 74.7198 /CMMI9 rf /Fm 141[29 4[54 1[33 34[50 72[{ TeXaae443f0Encoding ReEncodeFont }4 49.8132 /CMMI6 rf /Fn 161[35 32[55 4[35 1[35 1[35 35 35 35 35 4[55 1[27 27 6[20 33[{ TeXf7b6d320Encoding ReEncodeFont }13 66.4176 /CMR8 rf /Fo 149[25 2[45 45 45[51 5[61 91 15[91 7[71 71 2[71 71 16[45 71 25 71{ TeXbbad153fEncoding ReEncodeFont }15 90.9091 /CMSY10 rf /Fp 135[40 3[25 33 32 4[62 1[37 29 24 41 7[29 6[41 58 10[68 48 3[58 12[20 36[42 41 7[36 40 45 11[{ TeXaae443f0Encoding ReEncodeFont }21 66.4176 /CMMI8 rf /Fq 134[33 3[37 21 29 29 1[37 37 37 54 21 2[21 2[21 33 37 2[37 97[{ TeXBase1Encoding ReEncodeFont }15 74.7198 /Times-Italic rf /Fr 203[25 25 25 25 49[{ TeXBase1Encoding ReEncodeFont }4 49.8132 /Times-Roman rf /Fs 133[35 40 40 61 40 45 25 35 35 45 45 45 45 66 25 40 25 25 45 45 25 40 45 40 45 45 10[56 66 51 45 56 66 56 66 61 76 51 61 40 30 66 66 56 56 66 61 56 56 6[30 1[45 3[45 1[45 45 45 25 23 30 23 2[30 30 37[45 2[{ TeXBase1Encoding ReEncodeFont }61 90.9091 /Times-Italic rf /Ft 133[44 50 50 72 50 55 33 39 44 1[55 50 55 83 28 55 33 28 55 50 33 44 55 44 55 50 9[100 2[66 55 72 1[61 78 1[94 3[39 78 78 1[66 72 72 1[72 6[33 3[50 50 50 50 50 50 1[28 25 33 25 4[33 39[{ TeXBase1Encoding ReEncodeFont }51 99.6264 /Times-Bold rf /Fu 141[36 3[51 76 25 2[25 10[45 25 1[25 10[62 18[71 1[25 1[45 45 1[45 45 45 45 45 45 45 4[71 1[35 35 2[76 34[71 2[{ TeXf7b6d320Encoding ReEncodeFont }25 90.9091 /CMR10 rf /Fv 129[45 5[52 65 44 52 33 43 41 1[46 1[55 80 1[47 37 31 52 2[42 47 2[48 38 6[53 75 86 2[53 2[72 3[88 62 3[76 2[67 75 65 69 3[71 45 71 25 25 30[52 47 52 2[55 53 7[47 51 58 11[{ TeXaae443f0Encoding ReEncodeFont }44 90.9091 /CMMI10 rf /Fw 141[22 1[33 33 5[18 21[37 5[59 3[22 1[48 37 2[44 14[33 33 33 33 1[18 47[{ TeXBase1Encoding ReEncodeFont }15 66.4176 /Times-Roman rf /Fx 231[60 23[60{ TeXbbad153fEncoding ReEncodeFont }2 74.7198 /CMSY9 rf /Fy 107[33 33 24[33 37 37 54 37 37 21 29 25 37 37 37 37 58 21 37 21 21 37 37 25 33 37 33 37 33 3[25 1[25 3[71 1[54 46 42 50 1[42 1[54 66 3[25 54 54 42 46 54 50 50 54 69 4[21 21 37 37 37 37 37 37 37 37 37 37 21 19 25 19 2[25 25 25 36[42 2[{ TeXBase1Encoding ReEncodeFont }68 74.7198 /Times-Roman rf /Fz 133[29 29 29 116[32 2[48{ TeXbbad153fEncoding ReEncodeFont }5 49.8132 /CMSY6 rf /FA 134[60 1[86 60 66 40 47 53 1[66 60 66 100 33 66 1[33 66 60 40 53 66 53 1[60 10[86 3[86 93 73 1[86 113 3[47 93 3[86 86 80 86 11[60 60 60 60 60 1[33 1[40 5[40 39[{ TeXBase1Encoding ReEncodeFont }41 119.552 /Times-Bold rf /FB 105[45 1[40 40 24[40 45 45 66 45 45 25 35 30 45 45 45 45 71 25 45 25 25 45 45 30 40 45 40 45 40 3[30 1[30 1[66 1[86 66 66 56 51 61 66 51 66 66 81 56 66 35 30 66 66 51 56 66 61 61 66 5[25 25 45 45 45 45 45 45 45 45 45 45 25 23 30 23 2[30 30 30 71 76 34[51 2[{ TeXBase1Encoding ReEncodeFont }77 90.9091 /Times-Roman rf /FC 134[45 45 66 2[30 35 40 1[51 45 51 76 25 2[25 51 2[40 51 40 1[45 12[61 6[86 61 71 5[61 10[30 8[45 49[{ TeXBase1Encoding ReEncodeFont }24 90.9091 /Times-Bold rf /FD 194[65 10[42 42 49[{ TeXf7b6d320Encoding ReEncodeFont }3 83.022 /CMR10 rf /FE 129[42 9[30 3[42 2[73 1[43 44[65 34[47 4[50 48 21[{ TeXaae443f0Encoding ReEncodeFont }9 83.022 /CMMI10 rf /FF 105[42 1[37 37 24[37 42 42 60 42 42 23 32 28 42 42 42 42 65 23 42 23 23 42 42 28 37 42 37 42 37 9[78 2[51 1[55 1[46 60 1[74 4[60 3[60 20[23 21 28 21 2[28 28 37[46 2[{ TeXBase1Encoding ReEncodeFont }44 83.022 /Times-Roman rf /FG 139[28 32 37 14[37 46 42 31[60 65[{ TeXBase1Encoding ReEncodeFont }7 83.022 /Times-Bold rf /FH 133[31 31 31 65[0 4[71 15[71 29[35 2[55{ TeXbbad153fEncoding ReEncodeFont }8 66.4176 /CMSY8 rf /FI 134[50 3[50 28 39 33 2[50 50 78 28 50 1[28 50 50 33 44 50 44 50 44 9[94 2[61 55 3[72 1[89 4[72 5[66 72 19[33 3[33 33 40[{ TeXBase1Encoding ReEncodeFont }30 99.6264 /Times-Roman rf /FJ 134[72 1[104 72 72 40 56 48 72 72 72 72 112 40 2[40 72 72 1[64 1[64 1[64 19[128 31[48 45[{ TeXBase1Encoding ReEncodeFont }21 143.462 /Times-Roman rf end %%EndProlog %%BeginSetup %%Feature: *Resolution 600dpi TeXDict begin end %%EndSetup %%Page: 1 1 TeXDict begin 1 0 bop 214 578 a FJ(Multi-serv)n(er)33 b(queueing)g(systems)i(with)g(multiple)f(priority)g(classes)149 865 y FI(Mor)24 b(Harchol-Balter)942 829 y FH(\003)1159 865 y FI(T)-8 b(akayuki)24 b(Osogami)1913 829 y FH(y)2127 865 y FI(Alan)h(Scheller)n(-W)-8 b(olf)2900 829 y FH(z)3116 865 y FI(Adam)25 b(W)l(ierman)3752 829 y FH(x)1796 1458 y FG(Abstract)352 1616 y FF(W)-7 b(e)20 b(present)e(the)h(\002rst)h (near)n(-e)o(xact)e(analysis)h(of)f(an)h(M/PH/)p FE(k)k FF(queue)18 b(with)h FE(m)k(>)f FD(2)d FF(preempti)n(v)o(e-resume)d (priority)227 1716 y(classes.)26 b(Our)17 b(analysis)h(introduces)e(a)i (ne)n(w)g(technique,)e(which)i(we)g(refer)f(to)h(as)h(Recursi)n(v)o(e)e (Dimensionality)f(Reduc-)227 1815 y(tion)25 b(\(RDR\).)h(The)f(k)o(e)o (y)f(idea)h(in)h(RDR)g(is)g(that)g(the)f FE(m)p FF(-dimensionally)e (in\002nite)i(Mark)o(o)o(v)e(chain,)j(representing)d(the)227 1915 y FE(m)e FF(class)h(state)f(space,)g(is)g(recursi)n(v)o(ely)e (reduced)g(to)i(a)g FD(1)p FF(-dimensionally)c(in\002nite)k(Mark)o(o)o (v)e(chain,)h(that)g(is)i(easily)f(and)227 2015 y(quickly)i(solv)o(ed.) 34 b(RDR)25 b(in)m(v)n(olv)o(es)e(no)g(truncation)f(and)h(results)i(in) e(only)g(small)i(inaccurac)o(y)c(when)i(compared)f(with)227 2114 y(simulation,)d(for)h(a)h(wide)f(range)f(of)h(loads)g(and)f(v)n (ariability)g(in)i(the)f(job)g(size)h(distrib)n(ution.)352 2214 y(Our)c(analytic)g(methods)f(are)h(then)g(used)g(to)h(deri)n(v)o (e)e(insights)h(on)g(ho)n(w)g(multi-serv)o(er)f(systems)i(with)f (prioritization)227 2314 y(compare)25 b(with)h(their)g(single)g(serv)o (er)g(counterparts)e(with)i(respect)g(to)h(response)e(time.)43 b(Multi-serv)o(er)25 b(systems)h(are)227 2413 y(also)c(compared)d(with) j(single)f(serv)o(er)g(systems)g(with)h(respect)f(to)h(the)f(ef)n(fect) g(of)g(dif)n(ferent)f(prioritization)f(schemes)i(\226)227 2513 y(\223smart\224)i(prioritization)e(\(gi)n(ving)g(priority)h(to)h (the)g(smaller)g(jobs\))g(v)o(ersus)f(\223stupid\224)g(prioritization)f (\(gi)n(ving)h(priority)227 2612 y(to)g(the)g(lar)o(ger)e(jobs\).)29 b(W)-7 b(e)22 b(also)g(study)f(the)h(ef)n(fect)f(of)g(approximating)d FE(m)k FF(class)h(performance)c(by)i(collapsing)f(the)i FE(m)227 2712 y FF(classes)g(into)e(just)g(tw)o(o)h(classes.)0 2934 y FC(K)n(eyw)o(ords:)44 b FB(M/GI/k,)33 b(M/PH/k,)f(multi-serv)o (er)h(queue,)h(priority)f(queue,)i(matrix)c(analytic)i(methods,)h(b)n (usy)f(periods,)0 3080 y(multi-class)26 b(queue,)e(preempti)n(v)o(e)h (priority)-6 b(.)0 3418 y FA(1)119 b(Intr)n(oduction)0 3659 y FB(Much)29 b(of)g(queueing)i(theory)g(is)d(de)n(v)n(oted)j(to)e (analyzing)j(priority)e(queues,)i(where)d(jobs)h(\(customers\))h(are)e (labeled)i(and)0 3805 y(serv)o(ed)22 b(in)e(accordance)k(with)c(a)g (priority)i(scheme:)29 b(high-priority)24 b(jobs)d(preempt)h (medium-priority)i(jobs,)d(which)g(in)g(turn)0 3952 y(preempt)29 b(lo)n(w-priority)i(jobs)d(in)g(the)h(queue.)43 b(Priority)29 b(queueing)i(comes)e(up)f(in)g(man)o(y)g(applications:)42 b(Sometimes)28 b(the)0 4099 y(priority)j(of)d(a)h(job)g(is)f (determined)j(by)e(the)g(job')-5 b(s)30 b(o)n(wner)f(via)g(a)f(Service) i(Le)n(v)o(el)e(Agreement)i(\(SLA\),)d(whereby)j(certain)0 4246 y(customers)d(ha)n(v)o(e)g(chosen)g(to)e(pay)i(more)e(so)h(as)f (to)h(get)g(high-priority)j(access)e(to)f(some)f(high-demand)k (resource.)37 b(Other)p 0 4410 1560 4 v 99 4464 a Fz(\003)134 4495 y Fy(Supported)22 b(by)g(NSF)e(Career)h(Grant)g(CCR-0133077,)i (NSF)d(Theory)h(CCR-0311383,)i(NSF)d(ITR)g(CCR-0313148,)j(and)f(IBM)f (Corporation)0 4587 y(via)e(Pittsb)o(ur)o(gh)f(Digital)g(Greenhouse)j (Grant)e(2003.)0 4678 y(Email:)27 b(harchol@cs.cmu.edu;)d(W)-6 b(eb:)28 b(http://www)-5 b(.cs.cmu.edu/)p Fx(\030)p Fy(harchol;)23 b(Address:)29 b(Department)22 b(of)f(Computer)h(Science,)g(Carne)o(gie) g(Mel-)0 4769 y(lon)d(Uni)n(v)o(ersity)-5 b(,)19 b(5000)h(F)o(orbes)f (A)-6 b(v)o(e.,)19 b(Pittsb)o(ur)o(gh,)f(P)-7 b(A,)18 b(15213;)i(Phone:)k(412-268-7893;)e(F)o(ax:)h(412-268-5576.)102 4831 y Fz(y)134 4863 y Fy(Email:)37 b(osogami@cs.cmu.edu;)31 b(Address:)38 b(Department)26 b(of)g(Computer)h(Science,)h(Carne)o(gie) e(Mellon)h(Uni)n(v)o(ersity)-5 b(,)28 b(5000)f(F)o(orbes)f(A)-6 b(v)o(e.,)0 4955 y(Pittsb)o(ur)o(gh,)18 b(P)-7 b(A)18 b(15213;)i(Phone:)k(412-268-3621.)102 5017 y Fz(z)134 5048 y Fy(Email:)31 b(a)o(w)o(olf@andre)n(w)-5 b(.cmu.edu;)27 b(Address:)32 b(T)-5 b(epper)24 b(School)f(of)g(Business,)h(Carne)o (gie)g(Mellon)g(Uni)n(v)o(ersity)-5 b(,)24 b(5000)g(F)o(orbes)f(A)-6 b(v)o(e.,)24 b(Pitts-)0 5140 y(b)o(ur)o(gh,)19 b(P)-7 b(A,)18 b(15213;)i(Phone:)k(412-268-5066.)102 5202 y Fz(x)134 5233 y Fy(Email:)31 b(acw@cs.cmu.edu;)25 b(Address:)32 b(Department)23 b(of)g(Computer)g(Science,)h(Carne)o(gie)f(Mellon)g (Uni)n(v)o(ersity)-5 b(,)24 b(5000)g(F)o(orbes)f(A)-6 b(v)o(e.,)23 b(Pitts-)0 5325 y(b)o(ur)o(gh,)c(P)-7 b(A,)18 b(15213;)i(Phone:)k(412-877-9455.)1927 5596 y FB(1)p eop end %%Page: 2 2 TeXDict begin 2 1 bop 0 159 a FB(times,)30 b(the)f(priority)h(of)f(a)f (job)h(is)f(arti\002cially)j(created,)g(so)e(as)f(to)h(maximize)g(a)f (compan)o(y')-5 b(s)31 b(pro\002t)d(or)h(increase)h(system)0 305 y(utilization.)h(F)o(or)22 b(e)o(xample,)h(an)f(online)i(store)g (may)e(choose)i(to)e(gi)n(v)o(e)h(high-priority)j(to)c(the)h(requests)h (of)f(big)g(spenders,)h(so)0 452 y(that)g(those)h(customers)g(are)f (less)g(lik)o(ely)h(to)e(go)h(else)n(where,)h(see)e([18)r(].)141 599 y(Analyzing)28 b(the)f(mean)f(response)j(time)d(\(and)h(higher)h (moments)f(of)f(response)j(time\))d(for)h(dif)n(ferent)h(classes)g(of)e (jobs)0 746 y(is)21 b(clearly)i(an)f(important)h(problem.)1154 713 y Fw(1)1220 746 y FB(While)f(this)g(problem)h(has)e(been)i(well)e (understood)j(in)e(the)f(case)i(of)e(a)g(single-serv)o(er)0 892 y(M/GI/1)e(queue)i(since)f(the)f(1950')-5 b(s)21 b([5)q(],)e(the)h(problem)g(becomes)h(much)e(more)g(dif)n(\002cult)h (when)g(considered)i(in)d(the)h(conte)o(xt)0 1039 y(of)j(a)f (multi-serv)o(er)j(M/GI/)p Fv(k)g FB(system,)f(and)f(e)n(v)o(en)g(for)g (an)f(M/M/)p Fv(k)k FB(system)d(when)g(jobs)h(ha)n(v)o(e)f(dif)n (ferent)i(completion)g(rates.)0 1186 y(This)g(is)h(unfortunate)j(since) d(such)h(multi-serv)o(er)g(systems)g(are)f(pre)n(v)n(alent)h(in)f(man)o (y)f(applications)k(where)d(prioritization)0 1333 y(is)d(used,)h(e.g.,) f(web)g(serv)o(er)i(f)o(arms)f(and)g(super)n(-computing)k(centers.)141 1480 y(The)d(reason)h(that)g(priority)h(queueing)g(is)e(dif)n(\002cult) h(to)f(analyze)i(in)e(a)f(multi-serv)o(er)j(setting)g(is)e(that)h(jobs) f(of)g(dif)n(ferent)0 1626 y(priorities)j(may)e(be)f(in)h(service)h (\(at)f(dif)n(ferent)i(serv)o(ers\))f(at)f(the)g(same)g(time,)g(thus)g (the)g(Mark)o(o)o(v)g(chain)h(representation)j(of)0 1773 y(the)25 b(multi-class,)h(multi-serv)o(er)g(queue)g(appears)g(to)e (require)i(tracking)g(the)f(number)g(of)f(jobs)h(of)f(each)h(class.)32 b(Hence)25 b(one)0 1920 y(needs)h(a)f(Mark)o(o)o(v)h(chain)g(which)f (is)g(in\002nite)h(in)f Fv(m)f FB(dimensions,)j(where)f Fv(m)e FB(is)h(the)g(number)h(of)f(priority)i(classes.)35 b(While)0 2067 y(the)25 b(analysis)i(of)e(a)f(1-dimensionally)29 b(in\002nite)d(Mark)o(o)o(v)g(chain)g(is)e(easy)-6 b(,)26 b(the)f(analysis)i(of)e(an)g Fv(m)p FB(-dimensionally)j(in\002nite)0 2213 y(Mark)o(o)o(v)c(chain)h(\()p Fv(m)g(>)g Fu(1)p FB(\))f(is)f(lar)n(gely)j(intractable.)0 2498 y Ft(Prior)f(w)o(ork)0 2706 y FB(The)31 b(number)h(of)f(papers)i(analyzing)h(multi-serv)o(er)f (priority)g(queues)g(is)e(v)n(ast,)i(ho)n(we)n(v)o(er)f(almost)g(all)f (are)h(restricted)h(to)0 2852 y(only)28 b Fs(two)g(priority)h(classes)p FB(.)43 b(Of)26 b(those)j(restricted)h(to)d(tw)o(o)h(priority)h (classes,)h(all)e(assume)g Fs(e)n(xponential)j(service)e(times)p FB(.)0 2999 y(The)24 b(only)h(papers)h Fs(not)f FB(restricted)h(to)f (tw)o(o)f(priority)i(classes)g(are)e(coarse)i(approximations)i(based)e (on)e(assuming)i(that)f(the)0 3146 y(multi-serv)o(er)g(beha)n(vior)g (is)d(related)i(to)e(that)h(of)g(a)f(single)i(serv)o(er)f(system)g([2)q (])f(or)g(approximations)k(based)e(on)f(aggre)o(gating)0 3293 y(the)h(man)o(y)f(priority)j(classes)f(into)f(tw)o(o)f(classes)i ([20)r(,)d(23)q(].)0 3573 y FC(T)-7 b(w)o(o)23 b(priority)i(classes)0 3721 y FB(W)-7 b(e)33 b(start)h(by)g(describing)j(the)d(papers)h (restricted)i(to)c Fs(two)h(priority)i(classes)f FB(and)f Fs(e)n(xponentially)k(distrib)n(uted)g(service)0 3867 y(demands)p FB(.)54 b(T)-6 b(echniques)34 b(for)d(analyzing)k(the)c (M/M/)p Fv(k)j FB(dual)f(priority)g(system)f(can)g(be)g(or)n(ganized)i (into)e(four)g(types)h(on)0 4014 y(which)28 b(we)f(elaborate)k(belo)n (w:)38 b(\(i\))28 b(approximations)j(via)e(aggre)o(gation)h(or)e (truncation;)33 b(\(ii\))28 b(matrix)h(analytic)h(methods;)0 4161 y(\(iii\))c(generating)i(function)g(methods;)g(\(i)n(v\))d (special)i(cases)g(where)e(the)h(priority)h(classes)g(ha)n(v)o(e)f(the) g(same)f(mean.)35 b(Unless)0 4308 y(otherwise)25 b(mentioned,)g (preempti)n(v)o(e-resume)i(priorities)f(should)g(be)d(assumed.)141 4455 y(Nearly)k(all)f(analysis)i(of)e(dual)g(priority)i(M/M/)p Fv(k)h FB(systems)e(in)l(v)n(olv)o(es)h(the)f(use)f(of)g(Mark)o(o)o(v)h (chains,)g(which)g(with)f(tw)o(o)0 4601 y(priority)38 b(classes)f(gro)n(ws)f(in\002nitely)h(in)e(tw)o(o)h(dimensions)i(\(one) e(dimension)i(for)e(each)g(priority)i(class\).)66 b(In)36 b(order)g(to)0 4748 y(o)o(v)o(ercome)23 b(this,)f(researchers)i(ha)n(v) o(e)f(simpli\002ed)f(the)g(chain)h(in)e(v)n(arious)j(w)o(ays.)k(Kao)21 b(and)h(Narayanan)i(truncate)f(the)f(chain)0 4895 y(by)30 b(either)g(limiting)h(the)e(number)i(of)e(high)h(priority)i(jobs)e([13) q(],)g(or)g(the)f(number)i(of)e(lo)n(w)g(priority)i(jobs)f([11)q(].)46 b(Nishida)p 0 5059 1560 4 v 105 5115 a Fr(1)134 5146 y Fy(W)-6 b(e)20 b(will)g(use)h(the)f(term)h Fq(r)m(esponse)h(time)e Fy(throughout)i(the)e(paper)i(to)e(denote)h(the)g(time)f(from)g(when)i (a)e(job)h(arri)n(v)o(es)f(until)h(it)e(is)h(completed.)29 b(W)-6 b(e)0 5238 y(will)17 b(also)i(occasionally)g(talk)f(about)h(the) g Fq(delay)g Fy(\(w)o(asted)f(time\),)g(which)g(we)g(de\002ne)h(as)f (the)h(job')l(s)f(response)h(time)f(minus)h(its)f(service)g (requirement.)1927 5596 y FB(2)p eop end %%Page: 3 3 TeXDict begin 3 2 bop 0 159 a FB(aggre)o(gates)38 b(states,)h(yielding) f(an)d(often)i(rough)g(approximation)h([23)r(].)64 b(Kapadia,)39 b(Kazmi)c(and)h(Mitchell)h(e)o(xplicitly)0 305 y(model)26 b(a)f(\002nite)g(queue)i(system)f([14)q(].)33 b(Unfortunately)-6 b(,)29 b(aggre)o(gation)f(or)d(truncation)k(is)c(unable,)i(in)e (general,)i(to)e(capture)0 452 y(the)f(system)g(performance)i(as)e(the) f(traf)n(\002c)h(intensity)i(gro)n(ws)e(lar)n(ge.)141 599 y(Although,)33 b(in)c(theory)-6 b(,)32 b(the)e(matrix)g(analytic)i (method)e(can)g(be)g(used)g(to)g(directly)h(analyze)h(a)d (2D-in\002nite)h(Mark)o(o)o(v)0 746 y(chain)k(\(see)f(for)g(e)o(xample) h([3)q(]\),)g(the)f(matrix)h(analytic)h(method)e(is)g(much)g(simpler)h (and)f(more)g(computationally)k(ef)n(\002-)0 892 y(cient)27 b(when)f(it)g(is)g(applied)i(to)f(a)e(1D-in\002nite)j(Mark)o(o)o(v)f (chain.)38 b(Therefore,)28 b(most)e(papers)i(that)e(use)h(the)f(matrix) h(analytic)0 1039 y(method)h(to)e(analyze)j(systems)e(in)l(v)n(olving)j (2D-in\002nite)e(Mark)o(o)o(v)g(chains)g(\002rst)e(reduce)i(the)f (2D-in\002nite)h(chain)g(to)e(a)h(1D-)0 1186 y(in\002nite)h(chain)f(by) -6 b(,)28 b(for)f(e)o(xample,)h(truncating)h(the)f(state)f(space)h(by)f (placing)h(an)f(upper)h(bound)g(on)f(the)g(number)h(of)e(jobs)0 1333 y([13)q(,)j(11)q(,)h(17,)g(22)q(].)48 b(Miller)31 b([19)q(])f(and)h(Ngo)f(and)g(Lee)g([22)q(])g(partition)j(the)d(state)h (space)h(into)f(blocks)g(and)g(then)g(\223super)n(-)0 1480 y(blocks,)-6 b(\224)24 b(according)h(to)d(the)h(number)h(of)e (high)h(priority)i(customers)f(in)e(queue.)30 b(Ho)n(we)n(v)o(er)l(,)22 b([19)q(])g(e)o(xperiences)j(numerical)0 1626 y(instability)h(issues)f (when)f Fv(\032)h(>)g Fu(0)p Fv(:)p Fu(8)p FB(.)141 1773 y(A)g(third)h(stream)h(of)e(research)j(capitalizes)h(on)c(the)h(e)o (xponential)j(job)d(sizes)h(by)f(e)o(xplicitly)i(writing)e(out)g(the)g (balance)0 1920 y(equations)i(and)d(then)h(\002nding)g(roots)f(via)h (generating)i(functions.)35 b(In)25 b(general)i(these)f(yield)g (complicated)h(mathematical)0 2067 y(e)o(xpressions)h(susceptible)f(to) e(numerical)h(instabilities)j(at)24 b(higher)i(loads.)33 b(See)24 b(King)h(and)g(Mitrani)h([20)q(];)f(Gail,)f(Hantler)l(,)0 2213 y(and)g(T)-7 b(aylor)24 b([8)q(,)e(9];)i(Feng,)f(K)m(o)n(w)o(ada,) g(and)h(Adachi)g([7)q(];)f(and)h(Kao)f(and)h(W)l(ilson)h([12)q(].)141 2360 y(Finally)31 b(there)h(are)f(papers)h(that)f(consider)h(the)f (special)h(case)f(where)g(the)g(multiple)h(priority)g(classes)g(all)f (ha)n(v)o(e)g(the)0 2507 y(same)21 b(mean.)28 b(These)21 b(include)i(Da)n(vis)e([6)q(],)f(K)n(ella)h(and)g(Y)-9 b(echiali)22 b([15)q(])f(\(for)g(non-preempti)n(v)o(e)j(priorities\),)g (and)d(Buzen)h(and)0 2654 y(Bondi)i([4)q(].)141 2801 y(The)36 b(only)h(w)o(ork)f(dealing)i(with)e(non-e)o(xponential)k (service)e(times)e(is)g(contained)j(in)d(a)f(pair)i(of)f(papers,)k(not) d(yet)0 2947 y(published,)31 b(by)c(Sleptchenk)o(o)j(et.)d(al.)f([27)r (,)g(28)q(].)39 b(Both)27 b(papers)i(consider)g(a)e(tw)o(o-priority)-6 b(,)31 b(multi-serv)o(er)e(system)f(where)0 3094 y(within)d(each)h (priority)g(there)g(may)e(be)h(a)f(number)i(of)f(dif)n(ferent)h (classes,)h(each)e(with)g(its)f(o)n(wn)g(dif)n(ferent)j(e)o(xponential) h(job)0 3241 y(size)k(distrib)n(ution.)55 b(This)31 b(is)g(equi)n(v)n (alent)i(to)e(assuming)i(a)e Fs(hyper)n(-e)n(xponential)37 b(job)31 b(size)h(distrib)n(ution)j FB(for)c(each)h(of)f(the)0 3388 y Fs(two)c(priority)i(classes)p FB(.)42 b(The)26 b(problem)j(is)e(solv)o(ed)h(via)g(a)f(combination)j(of)d(generating)j (functions)g(and)d(matrix)h(analytic)0 3535 y(methods.)56 b(In)32 b(theory)-6 b(,)36 b(their)d(technique)i(may)d(be)g (generalizable)k(to)c(PH)f(distrib)n(utions,)38 b(though)c(the)o(y)f(e) n(v)n(aluate)g(only)0 3681 y(hyper)n(-e)o(xponential)40 b(distrib)n(utions)f(due)c(to)f(the)i(increased)h(comple)o(xity)f (necessary)i(when)d(using)h(more)e(general)j(PH)0 3828 y(distrib)n(utions.)0 4108 y FC(Mor)n(e)24 b(than)f(tw)o(o)g(priority)i (classes)0 4256 y FB(F)o(or)19 b(the)h(case)h(of)f Fs(mor)m(e)f(than)i (two)e(priority)j(classes)p FB(,)g(there)f(are)f(only)h(coarse)g (approximations.)32 b(The)19 b(Bondi-Buzen)j(\(BB\))0 4403 y(approximation)29 b([2)q(])c(is)g(beautiful)j(in)d(its)h (simplicity)h(and)f(usability)-6 b(.)38 b(It)25 b(is)g(based)i(on)f(an) f(intuiti)n(v)o(e)i(observ)n(ation)i(that)d(the)0 4550 y(\223impro)o(v)o(ement\224)j(of)e(priority)j(scheduling)g(o)o(v)o(er)d (FCFS)e(scheduling)30 b(under)f Fv(k)g FB(serv)o(ers)g(is)e(similar)h (to)f(that)h(for)f(the)h(case)0 4696 y(of)23 b(one)h(serv)o(er)h(with)e (equal)i(total)f(capacity:)993 4922 y Fv(E)5 b Fu([)p Fv(D)1168 4889 y Fw(M/GI/)q Fp(k)r Fw(/prio)1503 4922 y Fu(])p 969 4963 583 4 v 969 5046 a Fv(E)g Fu([)p Fv(D)1144 5020 y Fw(M/GI/)q Fp(k)r Fw(/FCFS)1527 5046 y Fu(])1587 4984 y Fo(\031)1717 4922 y Fv(E)g Fu([)p Fv(D)1892 4889 y Fw(M/GI/1/prio)2221 4922 y Fu(])p 1693 4963 578 4 v 1693 5046 a Fv(E)g Fu([)p Fv(D)1868 5020 y Fw(M/GI/1/FCFS)2245 5046 y Fu(])2306 4984 y(=)47 b FB(scaling)26 b(f)o(actor)r Fv(:)853 b FB(\(1\))1927 5596 y(3)p eop end %%Page: 4 4 TeXDict begin 4 3 bop 0 159 a FB(Here)29 b Fv(E)5 b Fu([)p Fv(D)380 126 y Fw(M/GI/)q Fp(k)r Fw(/prio)714 159 y Fu(])29 b FB(is)g(the)g(o)o(v)o(erall)h(mean)g(delay)g(under)g(priority)h (scheduling)h(with)d Fv(k)j FB(serv)o(ers)e(of)f(speed)h Fu(1)p Fv(=k)s FB(,)h(and)0 305 y Fv(E)5 b Fu([)p Fv(D)175 272 y Fw(M/GI/)q Fp(k)r Fw(/FCFS)558 305 y Fu(])27 b FB(is)i(de\002ned)g(similarly)g(for)g(FCFS,)c(while)k(M/GI/1)f(refers)i (to)e(a)g(single)h(serv)o(er)h(queue)f(with)f(speed)i(1.)0 452 y(This)19 b(relation)i(is)e(e)o(xact)h(when)g(job)f(sizes)i(are)e (e)o(xponential)j(with)d(the)h(same)f(rate)h(for)f(all)h(classes;)i(ho) n(we)n(v)o(er)e(what)f(happens)0 599 y(when)24 b(this)g(is)f(not)h(the) g(case)g(has)g(ne)n(v)o(er)g(been)g(established.)141 746 y(The)h(other)g(approximation)k(\(which)c(we)f(denote)j(by)e (MK-N\))e(which)j(allo)n(ws)f(for)g Fs(mor)m(e)f(than)i(two)f(priority) h(classes)0 892 y FB(and)e Fs(e)n(xponential)j FB(job)d(sizes)g(is)f (due)h(to)f(Mitrani)i(and)e(King)h([20)q(],)f(and)g(also)h(used)h(by)e (Nishida)i([23)q(])e(to)g(e)o(xtend)i(the)e(latter)0 1039 y(author')-5 b(s)28 b(analysis)g(of)e(tw)o(o)g(priority)i(classes) g(to)e Fv(m)k(>)g Fu(2)25 b FB(priority)k(classes.)38 b(The)25 b(MK-N)g(approximation)30 b(analyzes)e(the)0 1186 y(mean)19 b(delay)i(of)e(the)g(lo)n(west)h(priority)h(class)f(in)f (an)h(M/M/)p Fv(k)h FB(queue)g(with)e Fv(m)25 b Fo(\025)g Fu(2)19 b FB(priority)i(classes)g(by)e Fs(a)o(g)o(gr)m(e)l(gating)k (all)d(the)0 1333 y(higher)27 b(priority)h(classes)p FB(.)37 b(Thus,)26 b(instead)h(of)f(aggre)o(gating)i(all)e(jobs)g(into) g(one)h(class,)f(as)g(BB)e(does,)j(MK-N)d(aggre)o(gates)0 1480 y(into)h(tw)o(o)f(classes.)33 b(The)24 b(job)g(size)h(distrib)n (ution)j(of)d(the)f(aggre)o(gated)j(class)e(is)f(then)h(approximated)j (with)c(an)g(e)o(xponential)0 1626 y(distrib)n(ution)j(by)d(matching)h (the)f(\002rst)f(moment)h(of)f(the)h(distrib)n(ution.)0 1910 y Ft(Contrib)n(utions)i(of)f(this)g(paper)0 2118 y FB(In)19 b(Section)g(2,)g(we)f(introduce)j(a)d(ne)n(w)g(analytical)k (approach)f(that)e(pro)o(vides)i(the)d(\002rst)h(near)n(-e)o(xact)i (analysis)g(of)d(the)h(M/PH/)p Fv(k)0 2265 y FB(queue)37 b(with)e Fv(m)47 b Fo(\025)g Fu(2)35 b FB(preempti)n(v)o(e-resume)k (priority)e(classes.)66 b(Our)35 b(approach,)40 b(which)c(we)e(refer)j (to)e(as)g(Recursi)n(v)o(e)0 2412 y(Dimensionality)25 b(Reduction)f(\(RDR\),)c(is)i(v)o(ery)h(dif)n(ferent)h(from)e(the)g (prior)h(approaches)i(described)g(abo)o(v)o(e.)k(RDR)20 b(allo)n(ws)0 2558 y(us)j(to)g(recursi)n(v)o(ely)i(reduce)f(the)f Fv(m)p FB(-dimensionally)k(in\002nite)c(state)h(space,)g(created)g(by)f (tracking)i(the)e Fv(m)f FB(priority)j(classes,)0 2705 y(to)31 b(a)g Fu(1)p FB(-dimensionally)36 b(in\002nite)c(state)g (space,)i(which)e(is)f(analytically)k(tractable.)54 b(The)31 b(dimensionality)k(reduction)f(is)0 2852 y(done)j(without)g(an)o(y)f (truncation;)45 b(rather)l(,)40 b(we)35 b(reduce)i(dimensionality)j(by) c(introducing)j(\223b)n(usy)e(period)h(transitions\224)0 2999 y(within)f(our)g(Mark)o(o)o(v)g(chain,)k(for)c(v)n(arious)h(types) f(of)g(b)n(usy)g(periods)i(created)f(by)f(dif)n(ferent)h(job)f (classes.)69 b(The)36 b(only)0 3145 y(approximation)i(in)c(the)g(RDR)f (method)i(stems)f(from)g(the)h(f)o(act)g(that)f(we)g(need)h(to)f (approximate)j(these)e(b)n(usy)g(periods)0 3292 y(using)24 b(Mark)o(o)o(vian)g(\(phase-type\))i(PH)21 b(distrib)n(utions.)32 b(W)-7 b(e)22 b(\002nd)g(that)h(matching)h(three)g(moments)f(of)f (these)i(b)n(usy)f(periods)0 3439 y(is)31 b(usually)h(possible)h(using) f(a)e(2-phase)j(Coxian)f(distrib)n(ution,)k(and)31 b(pro)o(vides)i(suf) n(\002cient)f(accurac)o(y)-6 b(,)34 b(within)d(a)g(couple)0 3586 y(percent)20 b(of)e(simulation,)k(for)c(all)h(our)g(e)o (xperiments.)29 b(Our)18 b(e)o(xperiments)i(span)g(load)f(ranging)h (from)e Fv(\032)26 b Fu(=)f(0)p Fv(:)p Fu(05)19 b FB(to)f Fv(\032)25 b Fu(=)g(0)p Fv(:)p Fu(95)0 3733 y FB(and)34 b(job)g(size)g(v)n(ariability)j(ranging)e(from)f Fv(C)1484 3700 y Fn(2)1567 3733 y Fu(=)43 b(1)34 b FB(to)f Fv(C)1935 3700 y Fn(2)2018 3733 y Fu(=)44 b(128)p FB(,)36 b(where)e Fv(C)2654 3700 y Fn(2)2737 3733 y Fu(=)44 b Fv(v)s(ar)s Fu(\()p Fv(X)7 b Fu(\))p Fv(=)p Fu(\()p Fv(E)e Fu([)p Fv(X)i Fu(]\))3462 3700 y Fn(2)3505 3733 y FB(,)35 b(where)f Fv(X)0 3879 y FB(represents)27 b(the)d(job)g(size)h(\(service)h (requirement\).)33 b(The)23 b(accurac)o(y)j(of)e(the)h(RDR)d(method)j (can)f(be)g(increased)i(arbitrarily)0 4026 y(by)j(better)h (approximating)i(the)d(b)n(usy)h(periods.)46 b(Ha)n(ving)30 b(reduced)g(the)f(problem)h(to)f(a)f Fu(1)p FB(-dimensionally)33 b(in\002nite)c(state)0 4173 y(space,)24 b(we)f(describe)j(ho)n(w)d(to)g (deri)n(v)o(e)h(mean)g(response)i(time)d(and)h(higher)h(moments)f(of)g (response)i(time.)141 4320 y(In)f(theory)h(RDR)c(can)j(handle)i (systems)e(with)g(an)o(y)f(number)i(of)e(serv)o(ers,)i(an)o(y)f(number) g(of)g(priority)i(classes,)f(and)f(PH)0 4466 y(service)c(times.)27 b(In)19 b(addition,)j(RDR)c(is)h(quite)h(ef)n(\002cient;)i(for)d(all)g (the)h(scenarios)i(e)o(xplored)f(in)e(this)h(paper)l(,)h(the)e (computation)0 4613 y(time)i(under)h(RDR)d(is)h(less)i(than)f(a)g(fe)n (w)f(seconds.)29 b(Ho)n(we)n(v)o(er)l(,)21 b(the)h(comple)o(xity)g(of)f (the)g(RDR)e(method)j(does)g(increase)g(with)0 4760 y(both)33 b(the)f(number)h(of)f(serv)o(ers)h Fv(k)i FB(and)d(the)g(number)h(of)f (classes)i Fv(m)p FB(.)53 b(Because)33 b(RDR)d(becomes)j(less)g (practical)h(under)0 4907 y(high)i Fv(m)e FB(and)i Fv(k)s FB(,)h(we)e(de)n(v)o(elop)h(a)f(much)h(simpler)l(,)j(b)n(ut)d(only)g (slightly)h(less)f(accurate,)k(approximation)e(RDR-A)c(\(see)0 5054 y(Section)f(2.5\).)56 b(RDR-A)31 b(simpli\002es)i(calculations)j (by)d(approximating)j(an)c Fv(m)g FB(priority)i(system)g(with)e(a)g(tw) o(o)g(priority)0 5200 y(system,)24 b(which)g(is)f(then)i(solv)o(ed)f (using)h(RDR.)141 5347 y(In)32 b(Section)g(3)g(we)e(present)k(results)f (from)e(both)i(RDR)d(and)i(RDR-A)d(for)j(per)n(-class)i(mean)e (response)i(time)d(for)h(an)1927 5596 y(4)p eop end %%Page: 5 5 TeXDict begin 5 4 bop 0 159 a FB(M/PH/)p Fv(k)28 b FB(queue)g(with)e (multiple)i(priority)g(classes.)40 b(In)26 b(Section)h(4,)g(we)e(use)i (these)h(results)g(to)e(obtain)i(man)o(y)e(interesting)0 305 y Fs(insights)j FB(about)e(priority)i(queueing.)40 b(First,)27 b(in)f(Section)i(4.1)e(we)g(compare)i(the)e(performance)j (of)e(priority)h(queueing)h(in)0 452 y(a)e(multi-serv)o(er)i(system)f (with)f Fv(k)i FB(serv)o(ers)f(each)g(of)f(speed)i Fu(1)p Fv(=k)h FB(v)o(ersus)e(a)f(single)h(serv)o(er)g(of)f(speed)h Fu(1)p FB(.)39 b(W)-7 b(e)27 b(\002nd)f(that)i(the)0 599 y(ef)n(fect)33 b(of)g(priorities)i(in)d(a)g(single)i(serv)o(er)g (system)f(can)g(be)f(v)o(ery)h(dif)n(ferent)i(than)e(in)g(a)f (multi-serv)o(er)i(system)g(of)e(equal)0 746 y(capacity)-6 b(.)30 b(\(A)20 b(non-surprising)26 b(consequence)e(of)d(this)h(result) g(is)f(that)g(the)h(BB)d(approximation,)25 b(which)c(relies)h(on)f (relating)0 892 y(a)j(multi-serv)o(er)i(system)f(to)f(a)f(single)j (serv)o(er)f(system,)f(can)h(e)o(xhibit)g(lar)n(ge)g(errors.\))32 b(Ne)o(xt,)24 b(in)g(Section)h(4.2,)e(we)h(study)h(the)0 1039 y(ef)n(fect)e(of)f(priority)i(policies)g(that)e(f)o(a)n(v)n(or)h (short)g(jobs)g(\(\223smart)g(prioritization\224\))j(v)o(ersus)e (priority)f(policies)h(that)f(f)o(a)n(v)n(or)g(long)0 1186 y(jobs)k(\(\223stupid)i(prioritization\224\))j(under)27 b(systems)h(with)f(dif)n(ferent)h(numbers)g(of)f(serv)o(ers.)40 b(Understanding)30 b(the)d(ef)n(fect)g(of)0 1333 y(\223smart\224)f (prioritization)j(is)c(important)h(because)h(man)o(y)e(common)h (scheduling)i(policies)f(are)e(designed)i(to)e(gi)n(v)o(e)g(priority)0 1480 y(to)30 b(short)g(jobs.)48 b(Lastly)-6 b(,)31 b(in)f(Section)g (4.3,)h(we)e(ask)h(ho)n(w)f(ef)n(fecti)n(v)o(e)h(class)h(aggre)o (gation)h(\(aggre)o(gating)h Fv(m)j(>)g Fu(2)29 b FB(priority)0 1626 y(classes)h(into)g(just)f Fu(2)f FB(priority)j(classes\))f(is)f (as)f(an)h(approximation)j(for)d(dealing)i(with)d(systems)i(ha)n(ving)g (more)f(than)h(tw)o(o)0 1773 y(priority)c(classes.)32 b(W)-7 b(e)23 b(e)n(v)n(aluate)j(tw)o(o)e(types)h(of)f(class)h(aggre)o (gation,)i(that)d(used)h(in)f(the)h(MK-N)d(approximation)28 b(and)d(that)0 1920 y(used)f(in)g(RDR-A,)d(to)j(sho)n(w)f(when)h(class) g(aggre)o(gation)i(serv)o(es)f(as)e(a)g(reasonable)k(approximation.)0 2257 y FA(2)119 b(RDR)31 b(analysis)e(of)h(M/PH/k)h(with)f(m)g (priority)g(classes)0 2498 y FB(In)21 b(this)g(section)i(we)d(describe) k(the)d(RDR)e(technique,)24 b(di)n(viding)f(our)e(e)o(xplanation)j (into)e(three)g(parts.)29 b(As)20 b(an)h(introduction,)0 2645 y(in)31 b(Section)i(2.1,)g(we)d(deal)i(only)h(with)e(the)h (simplest)g(case)g(of)g Fv(m)39 b Fu(=)h(2)31 b FB(priority)i(classes)g (and)f(e)o(xponential)j(job)d(sizes,)0 2792 y(which)h(we)f(solv)o(e)h (using)h(the)f(techniques)j(in)d([26)q(,)f(30].)56 b(W)-7 b(e)32 b(then)h(mo)o(v)o(e)g(to)f(the)h(dif)n(\002cult)h(case)f(of)g Fv(m)42 b(>)g Fu(2)32 b FB(priority)0 2939 y(classes,)g(b)n(ut)e(still) g(with)g(e)o(xponential)i(service)f(times,)g(in)e(Section)i(2.2.)46 b(Here)29 b(the)h(techniques)j(from)c([26)q(,)f(30)q(])h(do)h(not)0 3085 y(apply)-6 b(,)31 b(so)e(we)f(introduce)j(Recursi)n(v)o(e)f (Dimensionality)i(Reduction)e(\(RDR\).)d(The)i(RDR)d(approach)32 b(uses)d(the)g(analysis)0 3232 y(of)e(the)g Fv(m)c Fo(\000)g Fu(1)k FB(priority)i(classes)f(to)f(analyze)i(the)f Fv(m)p FB(-th)f(priority)i(class.)41 b(This)26 b(is)h(a)g(non-tri)n(vial)j (procedure)g(for)d Fv(m)32 b(>)g Fu(2)0 3379 y FB(since)24 b(it)e(in)l(v)n(olv)o(es)j(e)n(v)n(aluating)g(man)o(y)e(comple)o(x)g (passage)i(times)e(\(b)n(usy)h(periods\))h(in)d(the)h(chain)h (representing)i(the)d Fv(m)17 b Fo(\000)g Fu(1)0 3526 y FB(priority)22 b(classes,)f(as)f(these)g(passage)i(times)e(no)n(w)f (form)g(transitions)k(within)d(the)g(chain)h(representing)i Fv(m)18 b FB(priority)k(classes.)0 3673 y(Finally)i(in)g(Section)g (2.3,)g(we)e(sho)n(w)i(ho)n(w)f(RDR)e(can)j(be)g(applied)h(to)f(the)g (most)f(general)j(case)e(of)f(PH)f(service)k(times)d(with)0 3819 y Fv(m)i(>)g Fu(2)e FB(priority)j(classes.)141 3966 y(All)i(the)g(analysis)i(up)f(to)f(through)i(Section)f(2.3)f(deals)h (with)f(ho)n(w)f(to)h(deri)n(v)o(e)h(mean)g(per)n(-class)h(response)h (times.)42 b(In)0 4113 y(Section)23 b(2.4)g(we)e(illustrate)k(ho)n(w)d (the)h(RDR)d(method)k(can)f(be)f(e)o(xtended)j(to)d(obtain)i Fs(variance)h(of)d(r)m(esponse)j(time)d FB(for)g(each)0 4260 y(class.)35 b(Finally)-6 b(,)26 b(in)f(Section)h(2.5,)g(we)e (introduce)k(RDR-A,)23 b(which)i(is)g(an)h(approximation)i(of)e(RDR,)d (allo)n(wing)j(v)o(ery)g(f)o(ast)0 4406 y(\()p Fv(<)f Fu(1)e FB(second\))j(e)n(v)n(aluation)g(of)d(high)i(numbers)f(of)g (priority)h(classes)g(and)f(serv)o(ers,)h(with)e(small)h(\()p Fv(<)h Fu(5\045)p FB(\))f(error)-5 b(.)0 4690 y Ft(2.1)99 b(Simplest)25 b(case:)31 b(T)-7 b(w)o(o)25 b(priority)g(classes,)f (exponential)i(job)f(sizes)0 4899 y FB(Consider)f(the)f(simplest)h (case)f(of)g(tw)o(o)f(serv)o(ers)i(and)f(tw)o(o)g(priority)h(classes,)h (high)e(\(H\))f(and)h(lo)n(w)f(\(L\),)g(with)g(e)o(xponentially)0 5045 y(distrib)n(uted)31 b(sizes)e(with)f(rates)g Fv(\026)1060 5059 y Fp(H)1155 5045 y FB(and)g Fv(\026)1368 5059 y Fp(L)1447 5045 y FB(respecti)n(v)o(ely)-6 b(.)45 b(Figure)28 b(1\(a\))h(illustrates)h(a)e(Mark)o(o)o(v)g(chain)h(of)f(this)h (system,)0 5192 y(whose)i(states)h(track)g(the)e(number)i(of)f(high)g (priority)i(and)e(lo)n(w)f(priority)i(jobs;)k(hence)31 b(this)h(chain)f(gro)n(ws)g(in\002nitely)h(in)0 5339 y(tw)o(o)24 b(dimensions.)35 b(Observ)o(e)26 b(that)f(high)h(priority)h (jobs)e(simply)h(see)f(an)g(M/M/2)f(queue,)j(and)e(thus)g(their)h(mean) f(response)1927 5596 y(5)p eop end %%Page: 6 6 TeXDict begin 6 5 bop 301 167 a 9851701 7979877 0 0 32364625 26444267 startTexFig 301 167 a %%BeginDocument: ../../figures/mc2prio2serverinf.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: mc2prio2serverinf.fig %%Creator: fig2dev Version 3.2 Patchlevel 4 %%CreationDate: Sun Jan 30 13:28:08 2005 %%For: harchol@mor.sync.cs.cmu.edu (Mor Harchol-Balter) %%BoundingBox: 0 0 492 402 %%Magnification: 1.0000 %%EndComments /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 402 moveto 0 0 lineto 492 0 lineto 492 402 lineto closepath clip newpath -67.5 797.6 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psBegin 10 setmiterlimit 0 slj 0 slc 0.06000 0.06000 sc % % Fig objects follow % % % here starts figure with depth 50 % Ellipse 15.000 slw n 8813 10583 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 9038 10583 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 9263 10583 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 8813 8840 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 9038 8840 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 9263 8840 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 8819 7168 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 9044 7168 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 9269 7168 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 8807 12323 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 9032 12323 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 9257 12323 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse gs 8239 12792 tr -270.001 rot n 0 0 38 38 0 360 DrawEllipse 270.001 rot gs col0 s gr gr % Ellipse gs 8239 13017 tr -270.001 rot n 0 0 38 38 0 360 DrawEllipse 270.001 rot gs col0 s gr gr % Ellipse gs 8239 13242 tr -270.001 rot n 0 0 38 38 0 360 DrawEllipse 270.001 rot gs col0 s gr gr % Ellipse gs 6095 12773 tr -270.001 rot n 0 0 38 38 0 360 DrawEllipse 270.001 rot gs col0 s gr gr % Ellipse gs 6095 12998 tr -270.001 rot n 0 0 38 38 0 360 DrawEllipse 270.001 rot gs col0 s gr gr % Ellipse gs 6095 13223 tr -270.001 rot n 0 0 38 38 0 360 DrawEllipse 270.001 rot gs col0 s gr gr % Ellipse gs 3941 12773 tr -270.001 rot n 0 0 38 38 0 360 DrawEllipse 270.001 rot gs col0 s gr gr % Ellipse gs 3941 12998 tr -270.001 rot n 0 0 38 38 0 360 DrawEllipse 270.001 rot gs col0 s gr gr % Ellipse gs 3941 13223 tr -270.001 rot n 0 0 38 38 0 360 DrawEllipse 270.001 rot gs col0 s gr gr % Ellipse gs 1873 12773 tr -270.001 rot n 0 0 38 38 0 360 DrawEllipse 270.001 rot gs col0 s gr gr % Ellipse gs 1873 12998 tr -270.001 rot n 0 0 38 38 0 360 DrawEllipse 270.001 rot gs col0 s gr gr % Ellipse gs 1873 13223 tr -270.001 rot n 0 0 38 38 0 360 DrawEllipse 270.001 rot gs col0 s gr gr /Times-Roman ff 270.00 scf sf 2802 6866 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2625 6825 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4902 6866 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4725 6825 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6927 6866 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6750 6825 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 7002 8516 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6825 8475 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4902 8516 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4725 8475 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2802 8516 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2625 8475 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2802 10241 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2625 10200 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4902 10241 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4725 10200 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 7002 10241 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6825 10200 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 7077 12041 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6900 12000 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4902 11966 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4725 11925 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2877 11966 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2700 11925 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2277 8141 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 2100 8100 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2277 9866 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 2100 9825 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2277 11591 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 2100 11550 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4377 11591 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 4200 11550 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4377 9866 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 4200 9825 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4377 8141 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 4200 8100 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6477 8141 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 6300 8100 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6552 9941 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 6375 9900 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6552 11666 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 6375 11625 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 8577 11666 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 8400 11625 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 8577 9866 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 8400 9825 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 8577 8141 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 8400 8100 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 1377 8291 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 1200 8175 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 3477 8216 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 3300 8100 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 5577 8291 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 5400 8175 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 7677 8291 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 7500 8175 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 2802 7766 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2625 7650 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 2877 9416 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2700 9300 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 4977 9491 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4800 9375 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 7077 9416 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6900 9300 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 7152 7841 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6825 7725 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 270.00 scf sf 1452 10016 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 1125 9900 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 270.00 scf sf 3477 10016 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 3150 9900 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 270.00 scf sf 5652 10016 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 5325 9900 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 270.00 scf sf 7752 10016 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 7425 9900 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 270.00 scf sf 7752 11666 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 7425 11550 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 270.00 scf sf 5652 11741 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 5325 11625 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 270.00 scf sf 3477 11741 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 3150 11625 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 270.00 scf sf 1452 11741 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 1125 11625 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 270.00 scf sf 5052 7841 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4725 7725 m gs 1 -1 sc (2m) col0 sh gr % Ellipse n 1912 7200 562 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 3975 7200 525 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 6075 7200 525 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 8175 7200 525 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 6075 8850 525 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 1875 8850 525 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 1875 10575 525 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 3975 10575 525 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 6075 10575 525 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 8175 10575 525 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 6075 12300 525 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 3975 12300 525 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 1875 12300 525 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 3975 8850 525 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 8175 8850 525 225 0 360 DrawEllipse gs col0 s gr % Ellipse n 8175 12300 525 225 0 360 DrawEllipse gs col0 s gr % Polyline 2 slj gs clippath 1898 8642 m 2010 8685 l 2112 8415 l 1972 8619 l 2000 8373 l cp eoclip n 1950 7413 m 1950 7414 l 1952 7417 l 1954 7423 l 1957 7432 l 1961 7444 l 1966 7459 l 1972 7477 l 1979 7499 l 1986 7523 l 1994 7549 l 2002 7577 l 2010 7606 l 2018 7637 l 2026 7670 l 2034 7703 l 2041 7739 l 2047 7776 l 2053 7816 l 2059 7858 l 2064 7903 l 2067 7951 l 2070 8001 l 2071 8052 l 2071 8103 l 2069 8152 l 2066 8199 l 2062 8242 l 2057 8283 l 2052 8320 l 2046 8355 l 2039 8388 l 2032 8420 l 2025 8449 l 2017 8478 l 2009 8504 l 2002 8530 l 1994 8553 l 1987 8574 l 1981 8593 l 1975 8610 l 1970 8623 l 1966 8634 l 1960 8650 l gs col0 s gr gr % arrowhead 0 slj n 2000 8373 m 1972 8619 l 2112 8415 l col0 s % Polyline 2 slj gs clippath 1857 7411 m 1754 7349 l 1606 7595 l 1781 7421 l 1708 7657 l cp eoclip n 1747 8630 m 1747 8629 l 1745 8626 l 1744 8621 l 1741 8614 l 1737 8603 l 1731 8590 l 1725 8573 l 1718 8553 l 1710 8531 l 1702 8507 l 1693 8481 l 1684 8453 l 1676 8424 l 1667 8394 l 1658 8362 l 1650 8330 l 1643 8296 l 1636 8261 l 1630 8224 l 1625 8185 l 1620 8144 l 1617 8101 l 1615 8055 l 1614 8009 l 1615 7961 l 1618 7910 l 1623 7861 l 1630 7816 l 1637 7774 l 1646 7735 l 1655 7698 l 1665 7665 l 1676 7634 l 1687 7604 l 1699 7576 l 1711 7550 l 1723 7526 l 1735 7502 l 1746 7481 l 1757 7462 l 1767 7444 l 1775 7429 l 1783 7417 l 1789 7408 l 1798 7393 l gs col0 s gr gr % arrowhead 0 slj n 1708 7657 m 1781 7421 l 1606 7595 l col0 s % Polyline 2 slj gs clippath 3976 8642 m 4088 8685 l 4190 8415 l 4050 8619 l 4078 8373 l cp eoclip n 4028 7413 m 4028 7414 l 4030 7417 l 4032 7423 l 4035 7432 l 4039 7444 l 4044 7459 l 4050 7477 l 4057 7499 l 4064 7523 l 4072 7549 l 4080 7577 l 4088 7606 l 4096 7637 l 4104 7670 l 4112 7703 l 4119 7739 l 4125 7776 l 4131 7816 l 4137 7858 l 4142 7903 l 4145 7951 l 4148 8001 l 4149 8052 l 4149 8103 l 4147 8152 l 4144 8199 l 4140 8242 l 4135 8283 l 4130 8320 l 4124 8355 l 4117 8388 l 4110 8420 l 4103 8449 l 4095 8478 l 4087 8504 l 4080 8530 l 4072 8553 l 4065 8574 l 4059 8593 l 4053 8610 l 4048 8623 l 4044 8634 l 4038 8650 l gs col0 s gr gr % arrowhead 0 slj n 4078 8373 m 4050 8619 l 4190 8415 l col0 s % Polyline 2 slj gs clippath 6084 8662 m 6196 8705 l 6298 8435 l 6158 8639 l 6186 8393 l cp eoclip n 6136 7433 m 6136 7434 l 6138 7437 l 6140 7443 l 6143 7452 l 6147 7464 l 6152 7479 l 6158 7497 l 6165 7519 l 6172 7543 l 6180 7569 l 6188 7597 l 6196 7626 l 6204 7657 l 6212 7690 l 6220 7723 l 6227 7759 l 6233 7796 l 6239 7836 l 6245 7878 l 6250 7923 l 6253 7971 l 6256 8021 l 6257 8072 l 6257 8123 l 6255 8172 l 6252 8219 l 6248 8262 l 6243 8303 l 6238 8340 l 6232 8375 l 6225 8408 l 6218 8440 l 6211 8469 l 6203 8498 l 6195 8524 l 6188 8550 l 6180 8573 l 6173 8594 l 6167 8613 l 6161 8630 l 6156 8643 l 6152 8654 l 6146 8670 l gs col0 s gr gr % arrowhead 0 slj n 6186 8393 m 6158 8639 l 6298 8435 l col0 s % Polyline 2 slj gs clippath 8172 8662 m 8284 8705 l 8386 8435 l 8246 8639 l 8274 8393 l cp eoclip n 8224 7433 m 8224 7434 l 8226 7437 l 8228 7443 l 8231 7452 l 8235 7464 l 8240 7479 l 8246 7497 l 8253 7519 l 8260 7543 l 8268 7569 l 8276 7597 l 8284 7626 l 8292 7657 l 8300 7690 l 8308 7723 l 8315 7759 l 8321 7796 l 8327 7836 l 8333 7878 l 8338 7923 l 8341 7971 l 8344 8021 l 8345 8072 l 8345 8123 l 8343 8172 l 8340 8219 l 8336 8262 l 8331 8303 l 8326 8340 l 8320 8375 l 8313 8408 l 8306 8440 l 8299 8469 l 8291 8498 l 8283 8524 l 8276 8550 l 8268 8573 l 8261 8594 l 8255 8613 l 8249 8630 l 8244 8643 l 8240 8654 l 8234 8670 l gs col0 s gr gr % arrowhead 0 slj n 8274 8393 m 8246 8639 l 8386 8435 l col0 s % Polyline 2 slj gs clippath 3933 7419 m 3830 7357 l 3682 7603 l 3857 7429 l 3784 7665 l cp eoclip n 3823 8638 m 3823 8637 l 3821 8634 l 3820 8629 l 3817 8622 l 3813 8611 l 3807 8598 l 3801 8581 l 3794 8561 l 3786 8539 l 3778 8515 l 3769 8489 l 3760 8461 l 3752 8432 l 3743 8402 l 3734 8370 l 3726 8338 l 3719 8304 l 3712 8269 l 3706 8232 l 3701 8193 l 3696 8152 l 3693 8109 l 3691 8063 l 3690 8017 l 3691 7969 l 3694 7918 l 3699 7869 l 3706 7824 l 3713 7782 l 3722 7743 l 3731 7706 l 3741 7673 l 3752 7642 l 3763 7612 l 3775 7584 l 3787 7558 l 3799 7534 l 3811 7510 l 3822 7489 l 3833 7470 l 3843 7452 l 3851 7437 l 3859 7425 l 3865 7416 l 3874 7401 l gs col0 s gr gr % arrowhead 0 slj n 3784 7665 m 3857 7429 l 3682 7603 l col0 s % Polyline 2 slj gs clippath 6041 7449 m 5938 7387 l 5790 7633 l 5965 7459 l 5892 7695 l cp eoclip n 5931 8668 m 5931 8667 l 5929 8664 l 5928 8659 l 5925 8652 l 5921 8641 l 5915 8628 l 5909 8611 l 5902 8591 l 5894 8569 l 5886 8545 l 5877 8519 l 5868 8491 l 5860 8462 l 5851 8432 l 5842 8400 l 5834 8368 l 5827 8334 l 5820 8299 l 5814 8262 l 5809 8223 l 5804 8182 l 5801 8139 l 5799 8093 l 5798 8047 l 5799 7999 l 5802 7948 l 5807 7899 l 5814 7854 l 5821 7812 l 5830 7773 l 5839 7736 l 5849 7703 l 5860 7672 l 5871 7642 l 5883 7614 l 5895 7588 l 5907 7564 l 5919 7540 l 5930 7519 l 5941 7500 l 5951 7482 l 5959 7467 l 5967 7455 l 5973 7446 l 5982 7431 l gs col0 s gr gr % arrowhead 0 slj n 5892 7695 m 5965 7459 l 5790 7633 l col0 s % Polyline 2 slj gs clippath 8129 7469 m 8026 7407 l 7878 7653 l 8053 7479 l 7980 7715 l cp eoclip n 8019 8688 m 8019 8687 l 8017 8684 l 8016 8679 l 8013 8672 l 8009 8661 l 8003 8648 l 7997 8631 l 7990 8611 l 7982 8589 l 7974 8565 l 7965 8539 l 7956 8511 l 7948 8482 l 7939 8452 l 7930 8420 l 7922 8388 l 7915 8354 l 7908 8319 l 7902 8282 l 7897 8243 l 7892 8202 l 7889 8159 l 7887 8113 l 7886 8067 l 7887 8019 l 7890 7968 l 7895 7919 l 7902 7874 l 7909 7832 l 7918 7793 l 7927 7756 l 7937 7723 l 7948 7692 l 7959 7662 l 7971 7634 l 7983 7608 l 7995 7584 l 8007 7560 l 8018 7539 l 8029 7520 l 8039 7502 l 8047 7487 l 8055 7475 l 8061 7466 l 8070 7451 l gs col0 s gr gr % arrowhead 0 slj n 7980 7715 m 8053 7479 l 7878 7653 l col0 s % Polyline 2 slj gs clippath 3496 8858 m 3559 8755 l 3313 8605 l 3487 8782 l 3250 8708 l cp eoclip n 2250 8775 m 2251 8774 l 2254 8772 l 2260 8769 l 2268 8764 l 2279 8758 l 2293 8749 l 2311 8739 l 2331 8728 l 2354 8716 l 2379 8703 l 2406 8690 l 2434 8677 l 2464 8664 l 2495 8651 l 2528 8639 l 2563 8628 l 2600 8618 l 2639 8609 l 2681 8601 l 2726 8594 l 2774 8589 l 2825 8586 l 2877 8586 l 2929 8588 l 2980 8593 l 3029 8600 l 3074 8608 l 3116 8618 l 3156 8628 l 3194 8640 l 3229 8653 l 3263 8666 l 3295 8680 l 3325 8694 l 3354 8708 l 3382 8722 l 3408 8736 l 3431 8749 l 3452 8761 l 3470 8772 l 3485 8781 l 3497 8788 l 3515 8799 l gs col0 s gr gr % arrowhead 0 slj n 3250 8708 m 3487 8782 l 3313 8605 l col0 s % Polyline 2 slj gs clippath 2302 8873 m 2231 8970 l 2461 9142 l 2305 8951 l 2533 9046 l cp eoclip n 3495 8920 m 3494 8921 l 3491 8923 l 3485 8927 l 3477 8932 l 3465 8940 l 3450 8949 l 3432 8960 l 3411 8973 l 3387 8987 l 3362 9002 l 3334 9017 l 3305 9032 l 3275 9047 l 3243 9061 l 3210 9075 l 3175 9088 l 3138 9100 l 3099 9112 l 3058 9121 l 3013 9130 l 2967 9137 l 2917 9141 l 2867 9143 l 2817 9142 l 2768 9138 l 2723 9133 l 2680 9125 l 2640 9116 l 2603 9105 l 2569 9094 l 2536 9081 l 2506 9068 l 2476 9054 l 2449 9039 l 2422 9025 l 2398 9010 l 2375 8996 l 2354 8983 l 2335 8970 l 2319 8959 l 2306 8950 l 2295 8943 l 2279 8931 l gs col0 s gr gr % arrowhead 0 slj n 2533 9046 m 2305 8951 l 2461 9142 l col0 s % Polyline 2 slj gs clippath 5594 8858 m 5657 8755 l 5411 8605 l 5585 8782 l 5348 8708 l cp eoclip n 4326 8748 m 4327 8747 l 4330 8746 l 4336 8743 l 4345 8738 l 4356 8732 l 4372 8725 l 4390 8716 l 4411 8706 l 4435 8695 l 4461 8684 l 4489 8672 l 4519 8661 l 4550 8649 l 4583 8638 l 4617 8628 l 4653 8618 l 4691 8609 l 4732 8602 l 4775 8595 l 4821 8590 l 4870 8587 l 4922 8585 l 4975 8586 l 5028 8589 l 5080 8595 l 5129 8602 l 5174 8611 l 5217 8621 l 5257 8632 l 5294 8644 l 5330 8656 l 5363 8669 l 5395 8683 l 5426 8697 l 5455 8711 l 5482 8724 l 5507 8738 l 5530 8751 l 5551 8762 l 5569 8772 l 5584 8781 l 5595 8788 l 5613 8799 l gs col0 s gr gr % arrowhead 0 slj n 5348 8708 m 5585 8782 l 5411 8605 l col0 s % Polyline 2 slj gs clippath 7702 8868 m 7765 8765 l 7519 8615 l 7693 8792 l 7456 8718 l cp eoclip n 6434 8758 m 6435 8757 l 6438 8756 l 6444 8753 l 6453 8748 l 6464 8742 l 6480 8735 l 6498 8726 l 6519 8716 l 6543 8705 l 6569 8694 l 6597 8682 l 6627 8671 l 6658 8659 l 6691 8648 l 6725 8638 l 6761 8628 l 6799 8619 l 6840 8612 l 6883 8605 l 6929 8600 l 6978 8597 l 7030 8595 l 7083 8596 l 7136 8599 l 7188 8605 l 7237 8612 l 7282 8621 l 7325 8631 l 7365 8642 l 7402 8654 l 7438 8666 l 7471 8679 l 7503 8693 l 7534 8707 l 7563 8721 l 7590 8734 l 7615 8748 l 7638 8761 l 7659 8772 l 7677 8782 l 7692 8791 l 7703 8798 l 7721 8809 l gs col0 s gr gr % arrowhead 0 slj n 7456 8718 m 7693 8792 l 7519 8615 l col0 s % Polyline 2 slj gs clippath 4420 8873 m 4349 8970 l 4579 9142 l 4423 8951 l 4651 9046 l cp eoclip n 5613 8920 m 5612 8921 l 5609 8923 l 5603 8927 l 5595 8932 l 5583 8940 l 5568 8949 l 5550 8960 l 5529 8973 l 5505 8987 l 5480 9002 l 5452 9017 l 5423 9032 l 5393 9047 l 5361 9061 l 5328 9075 l 5293 9088 l 5256 9100 l 5217 9112 l 5176 9121 l 5131 9130 l 5085 9137 l 5035 9141 l 4985 9143 l 4935 9142 l 4886 9138 l 4841 9133 l 4798 9125 l 4758 9116 l 4721 9105 l 4687 9094 l 4654 9081 l 4624 9068 l 4594 9054 l 4567 9039 l 4540 9025 l 4516 9010 l 4493 8996 l 4472 8983 l 4453 8970 l 4437 8959 l 4424 8950 l 4413 8943 l 4397 8931 l gs col0 s gr gr % arrowhead 0 slj n 4651 9046 m 4423 8951 l 4579 9142 l col0 s % Polyline 2 slj gs clippath 6508 8853 m 6437 8950 l 6667 9122 l 6511 8931 l 6739 9026 l cp eoclip n 7701 8900 m 7700 8901 l 7697 8903 l 7691 8907 l 7683 8912 l 7671 8920 l 7656 8929 l 7638 8940 l 7617 8953 l 7593 8967 l 7568 8982 l 7540 8997 l 7511 9012 l 7481 9027 l 7449 9041 l 7416 9055 l 7381 9068 l 7344 9080 l 7305 9092 l 7264 9101 l 7219 9110 l 7173 9117 l 7123 9121 l 7073 9123 l 7023 9122 l 6974 9118 l 6929 9113 l 6886 9105 l 6846 9096 l 6809 9085 l 6775 9074 l 6742 9061 l 6712 9048 l 6682 9034 l 6655 9019 l 6628 9005 l 6604 8990 l 6581 8976 l 6560 8963 l 6541 8950 l 6525 8939 l 6512 8930 l 6501 8923 l 6485 8911 l gs col0 s gr gr % arrowhead 0 slj n 6739 9026 m 6511 8931 l 6667 9122 l col0 s % Polyline 2 slj gs clippath 2308 7201 m 2237 7298 l 2467 7470 l 2311 7279 l 2539 7374 l cp eoclip n 3501 7248 m 3500 7249 l 3497 7251 l 3491 7255 l 3483 7260 l 3471 7268 l 3456 7277 l 3438 7288 l 3417 7301 l 3393 7315 l 3368 7330 l 3340 7345 l 3311 7360 l 3281 7375 l 3249 7389 l 3216 7403 l 3181 7416 l 3144 7428 l 3105 7440 l 3064 7449 l 3019 7458 l 2973 7465 l 2923 7469 l 2873 7471 l 2823 7470 l 2774 7466 l 2729 7461 l 2686 7453 l 2646 7444 l 2609 7433 l 2575 7422 l 2542 7409 l 2512 7396 l 2482 7382 l 2455 7367 l 2428 7353 l 2404 7338 l 2381 7324 l 2360 7311 l 2341 7298 l 2325 7287 l 2312 7278 l 2301 7271 l 2285 7259 l gs col0 s gr gr % arrowhead 0 slj n 2539 7374 m 2311 7279 l 2467 7470 l col0 s % Polyline 2 slj gs clippath 5600 7186 m 5663 7083 l 5417 6933 l 5591 7110 l 5354 7036 l cp eoclip n 4332 7076 m 4333 7075 l 4336 7074 l 4342 7071 l 4351 7066 l 4362 7060 l 4378 7053 l 4396 7044 l 4417 7034 l 4441 7023 l 4467 7012 l 4495 7000 l 4525 6989 l 4556 6977 l 4589 6966 l 4623 6956 l 4659 6946 l 4697 6937 l 4738 6930 l 4781 6923 l 4827 6918 l 4876 6915 l 4928 6913 l 4981 6914 l 5034 6917 l 5086 6923 l 5135 6930 l 5180 6939 l 5223 6949 l 5263 6960 l 5300 6972 l 5336 6984 l 5369 6997 l 5401 7011 l 5432 7025 l 5461 7039 l 5488 7052 l 5513 7066 l 5536 7079 l 5557 7090 l 5575 7100 l 5590 7109 l 5601 7116 l 5619 7127 l gs col0 s gr gr % arrowhead 0 slj n 5354 7036 m 5591 7110 l 5417 6933 l col0 s % Polyline 2 slj gs clippath 7708 7196 m 7771 7093 l 7525 6943 l 7699 7120 l 7462 7046 l cp eoclip n 6440 7086 m 6441 7085 l 6444 7084 l 6450 7081 l 6459 7076 l 6470 7070 l 6486 7063 l 6504 7054 l 6525 7044 l 6549 7033 l 6575 7022 l 6603 7010 l 6633 6999 l 6664 6987 l 6697 6976 l 6731 6966 l 6767 6956 l 6805 6947 l 6846 6940 l 6889 6933 l 6935 6928 l 6984 6925 l 7036 6923 l 7089 6924 l 7142 6927 l 7194 6933 l 7243 6940 l 7288 6949 l 7331 6959 l 7371 6970 l 7408 6982 l 7444 6994 l 7477 7007 l 7509 7021 l 7540 7035 l 7569 7049 l 7596 7062 l 7621 7076 l 7644 7089 l 7665 7100 l 7683 7110 l 7698 7119 l 7709 7126 l 7727 7137 l gs col0 s gr gr % arrowhead 0 slj n 7462 7046 m 7699 7120 l 7525 6943 l col0 s % Polyline 2 slj gs clippath 4426 7201 m 4355 7298 l 4585 7470 l 4429 7279 l 4657 7374 l cp eoclip n 5619 7248 m 5618 7249 l 5615 7251 l 5609 7255 l 5601 7260 l 5589 7268 l 5574 7277 l 5556 7288 l 5535 7301 l 5511 7315 l 5486 7330 l 5458 7345 l 5429 7360 l 5399 7375 l 5367 7389 l 5334 7403 l 5299 7416 l 5262 7428 l 5223 7440 l 5182 7449 l 5137 7458 l 5091 7465 l 5041 7469 l 4991 7471 l 4941 7470 l 4892 7466 l 4847 7461 l 4804 7453 l 4764 7444 l 4727 7433 l 4693 7422 l 4660 7409 l 4630 7396 l 4600 7382 l 4573 7367 l 4546 7353 l 4522 7338 l 4499 7324 l 4478 7311 l 4459 7298 l 4443 7287 l 4430 7278 l 4419 7271 l 4403 7259 l gs col0 s gr gr % arrowhead 0 slj n 4657 7374 m 4429 7279 l 4585 7470 l col0 s % Polyline 2 slj gs clippath 6514 7181 m 6443 7278 l 6673 7450 l 6517 7259 l 6745 7354 l cp eoclip n 7707 7228 m 7706 7229 l 7703 7231 l 7697 7235 l 7689 7240 l 7677 7248 l 7662 7257 l 7644 7268 l 7623 7281 l 7599 7295 l 7574 7310 l 7546 7325 l 7517 7340 l 7487 7355 l 7455 7369 l 7422 7383 l 7387 7396 l 7350 7408 l 7311 7420 l 7270 7429 l 7225 7438 l 7179 7445 l 7129 7449 l 7079 7451 l 7029 7450 l 6980 7446 l 6935 7441 l 6892 7433 l 6852 7424 l 6815 7413 l 6781 7402 l 6748 7389 l 6718 7376 l 6688 7362 l 6661 7347 l 6634 7333 l 6610 7318 l 6587 7304 l 6566 7291 l 6547 7278 l 6531 7267 l 6518 7258 l 6507 7251 l 6491 7239 l gs col0 s gr gr % arrowhead 0 slj n 6745 7354 m 6517 7259 l 6673 7450 l col0 s % Polyline 2 slj gs clippath 1949 12078 m 2061 12121 l 2163 11851 l 2023 12055 l 2051 11809 l cp eoclip n 2001 10849 m 2001 10850 l 2003 10853 l 2005 10859 l 2008 10868 l 2012 10880 l 2017 10895 l 2023 10913 l 2030 10935 l 2037 10959 l 2045 10985 l 2053 11013 l 2061 11042 l 2069 11073 l 2077 11106 l 2085 11139 l 2092 11175 l 2098 11212 l 2104 11252 l 2110 11294 l 2115 11339 l 2118 11387 l 2121 11437 l 2122 11488 l 2122 11539 l 2120 11588 l 2117 11635 l 2113 11678 l 2108 11719 l 2103 11756 l 2097 11791 l 2090 11824 l 2083 11856 l 2076 11885 l 2068 11914 l 2060 11940 l 2053 11966 l 2045 11989 l 2038 12010 l 2032 12029 l 2026 12046 l 2021 12059 l 2017 12070 l 2011 12086 l gs col0 s gr gr % arrowhead 0 slj n 2051 11809 m 2023 12055 l 2163 11851 l col0 s % Polyline 2 slj gs clippath 3996 12098 m 4108 12141 l 4210 11871 l 4070 12075 l 4098 11829 l cp eoclip n 4048 10869 m 4048 10870 l 4050 10873 l 4052 10879 l 4055 10888 l 4059 10900 l 4064 10915 l 4070 10933 l 4077 10955 l 4084 10979 l 4092 11005 l 4100 11033 l 4108 11062 l 4116 11093 l 4124 11126 l 4132 11159 l 4139 11195 l 4145 11232 l 4151 11272 l 4157 11314 l 4162 11359 l 4165 11407 l 4168 11457 l 4169 11508 l 4169 11559 l 4167 11608 l 4164 11655 l 4160 11698 l 4155 11739 l 4150 11776 l 4144 11811 l 4137 11844 l 4130 11876 l 4123 11905 l 4115 11934 l 4107 11960 l 4100 11986 l 4092 12009 l 4085 12030 l 4079 12049 l 4073 12066 l 4068 12079 l 4064 12090 l 4058 12106 l gs col0 s gr gr % arrowhead 0 slj n 4098 11829 m 4070 12075 l 4210 11871 l col0 s % Polyline 2 slj gs clippath 6165 12078 m 6277 12121 l 6379 11851 l 6239 12055 l 6267 11809 l cp eoclip n 6217 10849 m 6217 10850 l 6219 10853 l 6221 10859 l 6224 10868 l 6228 10880 l 6233 10895 l 6239 10913 l 6246 10935 l 6253 10959 l 6261 10985 l 6269 11013 l 6277 11042 l 6285 11073 l 6293 11106 l 6301 11139 l 6308 11175 l 6314 11212 l 6320 11252 l 6326 11294 l 6331 11339 l 6334 11387 l 6337 11437 l 6338 11488 l 6338 11539 l 6336 11588 l 6333 11635 l 6329 11678 l 6324 11719 l 6319 11756 l 6313 11791 l 6306 11824 l 6299 11856 l 6292 11885 l 6284 11914 l 6276 11940 l 6269 11966 l 6261 11989 l 6254 12010 l 6248 12029 l 6242 12046 l 6237 12059 l 6233 12070 l 6227 12086 l gs col0 s gr gr % arrowhead 0 slj n 6267 11809 m 6239 12055 l 6379 11851 l col0 s % Polyline 2 slj gs clippath 8232 12078 m 8344 12121 l 8446 11851 l 8306 12055 l 8334 11809 l cp eoclip n 8284 10849 m 8284 10850 l 8286 10853 l 8288 10859 l 8291 10868 l 8295 10880 l 8300 10895 l 8306 10913 l 8313 10935 l 8320 10959 l 8328 10985 l 8336 11013 l 8344 11042 l 8352 11073 l 8360 11106 l 8368 11139 l 8375 11175 l 8381 11212 l 8387 11252 l 8393 11294 l 8398 11339 l 8401 11387 l 8404 11437 l 8405 11488 l 8405 11539 l 8403 11588 l 8400 11635 l 8396 11678 l 8391 11719 l 8386 11756 l 8380 11791 l 8373 11824 l 8366 11856 l 8359 11885 l 8351 11914 l 8343 11940 l 8336 11966 l 8328 11989 l 8321 12010 l 8315 12029 l 8309 12046 l 8304 12059 l 8300 12070 l 8294 12086 l gs col0 s gr gr % arrowhead 0 slj n 8334 11809 m 8306 12055 l 8446 11851 l col0 s % Polyline 2 slj gs clippath 3517 12324 m 3578 12220 l 3328 12075 l 3506 12248 l 3268 12179 l cp eoclip n 2325 12225 m 2326 12224 l 2329 12223 l 2333 12220 l 2340 12215 l 2350 12209 l 2363 12201 l 2378 12192 l 2396 12181 l 2416 12170 l 2438 12158 l 2462 12146 l 2487 12133 l 2514 12121 l 2542 12110 l 2572 12099 l 2603 12088 l 2637 12079 l 2673 12071 l 2712 12063 l 2754 12058 l 2799 12054 l 2847 12052 l 2897 12052 l 2947 12055 l 2996 12060 l 3043 12067 l 3088 12076 l 3130 12086 l 3169 12096 l 3206 12108 l 3242 12121 l 3276 12134 l 3308 12148 l 3340 12161 l 3369 12176 l 3398 12190 l 3424 12203 l 3448 12216 l 3470 12228 l 3488 12238 l 3504 12247 l 3516 12254 l 3535 12265 l gs col0 s gr gr % arrowhead 0 slj n 3268 12179 m 3506 12248 l 3328 12075 l col0 s % Polyline 2 slj gs clippath 5615 12324 m 5676 12220 l 5426 12075 l 5604 12248 l 5366 12179 l cp eoclip n 4425 12225 m 4426 12224 l 4429 12223 l 4433 12220 l 4440 12215 l 4450 12209 l 4463 12201 l 4478 12192 l 4496 12181 l 4516 12170 l 4538 12158 l 4561 12146 l 4586 12133 l 4613 12121 l 4641 12110 l 4671 12099 l 4702 12088 l 4736 12079 l 4772 12071 l 4811 12063 l 4852 12058 l 4897 12054 l 4945 12052 l 4995 12052 l 5045 12055 l 5094 12060 l 5141 12067 l 5186 12076 l 5227 12086 l 5267 12096 l 5304 12108 l 5340 12121 l 5374 12134 l 5406 12148 l 5437 12161 l 5467 12176 l 5495 12190 l 5522 12203 l 5546 12216 l 5568 12228 l 5586 12238 l 5602 12247 l 5614 12254 l 5633 12265 l gs col0 s gr gr % arrowhead 0 slj n 5366 12179 m 5604 12248 l 5426 12075 l col0 s % Polyline 2 slj gs clippath 7723 12334 m 7784 12230 l 7534 12085 l 7712 12258 l 7474 12189 l cp eoclip n 6525 12225 m 6526 12224 l 6529 12223 l 6533 12220 l 6541 12215 l 6551 12209 l 6563 12202 l 6579 12193 l 6597 12183 l 6617 12172 l 6640 12161 l 6664 12149 l 6689 12137 l 6717 12126 l 6745 12115 l 6775 12104 l 6807 12095 l 6841 12086 l 6878 12078 l 6917 12071 l 6959 12066 l 7005 12063 l 7053 12061 l 7103 12062 l 7154 12065 l 7203 12071 l 7250 12078 l 7294 12087 l 7336 12097 l 7376 12108 l 7413 12120 l 7449 12132 l 7483 12145 l 7515 12159 l 7546 12173 l 7576 12187 l 7604 12200 l 7630 12214 l 7654 12227 l 7676 12238 l 7695 12248 l 7710 12257 l 7722 12264 l 7741 12275 l gs col0 s gr gr % arrowhead 0 slj n 7474 12189 m 7712 12258 l 7534 12085 l col0 s % Polyline 2 slj gs clippath 1886 10861 m 1783 10799 l 1635 11045 l 1810 10871 l 1737 11107 l cp eoclip n 1776 12080 m 1776 12079 l 1774 12076 l 1773 12071 l 1770 12064 l 1766 12053 l 1760 12040 l 1754 12023 l 1747 12003 l 1739 11981 l 1731 11957 l 1722 11931 l 1713 11903 l 1705 11874 l 1696 11844 l 1687 11812 l 1679 11780 l 1672 11746 l 1665 11711 l 1659 11674 l 1654 11635 l 1649 11594 l 1646 11551 l 1644 11505 l 1643 11459 l 1644 11411 l 1647 11360 l 1652 11311 l 1659 11266 l 1666 11224 l 1675 11185 l 1684 11148 l 1694 11115 l 1705 11084 l 1716 11054 l 1728 11026 l 1740 11000 l 1752 10976 l 1764 10952 l 1775 10931 l 1786 10912 l 1796 10894 l 1804 10879 l 1812 10867 l 1818 10858 l 1827 10843 l gs col0 s gr gr % arrowhead 0 slj n 1737 11107 m 1810 10871 l 1635 11045 l col0 s % Polyline 2 slj gs clippath 3944 10871 m 3841 10809 l 3693 11055 l 3868 10881 l 3795 11117 l cp eoclip n 3834 12090 m 3834 12089 l 3832 12086 l 3831 12081 l 3828 12074 l 3824 12063 l 3818 12050 l 3812 12033 l 3805 12013 l 3797 11991 l 3789 11967 l 3780 11941 l 3771 11913 l 3763 11884 l 3754 11854 l 3745 11822 l 3737 11790 l 3730 11756 l 3723 11721 l 3717 11684 l 3712 11645 l 3707 11604 l 3704 11561 l 3702 11515 l 3701 11469 l 3702 11421 l 3705 11370 l 3710 11321 l 3717 11276 l 3724 11234 l 3733 11195 l 3742 11158 l 3752 11125 l 3763 11094 l 3774 11064 l 3786 11036 l 3798 11010 l 3810 10986 l 3822 10962 l 3833 10941 l 3844 10922 l 3854 10904 l 3862 10889 l 3870 10877 l 3876 10868 l 3885 10853 l gs col0 s gr gr % arrowhead 0 slj n 3795 11117 m 3868 10881 l 3693 11055 l col0 s % Polyline 2 slj gs clippath 8190 10881 m 8087 10819 l 7939 11065 l 8114 10891 l 8041 11127 l cp eoclip n 8080 12100 m 8080 12099 l 8078 12096 l 8077 12091 l 8074 12084 l 8070 12073 l 8064 12060 l 8058 12043 l 8051 12023 l 8043 12001 l 8035 11977 l 8026 11951 l 8017 11923 l 8009 11894 l 8000 11864 l 7991 11832 l 7983 11800 l 7976 11766 l 7969 11731 l 7963 11694 l 7958 11655 l 7953 11614 l 7950 11571 l 7948 11525 l 7947 11479 l 7948 11431 l 7951 11380 l 7956 11331 l 7963 11286 l 7970 11244 l 7979 11205 l 7988 11168 l 7998 11135 l 8009 11104 l 8020 11074 l 8032 11046 l 8044 11020 l 8056 10996 l 8068 10972 l 8079 10951 l 8090 10932 l 8100 10914 l 8108 10899 l 8116 10887 l 8122 10878 l 8131 10863 l gs col0 s gr gr % arrowhead 0 slj n 8041 11127 m 8114 10891 l 7939 11065 l col0 s % Polyline 2 slj gs clippath 6113 10866 m 6010 10804 l 5862 11050 l 6037 10876 l 5964 11112 l cp eoclip n 6003 12085 m 6003 12084 l 6001 12081 l 6000 12076 l 5997 12069 l 5993 12058 l 5987 12045 l 5981 12028 l 5974 12008 l 5966 11986 l 5958 11962 l 5949 11936 l 5940 11908 l 5932 11879 l 5923 11849 l 5914 11817 l 5906 11785 l 5899 11751 l 5892 11716 l 5886 11679 l 5881 11640 l 5876 11599 l 5873 11556 l 5871 11510 l 5870 11464 l 5871 11416 l 5874 11365 l 5879 11316 l 5886 11271 l 5893 11229 l 5902 11190 l 5911 11153 l 5921 11120 l 5932 11089 l 5943 11059 l 5955 11031 l 5967 11005 l 5979 10981 l 5991 10957 l 6002 10936 l 6013 10917 l 6023 10899 l 6031 10884 l 6039 10872 l 6045 10863 l 6054 10848 l gs col0 s gr gr % arrowhead 0 slj n 5964 11112 m 6037 10876 l 5862 11050 l col0 s % Polyline 2 slj gs clippath 1929 10355 m 2041 10398 l 2143 10128 l 2003 10332 l 2031 10086 l cp eoclip n 1981 9126 m 1981 9127 l 1983 9130 l 1985 9136 l 1988 9145 l 1992 9157 l 1997 9172 l 2003 9190 l 2010 9212 l 2017 9236 l 2025 9262 l 2033 9290 l 2041 9319 l 2049 9350 l 2057 9383 l 2065 9416 l 2072 9452 l 2078 9489 l 2084 9529 l 2090 9571 l 2095 9616 l 2098 9664 l 2101 9714 l 2102 9765 l 2102 9816 l 2100 9865 l 2097 9912 l 2093 9955 l 2088 9996 l 2083 10033 l 2077 10068 l 2070 10101 l 2063 10133 l 2056 10162 l 2048 10191 l 2040 10217 l 2033 10243 l 2025 10266 l 2018 10287 l 2012 10306 l 2006 10323 l 2001 10336 l 1997 10347 l 1991 10363 l gs col0 s gr gr % arrowhead 0 slj n 2031 10086 m 2003 10332 l 2143 10128 l col0 s % Polyline 2 slj gs clippath 3976 10375 m 4088 10418 l 4190 10148 l 4050 10352 l 4078 10106 l cp eoclip n 4028 9146 m 4028 9147 l 4030 9150 l 4032 9156 l 4035 9165 l 4039 9177 l 4044 9192 l 4050 9210 l 4057 9232 l 4064 9256 l 4072 9282 l 4080 9310 l 4088 9339 l 4096 9370 l 4104 9403 l 4112 9436 l 4119 9472 l 4125 9509 l 4131 9549 l 4137 9591 l 4142 9636 l 4145 9684 l 4148 9734 l 4149 9785 l 4149 9836 l 4147 9885 l 4144 9932 l 4140 9975 l 4135 10016 l 4130 10053 l 4124 10088 l 4117 10121 l 4110 10153 l 4103 10182 l 4095 10211 l 4087 10237 l 4080 10263 l 4072 10286 l 4065 10307 l 4059 10326 l 4053 10343 l 4048 10356 l 4044 10367 l 4038 10383 l gs col0 s gr gr % arrowhead 0 slj n 4078 10106 m 4050 10352 l 4190 10148 l col0 s % Polyline 2 slj gs clippath 6145 10355 m 6257 10398 l 6359 10128 l 6219 10332 l 6247 10086 l cp eoclip n 6197 9126 m 6197 9127 l 6199 9130 l 6201 9136 l 6204 9145 l 6208 9157 l 6213 9172 l 6219 9190 l 6226 9212 l 6233 9236 l 6241 9262 l 6249 9290 l 6257 9319 l 6265 9350 l 6273 9383 l 6281 9416 l 6288 9452 l 6294 9489 l 6300 9529 l 6306 9571 l 6311 9616 l 6314 9664 l 6317 9714 l 6318 9765 l 6318 9816 l 6316 9865 l 6313 9912 l 6309 9955 l 6304 9996 l 6299 10033 l 6293 10068 l 6286 10101 l 6279 10133 l 6272 10162 l 6264 10191 l 6256 10217 l 6249 10243 l 6241 10266 l 6234 10287 l 6228 10306 l 6222 10323 l 6217 10336 l 6213 10347 l 6207 10363 l gs col0 s gr gr % arrowhead 0 slj n 6247 10086 m 6219 10332 l 6359 10128 l col0 s % Polyline 2 slj gs clippath 8212 10355 m 8324 10398 l 8426 10128 l 8286 10332 l 8314 10086 l cp eoclip n 8264 9126 m 8264 9127 l 8266 9130 l 8268 9136 l 8271 9145 l 8275 9157 l 8280 9172 l 8286 9190 l 8293 9212 l 8300 9236 l 8308 9262 l 8316 9290 l 8324 9319 l 8332 9350 l 8340 9383 l 8348 9416 l 8355 9452 l 8361 9489 l 8367 9529 l 8373 9571 l 8378 9616 l 8381 9664 l 8384 9714 l 8385 9765 l 8385 9816 l 8383 9865 l 8380 9912 l 8376 9955 l 8371 9996 l 8366 10033 l 8360 10068 l 8353 10101 l 8346 10133 l 8339 10162 l 8331 10191 l 8323 10217 l 8316 10243 l 8308 10266 l 8301 10287 l 8295 10306 l 8289 10323 l 8284 10336 l 8280 10347 l 8274 10363 l gs col0 s gr gr % arrowhead 0 slj n 8314 10086 m 8286 10332 l 8426 10128 l col0 s % Polyline 2 slj gs clippath 3497 10601 m 3558 10497 l 3308 10352 l 3486 10525 l 3248 10456 l cp eoclip n 2325 10500 m 2326 10499 l 2328 10498 l 2333 10495 l 2340 10490 l 2349 10484 l 2361 10476 l 2375 10467 l 2392 10457 l 2411 10445 l 2432 10433 l 2455 10421 l 2479 10409 l 2505 10397 l 2532 10386 l 2560 10375 l 2591 10365 l 2623 10355 l 2658 10347 l 2696 10340 l 2737 10334 l 2781 10330 l 2828 10329 l 2877 10329 l 2927 10332 l 2975 10337 l 3022 10344 l 3066 10353 l 3107 10363 l 3147 10374 l 3184 10385 l 3219 10398 l 3253 10411 l 3286 10425 l 3317 10439 l 3347 10453 l 3376 10467 l 3403 10480 l 3427 10493 l 3449 10505 l 3468 10515 l 3483 10524 l 3496 10531 l 3515 10542 l gs col0 s gr gr % arrowhead 0 slj n 3248 10456 m 3486 10525 l 3308 10352 l col0 s % Polyline 2 slj gs clippath 5595 10601 m 5656 10497 l 5406 10352 l 5584 10525 l 5346 10456 l cp eoclip n 4425 10500 m 4426 10499 l 4429 10497 l 4435 10493 l 4443 10487 l 4455 10480 l 4470 10470 l 4487 10459 l 4507 10447 l 4530 10434 l 4554 10421 l 4581 10408 l 4609 10395 l 4638 10383 l 4670 10371 l 4704 10360 l 4741 10351 l 4781 10342 l 4824 10336 l 4871 10331 l 4922 10329 l 4975 10329 l 5024 10332 l 5073 10337 l 5119 10344 l 5163 10353 l 5205 10363 l 5244 10374 l 5282 10385 l 5317 10398 l 5351 10411 l 5384 10425 l 5415 10439 l 5445 10453 l 5474 10467 l 5500 10480 l 5525 10493 l 5547 10505 l 5566 10515 l 5581 10524 l 5594 10531 l 5613 10542 l gs col0 s gr gr % arrowhead 0 slj n 5346 10456 m 5584 10525 l 5406 10352 l col0 s % Polyline 2 slj gs clippath 7703 10611 m 7764 10507 l 7514 10362 l 7692 10535 l 7454 10466 l cp eoclip n 6525 10500 m 6526 10499 l 6529 10498 l 6533 10495 l 6540 10490 l 6549 10485 l 6561 10477 l 6576 10468 l 6593 10458 l 6613 10448 l 6634 10436 l 6657 10425 l 6681 10413 l 6707 10402 l 6735 10391 l 6764 10380 l 6795 10371 l 6828 10362 l 6863 10354 l 6901 10348 l 6942 10343 l 6987 10339 l 7034 10338 l 7083 10339 l 7133 10342 l 7181 10348 l 7228 10355 l 7272 10364 l 7314 10374 l 7353 10385 l 7391 10397 l 7426 10409 l 7460 10422 l 7493 10436 l 7524 10450 l 7554 10464 l 7582 10478 l 7609 10491 l 7633 10504 l 7655 10515 l 7674 10525 l 7690 10534 l 7702 10541 l 7721 10552 l gs col0 s gr gr % arrowhead 0 slj n 7454 10466 m 7692 10535 l 7514 10362 l col0 s % Polyline 2 slj gs clippath 1866 9138 m 1763 9076 l 1615 9322 l 1790 9148 l 1717 9384 l cp eoclip n 1756 10357 m 1756 10356 l 1754 10353 l 1753 10348 l 1750 10341 l 1746 10330 l 1740 10317 l 1734 10300 l 1727 10280 l 1719 10258 l 1711 10234 l 1702 10208 l 1693 10180 l 1685 10151 l 1676 10121 l 1667 10089 l 1659 10057 l 1652 10023 l 1645 9988 l 1639 9951 l 1634 9912 l 1629 9871 l 1626 9828 l 1624 9782 l 1623 9736 l 1624 9688 l 1627 9637 l 1632 9588 l 1639 9543 l 1646 9501 l 1655 9462 l 1664 9425 l 1674 9392 l 1685 9361 l 1696 9331 l 1708 9303 l 1720 9277 l 1732 9253 l 1744 9229 l 1755 9208 l 1766 9189 l 1776 9171 l 1784 9156 l 1792 9144 l 1798 9135 l 1807 9120 l gs col0 s gr gr % arrowhead 0 slj n 1717 9384 m 1790 9148 l 1615 9322 l col0 s % Polyline 2 slj gs clippath 3924 9148 m 3821 9086 l 3673 9332 l 3848 9158 l 3775 9394 l cp eoclip n 3814 10367 m 3814 10366 l 3812 10363 l 3811 10358 l 3808 10351 l 3804 10340 l 3798 10327 l 3792 10310 l 3785 10290 l 3777 10268 l 3769 10244 l 3760 10218 l 3751 10190 l 3743 10161 l 3734 10131 l 3725 10099 l 3717 10067 l 3710 10033 l 3703 9998 l 3697 9961 l 3692 9922 l 3687 9881 l 3684 9838 l 3682 9792 l 3681 9746 l 3682 9698 l 3685 9647 l 3690 9598 l 3697 9553 l 3704 9511 l 3713 9472 l 3722 9435 l 3732 9402 l 3743 9371 l 3754 9341 l 3766 9313 l 3778 9287 l 3790 9263 l 3802 9239 l 3813 9218 l 3824 9199 l 3834 9181 l 3842 9166 l 3850 9154 l 3856 9145 l 3865 9130 l gs col0 s gr gr % arrowhead 0 slj n 3775 9394 m 3848 9158 l 3673 9332 l col0 s % Polyline 2 slj gs clippath 8170 9158 m 8067 9096 l 7919 9342 l 8094 9168 l 8021 9404 l cp eoclip n 8060 10377 m 8060 10376 l 8058 10373 l 8057 10368 l 8054 10361 l 8050 10350 l 8044 10337 l 8038 10320 l 8031 10300 l 8023 10278 l 8015 10254 l 8006 10228 l 7997 10200 l 7989 10171 l 7980 10141 l 7971 10109 l 7963 10077 l 7956 10043 l 7949 10008 l 7943 9971 l 7938 9932 l 7933 9891 l 7930 9848 l 7928 9802 l 7927 9756 l 7928 9708 l 7931 9657 l 7936 9608 l 7943 9563 l 7950 9521 l 7959 9482 l 7968 9445 l 7978 9412 l 7989 9381 l 8000 9351 l 8012 9323 l 8024 9297 l 8036 9273 l 8048 9249 l 8059 9228 l 8070 9209 l 8080 9191 l 8088 9176 l 8096 9164 l 8102 9155 l 8111 9140 l gs col0 s gr gr % arrowhead 0 slj n 8021 9404 m 8094 9168 l 7919 9342 l col0 s % Polyline 2 slj gs clippath 6093 9143 m 5990 9081 l 5842 9327 l 6017 9153 l 5944 9389 l cp eoclip n 5983 10362 m 5983 10361 l 5981 10358 l 5980 10353 l 5977 10346 l 5973 10335 l 5967 10322 l 5961 10305 l 5954 10285 l 5946 10263 l 5938 10239 l 5929 10213 l 5920 10185 l 5912 10156 l 5903 10126 l 5894 10094 l 5886 10062 l 5879 10028 l 5872 9993 l 5866 9956 l 5861 9917 l 5856 9876 l 5853 9833 l 5851 9787 l 5850 9741 l 5851 9693 l 5854 9642 l 5859 9593 l 5866 9548 l 5873 9506 l 5882 9467 l 5891 9430 l 5901 9397 l 5912 9366 l 5923 9336 l 5935 9308 l 5947 9282 l 5959 9258 l 5971 9234 l 5982 9213 l 5993 9194 l 6003 9176 l 6011 9161 l 6019 9149 l 6025 9140 l 6034 9125 l gs col0 s gr gr % arrowhead 0 slj n 5944 9389 m 6017 9153 l 5842 9327 l col0 s % Polyline 2 slj gs clippath 3502 7186 m 3565 7083 l 3319 6933 l 3493 7110 l 3256 7036 l cp eoclip n 2234 7076 m 2235 7075 l 2238 7074 l 2244 7071 l 2253 7066 l 2264 7060 l 2280 7053 l 2298 7044 l 2319 7034 l 2343 7023 l 2369 7012 l 2397 7000 l 2427 6989 l 2458 6977 l 2491 6966 l 2525 6956 l 2561 6946 l 2599 6937 l 2640 6930 l 2683 6923 l 2729 6918 l 2778 6915 l 2830 6913 l 2883 6914 l 2936 6917 l 2988 6923 l 3037 6930 l 3082 6939 l 3125 6949 l 3165 6960 l 3202 6972 l 3238 6984 l 3271 6997 l 3303 7011 l 3334 7025 l 3363 7039 l 3390 7052 l 3415 7066 l 3438 7079 l 3459 7090 l 3477 7100 l 3492 7109 l 3503 7116 l 3521 7127 l gs col0 s gr gr % arrowhead 0 slj n 3256 7036 m 3493 7110 l 3319 6933 l col0 s /Times-Roman ff 300.00 scf sf 3600 10650 m gs 1 -1 sc (2H,1L) col0 sh gr /Times-Roman ff 300.00 scf sf 1500 7275 m gs 1 -1 sc (0H,0L) col0 sh gr /Times-Roman ff 300.00 scf sf 3600 7275 m gs 1 -1 sc (0H,1L) col0 sh gr /Times-Roman ff 300.00 scf sf 5700 7275 m gs 1 -1 sc (0H,2L) col0 sh gr /Times-Roman ff 300.00 scf sf 7800 7275 m gs 1 -1 sc (0H,3L) col0 sh gr /Times-Roman ff 300.00 scf sf 1500 8925 m gs 1 -1 sc (1H,0L) col0 sh gr /Times-Roman ff 300.00 scf sf 3525 8925 m gs 1 -1 sc (1H,1L) col0 sh gr /Times-Roman ff 300.00 scf sf 5700 8925 m gs 1 -1 sc (1H,2L) col0 sh gr /Times-Roman ff 300.00 scf sf 7800 8925 m gs 1 -1 sc (1H,3L) col0 sh gr /Times-Roman ff 300.00 scf sf 1500 10650 m gs 1 -1 sc (2H,0L) col0 sh gr /Times-Roman ff 300.00 scf sf 5625 10650 m gs 1 -1 sc (2H,2L) col0 sh gr /Times-Roman ff 300.00 scf sf 7800 10650 m gs 1 -1 sc (2H,3L) col0 sh gr /Times-Roman ff 300.00 scf sf 1500 12375 m gs 1 -1 sc (3H,0L) col0 sh gr /Times-Roman ff 300.00 scf sf 3600 12375 m gs 1 -1 sc (3H,1L) col0 sh gr /Times-Roman ff 300.00 scf sf 5700 12375 m gs 1 -1 sc (3H,2L) col0 sh gr /Times-Roman ff 300.00 scf sf 7800 12375 m gs 1 -1 sc (3H,3L) col0 sh gr % here ends figure; F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psEnd rs showpage %%EndDocument endTexFig 869 1291 a FI(\(a\))2179 342 y 12930006 6594300 0 0 32825098 17037475 startTexFig 2179 342 a %%BeginDocument: ../../figures/mc2prio2server.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: mc2prio2server.fig %%Creator: fig2dev Version 3.2 Patchlevel 4 %%CreationDate: Sun Jan 30 13:16:05 2005 %%For: harchol@mor.sync.cs.cmu.edu (Mor Harchol-Balter) %%BoundingBox: 0 0 499 259 %%Magnification: 1.0000 %%EndComments /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 259 moveto 0 0 lineto 499 0 lineto 499 259 lineto closepath clip newpath -48.2 650.3 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psBegin 10 setmiterlimit 0 slj 0 slc 0.06000 0.06000 sc % % Fig objects follow % % % here starts figure with depth 50 /Times-Roman ff 300.00 scf sf 804 9825 m gs 1 -1 sc (B) col0 sh gr /Times-Roman ff 180.00 scf sf 987 9897 m gs 1 -1 sc (2) col0 sh gr /Symbol ff 180.00 scf sf 1072 9887 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 165.00 scf sf 1186 9947 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 2861 9825 m gs 1 -1 sc (B) col0 sh gr /Times-Roman ff 180.00 scf sf 3044 9897 m gs 1 -1 sc (2) col0 sh gr /Symbol ff 180.00 scf sf 3129 9887 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 165.00 scf sf 3243 9947 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 5020 9825 m gs 1 -1 sc (B) col0 sh gr /Times-Roman ff 180.00 scf sf 5203 9897 m gs 1 -1 sc (2) col0 sh gr /Symbol ff 180.00 scf sf 5288 9887 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 165.00 scf sf 5402 9947 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 7087 9825 m gs 1 -1 sc (B) col0 sh gr /Times-Roman ff 180.00 scf sf 7270 9897 m gs 1 -1 sc (2) col0 sh gr /Symbol ff 180.00 scf sf 7355 9887 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 165.00 scf sf 7469 9947 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 6600 6750 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6750 6825 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6600 8475 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6750 8550 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4500 8475 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4650 8550 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2400 8475 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2550 8550 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2400 6750 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2550 6825 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4500 6750 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4650 6825 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2400 10200 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2550 10275 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4500 10200 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4650 10275 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6600 10200 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6750 10275 m gs 1 -1 sc (L) col0 sh gr % Ellipse 15.000 slw n 8610 10573 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 8835 10573 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 9060 10573 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 8610 8830 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 8835 8830 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 9060 8830 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 8616 7158 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 8841 7158 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 9066 7158 38 38 0 360 DrawEllipse gs col0 s gr /Symbol ff 330.00 scf sf 1875 8100 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2025 8175 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 3975 8100 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4125 8175 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 6075 8100 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6225 8175 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 8175 8100 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 8325 8175 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 8250 9825 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 8400 9900 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 6150 9750 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6300 9825 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 3975 9750 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4125 9825 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 1950 9750 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2100 9825 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 270.00 scf sf 1125 8250 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 900 8175 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 3225 8250 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 3000 8175 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 5325 8250 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 5100 8175 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 7425 8250 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 7200 8175 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 2700 9375 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2475 9300 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 4800 9375 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4575 9300 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 6975 9375 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6750 9300 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 2700 7725 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2475 7650 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 4875 7800 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4500 7725 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 270.00 scf sf 6900 7800 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6525 7725 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 270.00 scf sf 1368 10591 m gs 1 -1 sc (+) col0 sh gr /Times-Roman ff 270.00 scf sf 1276 10726 m gs 1 -1 sc (2 H,0L) col0 sh gr /Times-Roman ff 270.00 scf sf 3442 10579 m gs 1 -1 sc (+) col0 sh gr /Times-Roman ff 270.00 scf sf 3350 10714 m gs 1 -1 sc (2 H,1L) col0 sh gr /Times-Roman ff 270.00 scf sf 5576 10579 m gs 1 -1 sc (+) col0 sh gr /Times-Roman ff 270.00 scf sf 5484 10714 m gs 1 -1 sc (2 H,2L) col0 sh gr /Times-Roman ff 270.00 scf sf 7635 10581 m gs 1 -1 sc (+) col0 sh gr /Times-Roman ff 270.00 scf sf 7543 10716 m gs 1 -1 sc (2 H,3L) col0 sh gr % Ellipse n 3728 8855 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 1650 8855 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 3734 7183 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 5860 7180 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 7940 7192 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 1656 7183 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 5854 8852 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 1650 10598 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 3731 10597 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 5854 10595 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 7934 10607 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 7934 8864 436 217 0 360 DrawEllipse gs col0 s gr % Polyline 2 slj gs clippath 1695 8632 m 1807 8675 l 1909 8405 l 1769 8609 l 1797 8363 l cp eoclip n 1747 7403 m 1747 7404 l 1749 7407 l 1751 7413 l 1754 7422 l 1758 7434 l 1763 7449 l 1769 7467 l 1776 7489 l 1783 7513 l 1791 7539 l 1799 7567 l 1807 7596 l 1815 7627 l 1823 7660 l 1831 7693 l 1838 7729 l 1844 7766 l 1850 7806 l 1856 7848 l 1861 7893 l 1864 7941 l 1867 7991 l 1868 8042 l 1868 8093 l 1866 8142 l 1863 8189 l 1859 8232 l 1854 8273 l 1849 8310 l 1843 8345 l 1836 8378 l 1829 8410 l 1822 8439 l 1814 8468 l 1806 8494 l 1799 8520 l 1791 8543 l 1784 8564 l 1778 8583 l 1772 8600 l 1767 8613 l 1763 8624 l 1757 8640 l gs col0 s gr gr % arrowhead 0 slj n 1797 8363 m 1769 8609 l 1909 8405 l col0 s % Polyline 2 slj gs clippath 1654 7401 m 1551 7339 l 1403 7585 l 1578 7411 l 1505 7647 l cp eoclip n 1544 8620 m 1544 8619 l 1542 8616 l 1541 8611 l 1538 8604 l 1534 8593 l 1528 8580 l 1522 8563 l 1515 8543 l 1507 8521 l 1499 8497 l 1490 8471 l 1481 8443 l 1473 8414 l 1464 8384 l 1455 8352 l 1447 8320 l 1440 8286 l 1433 8251 l 1427 8214 l 1422 8175 l 1417 8134 l 1414 8091 l 1412 8045 l 1411 7999 l 1412 7951 l 1415 7900 l 1420 7851 l 1427 7806 l 1434 7764 l 1443 7725 l 1452 7688 l 1462 7655 l 1473 7624 l 1484 7594 l 1496 7566 l 1508 7540 l 1520 7516 l 1532 7492 l 1543 7471 l 1554 7452 l 1564 7434 l 1572 7419 l 1580 7407 l 1586 7398 l 1595 7383 l gs col0 s gr gr % arrowhead 0 slj n 1505 7647 m 1578 7411 l 1403 7585 l col0 s % Polyline 2 slj gs clippath 1726 10345 m 1838 10388 l 1940 10118 l 1800 10322 l 1828 10076 l cp eoclip n 1778 9116 m 1778 9117 l 1780 9120 l 1782 9126 l 1785 9135 l 1789 9147 l 1794 9162 l 1800 9180 l 1807 9202 l 1814 9226 l 1822 9252 l 1830 9280 l 1838 9309 l 1846 9340 l 1854 9373 l 1862 9406 l 1869 9442 l 1875 9479 l 1881 9519 l 1887 9561 l 1892 9606 l 1895 9654 l 1898 9704 l 1899 9755 l 1899 9806 l 1897 9855 l 1894 9902 l 1890 9945 l 1885 9986 l 1880 10023 l 1874 10058 l 1867 10091 l 1860 10123 l 1853 10152 l 1845 10181 l 1837 10207 l 1830 10233 l 1822 10256 l 1815 10277 l 1809 10296 l 1803 10313 l 1798 10326 l 1794 10337 l 1788 10353 l gs col0 s gr gr % arrowhead 0 slj n 1828 10076 m 1800 10322 l 1940 10118 l col0 s % Polyline 2 slj gs clippath 3773 8632 m 3885 8675 l 3987 8405 l 3847 8609 l 3875 8363 l cp eoclip n 3825 7403 m 3825 7404 l 3827 7407 l 3829 7413 l 3832 7422 l 3836 7434 l 3841 7449 l 3847 7467 l 3854 7489 l 3861 7513 l 3869 7539 l 3877 7567 l 3885 7596 l 3893 7627 l 3901 7660 l 3909 7693 l 3916 7729 l 3922 7766 l 3928 7806 l 3934 7848 l 3939 7893 l 3942 7941 l 3945 7991 l 3946 8042 l 3946 8093 l 3944 8142 l 3941 8189 l 3937 8232 l 3932 8273 l 3927 8310 l 3921 8345 l 3914 8378 l 3907 8410 l 3900 8439 l 3892 8468 l 3884 8494 l 3877 8520 l 3869 8543 l 3862 8564 l 3856 8583 l 3850 8600 l 3845 8613 l 3841 8624 l 3835 8640 l gs col0 s gr gr % arrowhead 0 slj n 3875 8363 m 3847 8609 l 3987 8405 l col0 s % Polyline 2 slj gs clippath 5881 8652 m 5993 8695 l 6095 8425 l 5955 8629 l 5983 8383 l cp eoclip n 5933 7423 m 5933 7424 l 5935 7427 l 5937 7433 l 5940 7442 l 5944 7454 l 5949 7469 l 5955 7487 l 5962 7509 l 5969 7533 l 5977 7559 l 5985 7587 l 5993 7616 l 6001 7647 l 6009 7680 l 6017 7713 l 6024 7749 l 6030 7786 l 6036 7826 l 6042 7868 l 6047 7913 l 6050 7961 l 6053 8011 l 6054 8062 l 6054 8113 l 6052 8162 l 6049 8209 l 6045 8252 l 6040 8293 l 6035 8330 l 6029 8365 l 6022 8398 l 6015 8430 l 6008 8459 l 6000 8488 l 5992 8514 l 5985 8540 l 5977 8563 l 5970 8584 l 5964 8603 l 5958 8620 l 5953 8633 l 5949 8644 l 5943 8660 l gs col0 s gr gr % arrowhead 0 slj n 5983 8383 m 5955 8629 l 6095 8425 l col0 s % Polyline 2 slj gs clippath 7969 8652 m 8081 8695 l 8183 8425 l 8043 8629 l 8071 8383 l cp eoclip n 8021 7423 m 8021 7424 l 8023 7427 l 8025 7433 l 8028 7442 l 8032 7454 l 8037 7469 l 8043 7487 l 8050 7509 l 8057 7533 l 8065 7559 l 8073 7587 l 8081 7616 l 8089 7647 l 8097 7680 l 8105 7713 l 8112 7749 l 8118 7786 l 8124 7826 l 8130 7868 l 8135 7913 l 8138 7961 l 8141 8011 l 8142 8062 l 8142 8113 l 8140 8162 l 8137 8209 l 8133 8252 l 8128 8293 l 8123 8330 l 8117 8365 l 8110 8398 l 8103 8430 l 8096 8459 l 8088 8488 l 8080 8514 l 8073 8540 l 8065 8563 l 8058 8584 l 8052 8603 l 8046 8620 l 8041 8633 l 8037 8644 l 8031 8660 l gs col0 s gr gr % arrowhead 0 slj n 8071 8383 m 8043 8629 l 8183 8425 l col0 s % Polyline 2 slj gs clippath 3730 7409 m 3627 7347 l 3479 7593 l 3654 7419 l 3581 7655 l cp eoclip n 3620 8628 m 3620 8627 l 3618 8624 l 3617 8619 l 3614 8612 l 3610 8601 l 3604 8588 l 3598 8571 l 3591 8551 l 3583 8529 l 3575 8505 l 3566 8479 l 3557 8451 l 3549 8422 l 3540 8392 l 3531 8360 l 3523 8328 l 3516 8294 l 3509 8259 l 3503 8222 l 3498 8183 l 3493 8142 l 3490 8099 l 3488 8053 l 3487 8007 l 3488 7959 l 3491 7908 l 3496 7859 l 3503 7814 l 3510 7772 l 3519 7733 l 3528 7696 l 3538 7663 l 3549 7632 l 3560 7602 l 3572 7574 l 3584 7548 l 3596 7524 l 3608 7500 l 3619 7479 l 3630 7460 l 3640 7442 l 3648 7427 l 3656 7415 l 3662 7406 l 3671 7391 l gs col0 s gr gr % arrowhead 0 slj n 3581 7655 m 3654 7419 l 3479 7593 l col0 s % Polyline 2 slj gs clippath 5838 7439 m 5735 7377 l 5587 7623 l 5762 7449 l 5689 7685 l cp eoclip n 5728 8658 m 5728 8657 l 5726 8654 l 5725 8649 l 5722 8642 l 5718 8631 l 5712 8618 l 5706 8601 l 5699 8581 l 5691 8559 l 5683 8535 l 5674 8509 l 5665 8481 l 5657 8452 l 5648 8422 l 5639 8390 l 5631 8358 l 5624 8324 l 5617 8289 l 5611 8252 l 5606 8213 l 5601 8172 l 5598 8129 l 5596 8083 l 5595 8037 l 5596 7989 l 5599 7938 l 5604 7889 l 5611 7844 l 5618 7802 l 5627 7763 l 5636 7726 l 5646 7693 l 5657 7662 l 5668 7632 l 5680 7604 l 5692 7578 l 5704 7554 l 5716 7530 l 5727 7509 l 5738 7490 l 5748 7472 l 5756 7457 l 5764 7445 l 5770 7436 l 5779 7421 l gs col0 s gr gr % arrowhead 0 slj n 5689 7685 m 5762 7449 l 5587 7623 l col0 s % Polyline 2 slj gs clippath 7926 7459 m 7823 7397 l 7675 7643 l 7850 7469 l 7777 7705 l cp eoclip n 7816 8678 m 7816 8677 l 7814 8674 l 7813 8669 l 7810 8662 l 7806 8651 l 7800 8638 l 7794 8621 l 7787 8601 l 7779 8579 l 7771 8555 l 7762 8529 l 7753 8501 l 7745 8472 l 7736 8442 l 7727 8410 l 7719 8378 l 7712 8344 l 7705 8309 l 7699 8272 l 7694 8233 l 7689 8192 l 7686 8149 l 7684 8103 l 7683 8057 l 7684 8009 l 7687 7958 l 7692 7909 l 7699 7864 l 7706 7822 l 7715 7783 l 7724 7746 l 7734 7713 l 7745 7682 l 7756 7652 l 7768 7624 l 7780 7598 l 7792 7574 l 7804 7550 l 7815 7529 l 7826 7510 l 7836 7492 l 7844 7477 l 7852 7465 l 7858 7456 l 7867 7441 l gs col0 s gr gr % arrowhead 0 slj n 7777 7705 m 7850 7469 l 7675 7643 l col0 s % Polyline 2 slj gs clippath 3773 10365 m 3885 10408 l 3987 10138 l 3847 10342 l 3875 10096 l cp eoclip n 3825 9136 m 3825 9137 l 3827 9140 l 3829 9146 l 3832 9155 l 3836 9167 l 3841 9182 l 3847 9200 l 3854 9222 l 3861 9246 l 3869 9272 l 3877 9300 l 3885 9329 l 3893 9360 l 3901 9393 l 3909 9426 l 3916 9462 l 3922 9499 l 3928 9539 l 3934 9581 l 3939 9626 l 3942 9674 l 3945 9724 l 3946 9775 l 3946 9826 l 3944 9875 l 3941 9922 l 3937 9965 l 3932 10006 l 3927 10043 l 3921 10078 l 3914 10111 l 3907 10143 l 3900 10172 l 3892 10201 l 3884 10227 l 3877 10253 l 3869 10276 l 3862 10297 l 3856 10316 l 3850 10333 l 3845 10346 l 3841 10357 l 3835 10373 l gs col0 s gr gr % arrowhead 0 slj n 3875 10096 m 3847 10342 l 3987 10138 l col0 s % Polyline 2 slj gs clippath 5942 10345 m 6054 10388 l 6156 10118 l 6016 10322 l 6044 10076 l cp eoclip n 5994 9116 m 5994 9117 l 5996 9120 l 5998 9126 l 6001 9135 l 6005 9147 l 6010 9162 l 6016 9180 l 6023 9202 l 6030 9226 l 6038 9252 l 6046 9280 l 6054 9309 l 6062 9340 l 6070 9373 l 6078 9406 l 6085 9442 l 6091 9479 l 6097 9519 l 6103 9561 l 6108 9606 l 6111 9654 l 6114 9704 l 6115 9755 l 6115 9806 l 6113 9855 l 6110 9902 l 6106 9945 l 6101 9986 l 6096 10023 l 6090 10058 l 6083 10091 l 6076 10123 l 6069 10152 l 6061 10181 l 6053 10207 l 6046 10233 l 6038 10256 l 6031 10277 l 6025 10296 l 6019 10313 l 6014 10326 l 6010 10337 l 6004 10353 l gs col0 s gr gr % arrowhead 0 slj n 6044 10076 m 6016 10322 l 6156 10118 l col0 s % Polyline 2 slj gs clippath 8009 10345 m 8121 10388 l 8223 10118 l 8083 10322 l 8111 10076 l cp eoclip n 8061 9116 m 8061 9117 l 8063 9120 l 8065 9126 l 8068 9135 l 8072 9147 l 8077 9162 l 8083 9180 l 8090 9202 l 8097 9226 l 8105 9252 l 8113 9280 l 8121 9309 l 8129 9340 l 8137 9373 l 8145 9406 l 8152 9442 l 8158 9479 l 8164 9519 l 8170 9561 l 8175 9606 l 8178 9654 l 8181 9704 l 8182 9755 l 8182 9806 l 8180 9855 l 8177 9902 l 8173 9945 l 8168 9986 l 8163 10023 l 8157 10058 l 8150 10091 l 8143 10123 l 8136 10152 l 8128 10181 l 8120 10207 l 8113 10233 l 8105 10256 l 8098 10277 l 8092 10296 l 8086 10313 l 8081 10326 l 8077 10337 l 8071 10353 l gs col0 s gr gr % arrowhead 0 slj n 8111 10076 m 8083 10322 l 8223 10118 l col0 s % Polyline 2 slj 75.000 slw gs clippath 1692 9148 m 1491 9018 l 1294 9322 l 1542 9161 l 1496 9452 l cp eoclip n 1554 10363 m 1553 10362 l 1552 10359 l 1550 10355 l 1546 10347 l 1541 10337 l 1535 10324 l 1527 10308 l 1518 10290 l 1508 10269 l 1498 10245 l 1487 10220 l 1476 10193 l 1465 10165 l 1454 10136 l 1443 10105 l 1433 10073 l 1423 10040 l 1414 10005 l 1406 9969 l 1399 9930 l 1392 9889 l 1387 9846 l 1384 9800 l 1382 9753 l 1382 9704 l 1384 9652 l 1389 9601 l 1396 9554 l 1404 9510 l 1413 9469 l 1423 9430 l 1434 9394 l 1446 9361 l 1459 9329 l 1472 9299 l 1485 9270 l 1498 9243 l 1512 9218 l 1525 9194 l 1537 9173 l 1548 9153 l 1558 9137 l 1567 9123 l 1573 9113 l 1584 9096 l gs col0 s gr gr % arrowhead 0 slj 60.000 slw n 1496 9452 m 1542 9161 l 1294 9322 l 1496 9452 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj 75.000 slw gs clippath 3749 9148 m 3548 9018 l 3351 9322 l 3599 9161 l 3553 9452 l cp eoclip n 3611 10363 m 3610 10362 l 3609 10359 l 3607 10355 l 3603 10347 l 3598 10337 l 3592 10324 l 3584 10308 l 3575 10290 l 3565 10269 l 3555 10245 l 3544 10220 l 3533 10193 l 3522 10165 l 3511 10136 l 3500 10105 l 3490 10073 l 3480 10040 l 3471 10005 l 3463 9969 l 3456 9930 l 3449 9889 l 3444 9846 l 3441 9800 l 3439 9753 l 3439 9704 l 3441 9652 l 3446 9601 l 3453 9554 l 3461 9510 l 3470 9469 l 3480 9430 l 3491 9394 l 3503 9361 l 3516 9329 l 3529 9299 l 3542 9270 l 3555 9243 l 3569 9218 l 3582 9194 l 3594 9173 l 3605 9153 l 3615 9137 l 3624 9123 l 3630 9113 l 3641 9096 l gs col0 s gr gr % arrowhead 0 slj 60.000 slw n 3553 9452 m 3599 9161 l 3351 9322 l 3553 9452 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj 75.000 slw gs clippath 5898 9158 m 5697 9028 l 5500 9332 l 5748 9171 l 5702 9462 l cp eoclip n 5760 10373 m 5759 10372 l 5758 10369 l 5756 10365 l 5752 10357 l 5747 10347 l 5741 10334 l 5733 10318 l 5724 10300 l 5714 10279 l 5704 10255 l 5693 10230 l 5682 10203 l 5671 10175 l 5660 10146 l 5649 10115 l 5639 10083 l 5629 10050 l 5620 10015 l 5612 9979 l 5605 9940 l 5598 9899 l 5593 9856 l 5590 9810 l 5588 9763 l 5588 9714 l 5590 9662 l 5595 9611 l 5602 9564 l 5610 9520 l 5619 9479 l 5629 9440 l 5640 9404 l 5652 9371 l 5665 9339 l 5678 9309 l 5691 9280 l 5704 9253 l 5718 9228 l 5731 9204 l 5743 9183 l 5754 9163 l 5764 9147 l 5773 9133 l 5779 9123 l 5790 9106 l gs col0 s gr gr % arrowhead 0 slj 60.000 slw n 5702 9462 m 5748 9171 l 5500 9332 l 5702 9462 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj 75.000 slw gs clippath 7965 9189 m 7764 9059 l 7567 9363 l 7815 9202 l 7769 9493 l cp eoclip n 7827 10404 m 7826 10403 l 7825 10400 l 7823 10396 l 7819 10388 l 7814 10378 l 7808 10365 l 7800 10349 l 7791 10331 l 7781 10310 l 7771 10286 l 7760 10261 l 7749 10234 l 7738 10206 l 7727 10177 l 7716 10146 l 7706 10114 l 7696 10081 l 7687 10046 l 7679 10010 l 7672 9971 l 7665 9930 l 7660 9887 l 7657 9841 l 7655 9794 l 7655 9745 l 7657 9693 l 7662 9642 l 7669 9595 l 7677 9551 l 7686 9510 l 7696 9471 l 7707 9435 l 7719 9402 l 7732 9370 l 7745 9340 l 7758 9311 l 7771 9284 l 7785 9259 l 7798 9235 l 7810 9214 l 7821 9194 l 7831 9178 l 7840 9164 l 7846 9154 l 7857 9137 l gs col0 s gr gr % arrowhead 0 slj 60.000 slw n 7769 9493 m 7815 9202 l 7567 9363 l 7769 9493 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj 15.000 slw gs clippath 3293 10591 m 3356 10488 l 3110 10338 l 3284 10515 l 3047 10441 l cp eoclip n 2025 10481 m 2026 10480 l 2029 10479 l 2035 10476 l 2044 10471 l 2055 10465 l 2071 10458 l 2089 10449 l 2110 10439 l 2134 10428 l 2160 10417 l 2188 10405 l 2218 10394 l 2249 10382 l 2282 10371 l 2316 10361 l 2352 10351 l 2390 10342 l 2431 10335 l 2474 10328 l 2520 10323 l 2569 10320 l 2621 10318 l 2674 10319 l 2727 10322 l 2779 10328 l 2828 10335 l 2873 10344 l 2916 10354 l 2956 10365 l 2993 10377 l 3029 10389 l 3062 10402 l 3094 10416 l 3125 10430 l 3154 10444 l 3181 10457 l 3206 10471 l 3229 10484 l 3250 10495 l 3268 10505 l 3283 10514 l 3294 10521 l 3312 10532 l gs col0 s gr gr % arrowhead 0 slj n 3047 10441 m 3284 10515 l 3110 10338 l col0 s % Polyline 2 slj gs clippath 5391 10591 m 5454 10488 l 5208 10338 l 5382 10515 l 5145 10441 l cp eoclip n 4123 10481 m 4124 10480 l 4127 10479 l 4133 10476 l 4142 10471 l 4153 10465 l 4169 10458 l 4187 10449 l 4208 10439 l 4232 10428 l 4258 10417 l 4286 10405 l 4316 10394 l 4347 10382 l 4380 10371 l 4414 10361 l 4450 10351 l 4488 10342 l 4529 10335 l 4572 10328 l 4618 10323 l 4667 10320 l 4719 10318 l 4772 10319 l 4825 10322 l 4877 10328 l 4926 10335 l 4971 10344 l 5014 10354 l 5054 10365 l 5091 10377 l 5127 10389 l 5160 10402 l 5192 10416 l 5223 10430 l 5252 10444 l 5279 10457 l 5304 10471 l 5327 10484 l 5348 10495 l 5366 10505 l 5381 10514 l 5392 10521 l 5410 10532 l gs col0 s gr gr % arrowhead 0 slj n 5145 10441 m 5382 10515 l 5208 10338 l col0 s % Polyline 2 slj gs clippath 7499 10601 m 7562 10498 l 7316 10348 l 7490 10525 l 7253 10451 l cp eoclip n 6231 10491 m 6232 10490 l 6235 10489 l 6241 10486 l 6250 10481 l 6261 10475 l 6277 10468 l 6295 10459 l 6316 10449 l 6340 10438 l 6366 10427 l 6394 10415 l 6424 10404 l 6455 10392 l 6488 10381 l 6522 10371 l 6558 10361 l 6596 10352 l 6637 10345 l 6680 10338 l 6726 10333 l 6775 10330 l 6827 10328 l 6880 10329 l 6933 10332 l 6985 10338 l 7034 10345 l 7079 10354 l 7122 10364 l 7162 10375 l 7199 10387 l 7235 10399 l 7268 10412 l 7300 10426 l 7331 10440 l 7360 10454 l 7387 10467 l 7412 10481 l 7435 10494 l 7456 10505 l 7474 10515 l 7489 10524 l 7500 10531 l 7518 10542 l gs col0 s gr gr % arrowhead 0 slj n 7253 10451 m 7490 10525 l 7316 10348 l col0 s % Polyline 2 slj gs clippath 3293 8848 m 3356 8745 l 3110 8595 l 3284 8772 l 3047 8698 l cp eoclip n 2025 8738 m 2026 8737 l 2029 8736 l 2035 8733 l 2044 8728 l 2055 8722 l 2071 8715 l 2089 8706 l 2110 8696 l 2134 8685 l 2160 8674 l 2188 8662 l 2218 8651 l 2249 8639 l 2282 8628 l 2316 8618 l 2352 8608 l 2390 8599 l 2431 8592 l 2474 8585 l 2520 8580 l 2569 8577 l 2621 8575 l 2674 8576 l 2727 8579 l 2779 8585 l 2828 8592 l 2873 8601 l 2916 8611 l 2956 8622 l 2993 8634 l 3029 8646 l 3062 8659 l 3094 8673 l 3125 8687 l 3154 8701 l 3181 8714 l 3206 8728 l 3229 8741 l 3250 8752 l 3268 8762 l 3283 8771 l 3294 8778 l 3312 8789 l gs col0 s gr gr % arrowhead 0 slj n 3047 8698 m 3284 8772 l 3110 8595 l col0 s % Polyline 2 slj gs clippath 2099 8863 m 2028 8960 l 2258 9132 l 2102 8941 l 2330 9036 l cp eoclip n 3292 8910 m 3291 8911 l 3288 8913 l 3282 8917 l 3274 8922 l 3262 8930 l 3247 8939 l 3229 8950 l 3208 8963 l 3184 8977 l 3159 8992 l 3131 9007 l 3102 9022 l 3072 9037 l 3040 9051 l 3007 9065 l 2972 9078 l 2935 9090 l 2896 9102 l 2855 9111 l 2810 9120 l 2764 9127 l 2714 9131 l 2664 9133 l 2614 9132 l 2565 9128 l 2520 9123 l 2477 9115 l 2437 9106 l 2400 9095 l 2366 9084 l 2333 9071 l 2303 9058 l 2273 9044 l 2246 9029 l 2219 9015 l 2195 9000 l 2172 8986 l 2151 8973 l 2132 8960 l 2116 8949 l 2103 8940 l 2092 8933 l 2076 8921 l gs col0 s gr gr % arrowhead 0 slj n 2330 9036 m 2102 8941 l 2258 9132 l col0 s % Polyline 2 slj gs clippath 5391 8848 m 5454 8745 l 5208 8595 l 5382 8772 l 5145 8698 l cp eoclip n 4123 8738 m 4124 8737 l 4127 8736 l 4133 8733 l 4142 8728 l 4153 8722 l 4169 8715 l 4187 8706 l 4208 8696 l 4232 8685 l 4258 8674 l 4286 8662 l 4316 8651 l 4347 8639 l 4380 8628 l 4414 8618 l 4450 8608 l 4488 8599 l 4529 8592 l 4572 8585 l 4618 8580 l 4667 8577 l 4719 8575 l 4772 8576 l 4825 8579 l 4877 8585 l 4926 8592 l 4971 8601 l 5014 8611 l 5054 8622 l 5091 8634 l 5127 8646 l 5160 8659 l 5192 8673 l 5223 8687 l 5252 8701 l 5279 8714 l 5304 8728 l 5327 8741 l 5348 8752 l 5366 8762 l 5381 8771 l 5392 8778 l 5410 8789 l gs col0 s gr gr % arrowhead 0 slj n 5145 8698 m 5382 8772 l 5208 8595 l col0 s % Polyline 2 slj gs clippath 7499 8858 m 7562 8755 l 7316 8605 l 7490 8782 l 7253 8708 l cp eoclip n 6231 8748 m 6232 8747 l 6235 8746 l 6241 8743 l 6250 8738 l 6261 8732 l 6277 8725 l 6295 8716 l 6316 8706 l 6340 8695 l 6366 8684 l 6394 8672 l 6424 8661 l 6455 8649 l 6488 8638 l 6522 8628 l 6558 8618 l 6596 8609 l 6637 8602 l 6680 8595 l 6726 8590 l 6775 8587 l 6827 8585 l 6880 8586 l 6933 8589 l 6985 8595 l 7034 8602 l 7079 8611 l 7122 8621 l 7162 8632 l 7199 8644 l 7235 8656 l 7268 8669 l 7300 8683 l 7331 8697 l 7360 8711 l 7387 8724 l 7412 8738 l 7435 8751 l 7456 8762 l 7474 8772 l 7489 8781 l 7500 8788 l 7518 8799 l gs col0 s gr gr % arrowhead 0 slj n 7253 8708 m 7490 8782 l 7316 8605 l col0 s % Polyline 2 slj gs clippath 4217 8863 m 4146 8960 l 4376 9132 l 4220 8941 l 4448 9036 l cp eoclip n 5410 8910 m 5409 8911 l 5406 8913 l 5400 8917 l 5392 8922 l 5380 8930 l 5365 8939 l 5347 8950 l 5326 8963 l 5302 8977 l 5277 8992 l 5249 9007 l 5220 9022 l 5190 9037 l 5158 9051 l 5125 9065 l 5090 9078 l 5053 9090 l 5014 9102 l 4973 9111 l 4928 9120 l 4882 9127 l 4832 9131 l 4782 9133 l 4732 9132 l 4683 9128 l 4638 9123 l 4595 9115 l 4555 9106 l 4518 9095 l 4484 9084 l 4451 9071 l 4421 9058 l 4391 9044 l 4364 9029 l 4337 9015 l 4313 9000 l 4290 8986 l 4269 8973 l 4250 8960 l 4234 8949 l 4221 8940 l 4210 8933 l 4194 8921 l gs col0 s gr gr % arrowhead 0 slj n 4448 9036 m 4220 8941 l 4376 9132 l col0 s % Polyline 2 slj gs clippath 6305 8843 m 6234 8940 l 6464 9112 l 6308 8921 l 6536 9016 l cp eoclip n 7498 8890 m 7497 8891 l 7494 8893 l 7488 8897 l 7480 8902 l 7468 8910 l 7453 8919 l 7435 8930 l 7414 8943 l 7390 8957 l 7365 8972 l 7337 8987 l 7308 9002 l 7278 9017 l 7246 9031 l 7213 9045 l 7178 9058 l 7141 9070 l 7102 9082 l 7061 9091 l 7016 9100 l 6970 9107 l 6920 9111 l 6870 9113 l 6820 9112 l 6771 9108 l 6726 9103 l 6683 9095 l 6643 9086 l 6606 9075 l 6572 9064 l 6539 9051 l 6509 9038 l 6479 9024 l 6452 9009 l 6425 8995 l 6401 8980 l 6378 8966 l 6357 8953 l 6338 8940 l 6322 8929 l 6309 8920 l 6298 8913 l 6282 8901 l gs col0 s gr gr % arrowhead 0 slj n 6536 9016 m 6308 8921 l 6464 9112 l col0 s % Polyline 2 slj gs clippath 3299 7176 m 3362 7073 l 3116 6923 l 3290 7100 l 3053 7026 l cp eoclip n 2031 7066 m 2032 7065 l 2035 7064 l 2041 7061 l 2050 7056 l 2061 7050 l 2077 7043 l 2095 7034 l 2116 7024 l 2140 7013 l 2166 7002 l 2194 6990 l 2224 6979 l 2255 6967 l 2288 6956 l 2322 6946 l 2358 6936 l 2396 6927 l 2437 6920 l 2480 6913 l 2526 6908 l 2575 6905 l 2627 6903 l 2680 6904 l 2733 6907 l 2785 6913 l 2834 6920 l 2879 6929 l 2922 6939 l 2962 6950 l 2999 6962 l 3035 6974 l 3068 6987 l 3100 7001 l 3131 7015 l 3160 7029 l 3187 7042 l 3212 7056 l 3235 7069 l 3256 7080 l 3274 7090 l 3289 7099 l 3300 7106 l 3318 7117 l gs col0 s gr gr % arrowhead 0 slj n 3053 7026 m 3290 7100 l 3116 6923 l col0 s % Polyline 2 slj gs clippath 2105 7191 m 2034 7288 l 2264 7460 l 2108 7269 l 2336 7364 l cp eoclip n 3298 7238 m 3297 7239 l 3294 7241 l 3288 7245 l 3280 7250 l 3268 7258 l 3253 7267 l 3235 7278 l 3214 7291 l 3190 7305 l 3165 7320 l 3137 7335 l 3108 7350 l 3078 7365 l 3046 7379 l 3013 7393 l 2978 7406 l 2941 7418 l 2902 7430 l 2861 7439 l 2816 7448 l 2770 7455 l 2720 7459 l 2670 7461 l 2620 7460 l 2571 7456 l 2526 7451 l 2483 7443 l 2443 7434 l 2406 7423 l 2372 7412 l 2339 7399 l 2309 7386 l 2279 7372 l 2252 7357 l 2225 7343 l 2201 7328 l 2178 7314 l 2157 7301 l 2138 7288 l 2122 7277 l 2109 7268 l 2098 7261 l 2082 7249 l gs col0 s gr gr % arrowhead 0 slj n 2336 7364 m 2108 7269 l 2264 7460 l col0 s % Polyline 2 slj gs clippath 5397 7176 m 5460 7073 l 5214 6923 l 5388 7100 l 5151 7026 l cp eoclip n 4129 7066 m 4130 7065 l 4133 7064 l 4139 7061 l 4148 7056 l 4159 7050 l 4175 7043 l 4193 7034 l 4214 7024 l 4238 7013 l 4264 7002 l 4292 6990 l 4322 6979 l 4353 6967 l 4386 6956 l 4420 6946 l 4456 6936 l 4494 6927 l 4535 6920 l 4578 6913 l 4624 6908 l 4673 6905 l 4725 6903 l 4778 6904 l 4831 6907 l 4883 6913 l 4932 6920 l 4977 6929 l 5020 6939 l 5060 6950 l 5097 6962 l 5133 6974 l 5166 6987 l 5198 7001 l 5229 7015 l 5258 7029 l 5285 7042 l 5310 7056 l 5333 7069 l 5354 7080 l 5372 7090 l 5387 7099 l 5398 7106 l 5416 7117 l gs col0 s gr gr % arrowhead 0 slj n 5151 7026 m 5388 7100 l 5214 6923 l col0 s % Polyline 2 slj gs clippath 7505 7186 m 7568 7083 l 7322 6933 l 7496 7110 l 7259 7036 l cp eoclip n 6237 7076 m 6238 7075 l 6241 7074 l 6247 7071 l 6256 7066 l 6267 7060 l 6283 7053 l 6301 7044 l 6322 7034 l 6346 7023 l 6372 7012 l 6400 7000 l 6430 6989 l 6461 6977 l 6494 6966 l 6528 6956 l 6564 6946 l 6602 6937 l 6643 6930 l 6686 6923 l 6732 6918 l 6781 6915 l 6833 6913 l 6886 6914 l 6939 6917 l 6991 6923 l 7040 6930 l 7085 6939 l 7128 6949 l 7168 6960 l 7205 6972 l 7241 6984 l 7274 6997 l 7306 7011 l 7337 7025 l 7366 7039 l 7393 7052 l 7418 7066 l 7441 7079 l 7462 7090 l 7480 7100 l 7495 7109 l 7506 7116 l 7524 7127 l gs col0 s gr gr % arrowhead 0 slj n 7259 7036 m 7496 7110 l 7322 6933 l col0 s % Polyline 2 slj gs clippath 4223 7191 m 4152 7288 l 4382 7460 l 4226 7269 l 4454 7364 l cp eoclip n 5416 7238 m 5415 7239 l 5412 7241 l 5406 7245 l 5398 7250 l 5386 7258 l 5371 7267 l 5353 7278 l 5332 7291 l 5308 7305 l 5283 7320 l 5255 7335 l 5226 7350 l 5196 7365 l 5164 7379 l 5131 7393 l 5096 7406 l 5059 7418 l 5020 7430 l 4979 7439 l 4934 7448 l 4888 7455 l 4838 7459 l 4788 7461 l 4738 7460 l 4689 7456 l 4644 7451 l 4601 7443 l 4561 7434 l 4524 7423 l 4490 7412 l 4457 7399 l 4427 7386 l 4397 7372 l 4370 7357 l 4343 7343 l 4319 7328 l 4296 7314 l 4275 7301 l 4256 7288 l 4240 7277 l 4227 7268 l 4216 7261 l 4200 7249 l gs col0 s gr gr % arrowhead 0 slj n 4454 7364 m 4226 7269 l 4382 7460 l col0 s % Polyline 2 slj gs clippath 6311 7171 m 6240 7268 l 6470 7440 l 6314 7249 l 6542 7344 l cp eoclip n 7504 7218 m 7503 7219 l 7500 7221 l 7494 7225 l 7486 7230 l 7474 7238 l 7459 7247 l 7441 7258 l 7420 7271 l 7396 7285 l 7371 7300 l 7343 7315 l 7314 7330 l 7284 7345 l 7252 7359 l 7219 7373 l 7184 7386 l 7147 7398 l 7108 7410 l 7067 7419 l 7022 7428 l 6976 7435 l 6926 7439 l 6876 7441 l 6826 7440 l 6777 7436 l 6732 7431 l 6689 7423 l 6649 7414 l 6612 7403 l 6578 7392 l 6545 7379 l 6515 7366 l 6485 7352 l 6458 7337 l 6431 7323 l 6407 7308 l 6384 7294 l 6363 7281 l 6344 7268 l 6328 7257 l 6315 7248 l 6304 7241 l 6288 7229 l gs col0 s gr gr % arrowhead 0 slj n 6542 7344 m 6314 7249 l 6470 7440 l col0 s /Times-Roman ff 270.00 scf sf 1332 7279 m gs 1 -1 sc (0H,0L) col0 sh gr /Times-Roman ff 270.00 scf sf 1326 8951 m gs 1 -1 sc (1H,0L) col0 sh gr /Times-Roman ff 270.00 scf sf 3390 7279 m gs 1 -1 sc (0H,1L) col0 sh gr /Times-Roman ff 270.00 scf sf 3384 8951 m gs 1 -1 sc (1H,1L) col0 sh gr /Times-Roman ff 270.00 scf sf 5532 8951 m gs 1 -1 sc (1H,2L) col0 sh gr /Times-Roman ff 270.00 scf sf 5538 7279 m gs 1 -1 sc (0H,2L) col0 sh gr /Times-Roman ff 270.00 scf sf 7626 7299 m gs 1 -1 sc (0H,3L) col0 sh gr /Times-Roman ff 270.00 scf sf 7620 8971 m gs 1 -1 sc (1H,3L) col0 sh gr % here ends figure; F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psEnd rs showpage %%EndDocument endTexFig 2940 1291 a FI(\(b\))488 1438 y 23089397 8081282 0 0 48349593 17103257 startTexFig 488 1438 a %%BeginDocument: ../../figures/mc2prio2server-PH.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: mc2prio2server-PH.fig %%Creator: fig2dev Version 3.2 Patchlevel 4 %%CreationDate: Sun Jan 30 13:43:10 2005 %%For: harchol@mor.sync.cs.cmu.edu (Mor Harchol-Balter) %%BoundingBox: 0 0 735 260 %%Magnification: 1.0000 %%EndComments /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 260 moveto 0 0 lineto 735 0 lineto 735 260 lineto closepath clip newpath -54.0 650.5 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psBegin 10 setmiterlimit 0 slj 0 slc 0.06000 0.06000 sc % % Fig objects follow % % % here starts figure with depth 50 /Symbol ff 330.00 scf sf 6600 6750 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6750 6825 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6600 8475 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6750 8550 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4500 8475 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4650 8550 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2400 8475 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2550 8550 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2400 6750 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2550 6825 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4500 6750 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4650 6825 m gs 1 -1 sc (L) col0 sh gr % Ellipse 15.000 slw n 8610 10573 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 8835 10573 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 9060 10573 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 8610 8830 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 8835 8830 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 9060 8830 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 8616 7158 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 8841 7158 38 38 0 360 DrawEllipse gs col0 s gr % Ellipse n 9066 7158 38 38 0 360 DrawEllipse gs col0 s gr /Symbol ff 330.00 scf sf 1875 8100 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2025 8175 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 3975 8100 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4125 8175 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 6075 8100 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6225 8175 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 8175 8100 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 8325 8175 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 8250 9825 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 8400 9900 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 270.00 scf sf 1125 8250 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 900 8175 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 3225 8250 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 3000 8175 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 5325 8250 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 5100 8175 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 7425 8250 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 7200 8175 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 2700 7725 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2475 7650 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 4875 7800 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4500 7725 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 270.00 scf sf 6900 7800 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6525 7725 m gs 1 -1 sc (2m) col0 sh gr % Ellipse n 1415 9750 160 160 0 360 DrawEllipse gs col0 s gr % Polyline 2 slj gs clippath 1406 9025 m 1312 8951 l 1134 9177 l 1330 9026 l 1228 9251 l cp eoclip n 1350 10500 m 1349 10499 l 1347 10497 l 1344 10493 l 1339 10486 l 1332 10477 l 1323 10465 l 1312 10450 l 1300 10433 l 1285 10413 l 1270 10391 l 1253 10366 l 1236 10340 l 1219 10312 l 1201 10283 l 1184 10253 l 1167 10221 l 1150 10188 l 1134 10154 l 1119 10118 l 1105 10080 l 1093 10040 l 1081 9997 l 1071 9953 l 1062 9905 l 1056 9855 l 1051 9803 l 1050 9750 l 1051 9697 l 1056 9645 l 1062 9595 l 1071 9547 l 1081 9503 l 1093 9460 l 1105 9420 l 1119 9382 l 1134 9346 l 1150 9312 l 1167 9279 l 1184 9247 l 1201 9217 l 1219 9187 l 1236 9160 l 1253 9134 l 1270 9109 l 1285 9087 l 1300 9067 l 1312 9050 l 1323 9035 l 1332 9023 l 1339 9014 l 1350 9000 l gs col0 s gr gr % arrowhead 0 slj n 1228 9251 m 1330 9026 l 1134 9177 l col0 s % Polyline 2 slj gs clippath 1486 9079 m 1372 9042 l 1284 9317 l 1415 9107 l 1398 9353 l cp eoclip n 1350 9600 m 1350 9598 l 1349 9594 l 1348 9587 l 1346 9578 l 1345 9565 l 1343 9551 l 1342 9534 l 1341 9516 l 1340 9495 l 1341 9471 l 1342 9443 l 1345 9411 l 1350 9375 l 1355 9342 l 1361 9310 l 1367 9280 l 1373 9253 l 1380 9227 l 1386 9202 l 1393 9179 l 1399 9157 l 1405 9137 l 1411 9118 l 1416 9103 l 1425 9075 l gs col0 s gr gr % arrowhead 0 slj n 1398 9353 m 1415 9107 l 1284 9317 l col0 s % Polyline 2 slj gs clippath 1405 9872 m 1288 9897 l 1348 10179 l 1357 9932 l 1465 10154 l cp eoclip n 1500 10425 m 1499 10423 l 1498 10419 l 1495 10412 l 1491 10403 l 1487 10390 l 1481 10376 l 1475 10359 l 1469 10341 l 1462 10320 l 1454 10296 l 1445 10268 l 1436 10236 l 1425 10200 l 1416 10167 l 1407 10135 l 1399 10105 l 1392 10078 l 1386 10052 l 1380 10027 l 1374 10004 l 1369 9982 l 1364 9962 l 1360 9943 l 1356 9928 l 1350 9900 l gs col0 s gr gr % arrowhead 0 slj n 1465 10154 m 1357 9932 l 1348 10179 l col0 s % Ellipse n 5540 9750 160 160 0 360 DrawEllipse gs col0 s gr % Polyline 2 slj gs clippath 5531 9025 m 5437 8951 l 5259 9177 l 5455 9026 l 5353 9251 l cp eoclip n 5475 10500 m 5474 10499 l 5472 10497 l 5469 10493 l 5464 10486 l 5457 10477 l 5448 10465 l 5437 10450 l 5425 10433 l 5410 10413 l 5395 10391 l 5378 10366 l 5361 10340 l 5344 10312 l 5326 10283 l 5309 10253 l 5292 10221 l 5275 10188 l 5259 10154 l 5244 10118 l 5230 10080 l 5218 10040 l 5206 9997 l 5196 9953 l 5187 9905 l 5181 9855 l 5176 9803 l 5175 9750 l 5176 9697 l 5181 9645 l 5187 9595 l 5196 9547 l 5206 9503 l 5218 9460 l 5230 9420 l 5244 9382 l 5259 9346 l 5275 9312 l 5292 9279 l 5309 9247 l 5326 9217 l 5344 9187 l 5361 9160 l 5378 9134 l 5395 9109 l 5410 9087 l 5425 9067 l 5437 9050 l 5448 9035 l 5457 9023 l 5464 9014 l 5475 9000 l gs col0 s gr gr % arrowhead 0 slj n 5353 9251 m 5455 9026 l 5259 9177 l col0 s % Polyline 2 slj gs clippath 5611 9079 m 5497 9042 l 5409 9317 l 5540 9107 l 5523 9353 l cp eoclip n 5475 9600 m 5475 9598 l 5474 9594 l 5473 9587 l 5471 9578 l 5470 9565 l 5468 9551 l 5467 9534 l 5466 9516 l 5465 9495 l 5466 9471 l 5467 9443 l 5470 9411 l 5475 9375 l 5480 9342 l 5486 9310 l 5492 9280 l 5498 9253 l 5505 9227 l 5511 9202 l 5518 9179 l 5524 9157 l 5530 9137 l 5536 9118 l 5541 9103 l 5550 9075 l gs col0 s gr gr % arrowhead 0 slj n 5523 9353 m 5540 9107 l 5409 9317 l col0 s % Polyline 2 slj gs clippath 5530 9872 m 5413 9897 l 5473 10179 l 5482 9932 l 5590 10154 l cp eoclip n 5625 10425 m 5624 10423 l 5623 10419 l 5620 10412 l 5616 10403 l 5612 10390 l 5606 10376 l 5600 10359 l 5594 10341 l 5587 10320 l 5579 10296 l 5570 10268 l 5561 10236 l 5550 10200 l 5541 10167 l 5532 10135 l 5524 10105 l 5517 10078 l 5511 10052 l 5505 10027 l 5499 10004 l 5494 9982 l 5489 9962 l 5485 9943 l 5481 9928 l 5475 9900 l gs col0 s gr gr % arrowhead 0 slj n 5590 10154 m 5482 9932 l 5473 10179 l col0 s % Ellipse n 7640 9750 160 160 0 360 DrawEllipse gs col0 s gr % Polyline 2 slj gs clippath 7631 9025 m 7537 8951 l 7359 9177 l 7555 9026 l 7453 9251 l cp eoclip n 7575 10500 m 7574 10499 l 7572 10497 l 7569 10493 l 7564 10486 l 7557 10477 l 7548 10465 l 7537 10450 l 7525 10433 l 7510 10413 l 7495 10391 l 7478 10366 l 7461 10340 l 7444 10312 l 7426 10283 l 7409 10253 l 7392 10221 l 7375 10188 l 7359 10154 l 7344 10118 l 7330 10080 l 7318 10040 l 7306 9997 l 7296 9953 l 7287 9905 l 7281 9855 l 7276 9803 l 7275 9750 l 7276 9697 l 7281 9645 l 7287 9595 l 7296 9547 l 7306 9503 l 7318 9460 l 7330 9420 l 7344 9382 l 7359 9346 l 7375 9312 l 7392 9279 l 7409 9247 l 7426 9217 l 7444 9187 l 7461 9160 l 7478 9134 l 7495 9109 l 7510 9087 l 7525 9067 l 7537 9050 l 7548 9035 l 7557 9023 l 7564 9014 l 7575 9000 l gs col0 s gr gr % arrowhead 0 slj n 7453 9251 m 7555 9026 l 7359 9177 l col0 s % Polyline 2 slj gs clippath 7711 9079 m 7597 9042 l 7509 9317 l 7640 9107 l 7623 9353 l cp eoclip n 7575 9600 m 7575 9598 l 7574 9594 l 7573 9587 l 7571 9578 l 7570 9565 l 7568 9551 l 7567 9534 l 7566 9516 l 7565 9495 l 7566 9471 l 7567 9443 l 7570 9411 l 7575 9375 l 7580 9342 l 7586 9310 l 7592 9280 l 7598 9253 l 7605 9227 l 7611 9202 l 7618 9179 l 7624 9157 l 7630 9137 l 7636 9118 l 7641 9103 l 7650 9075 l gs col0 s gr gr % arrowhead 0 slj n 7623 9353 m 7640 9107 l 7509 9317 l col0 s % Polyline 2 slj gs clippath 7630 9872 m 7513 9897 l 7573 10179 l 7582 9932 l 7690 10154 l cp eoclip n 7725 10425 m 7724 10423 l 7723 10419 l 7720 10412 l 7716 10403 l 7712 10390 l 7706 10376 l 7700 10359 l 7694 10341 l 7687 10320 l 7679 10296 l 7670 10268 l 7661 10236 l 7650 10200 l 7641 10167 l 7632 10135 l 7624 10105 l 7617 10078 l 7611 10052 l 7605 10027 l 7599 10004 l 7594 9982 l 7589 9962 l 7585 9943 l 7581 9928 l 7575 9900 l gs col0 s gr gr % arrowhead 0 slj n 7690 10154 m 7582 9932 l 7573 10179 l col0 s /Symbol ff 330.00 scf sf 4275 9750 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4425 9825 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 3967 9997 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4117 10072 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 6142 9990 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6292 10065 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 1927 9982 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2077 10057 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 2190 9727 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2340 9802 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6390 9735 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6540 9810 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2497 10605 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 2647 10680 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4567 10620 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 4717 10695 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6690 10612 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 270.00 scf sf 6840 10687 m gs 1 -1 sc (L) col0 sh gr /Times-Roman ff 270.00 scf sf 2670 9090 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 2445 9015 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 4807 9097 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 4582 9022 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 6877 9075 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 330.00 scf sf 6652 9000 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 1346 10574 m gs 1 -1 sc (+) col0 sh gr /Times-Roman ff 270.00 scf sf 1266 10696 m gs 1 -1 sc (2 H,0L) col0 sh gr % Ellipse n 3440 9750 160 160 0 360 DrawEllipse gs col0 s gr % Polyline 2 slj gs clippath 3431 9025 m 3337 8951 l 3159 9177 l 3355 9026 l 3253 9251 l cp eoclip n 3375 10500 m 3374 10499 l 3372 10497 l 3369 10493 l 3364 10486 l 3357 10477 l 3348 10465 l 3337 10450 l 3325 10433 l 3310 10413 l 3295 10391 l 3278 10366 l 3261 10340 l 3244 10312 l 3226 10283 l 3209 10253 l 3192 10221 l 3175 10188 l 3159 10154 l 3144 10118 l 3130 10080 l 3118 10040 l 3106 9997 l 3096 9953 l 3087 9905 l 3081 9855 l 3076 9803 l 3075 9750 l 3076 9697 l 3081 9645 l 3087 9595 l 3096 9547 l 3106 9503 l 3118 9460 l 3130 9420 l 3144 9382 l 3159 9346 l 3175 9312 l 3192 9279 l 3209 9247 l 3226 9217 l 3244 9187 l 3261 9160 l 3278 9134 l 3295 9109 l 3310 9087 l 3325 9067 l 3337 9050 l 3348 9035 l 3357 9023 l 3364 9014 l 3375 9000 l gs col0 s gr gr % arrowhead 0 slj n 3253 9251 m 3355 9026 l 3159 9177 l col0 s % Polyline 2 slj gs clippath 3511 9079 m 3397 9042 l 3309 9317 l 3440 9107 l 3423 9353 l cp eoclip n 3375 9600 m 3375 9598 l 3374 9594 l 3373 9587 l 3371 9578 l 3370 9565 l 3368 9551 l 3367 9534 l 3366 9516 l 3365 9495 l 3366 9471 l 3367 9443 l 3370 9411 l 3375 9375 l 3380 9342 l 3386 9310 l 3392 9280 l 3398 9253 l 3405 9227 l 3411 9202 l 3418 9179 l 3424 9157 l 3430 9137 l 3436 9118 l 3441 9103 l 3450 9075 l gs col0 s gr gr % arrowhead 0 slj n 3423 9353 m 3440 9107 l 3309 9317 l col0 s % Polyline 2 slj gs clippath 3430 9872 m 3313 9897 l 3373 10179 l 3382 9932 l 3490 10154 l cp eoclip n 3525 10425 m 3524 10423 l 3523 10419 l 3520 10412 l 3516 10403 l 3512 10390 l 3506 10376 l 3500 10359 l 3494 10341 l 3487 10320 l 3479 10296 l 3470 10268 l 3461 10236 l 3450 10200 l 3441 10167 l 3432 10135 l 3424 10105 l 3417 10078 l 3411 10052 l 3405 10027 l 3399 10004 l 3394 9982 l 3389 9962 l 3385 9943 l 3381 9928 l 3375 9900 l gs col0 s gr gr % arrowhead 0 slj n 3490 10154 m 3382 9932 l 3373 10179 l col0 s /Times-Roman ff 270.00 scf sf 3400 10584 m gs 1 -1 sc (+) col0 sh gr /Times-Roman ff 270.00 scf sf 3320 10706 m gs 1 -1 sc (2 H,1L) col0 sh gr /Times-Roman ff 270.00 scf sf 5544 10574 m gs 1 -1 sc (+) col0 sh gr /Times-Roman ff 270.00 scf sf 5464 10696 m gs 1 -1 sc (2 H,2L) col0 sh gr /Times-Roman ff 270.00 scf sf 7648 10594 m gs 1 -1 sc (+) col0 sh gr /Times-Roman ff 270.00 scf sf 7568 10716 m gs 1 -1 sc (2 H,3L) col0 sh gr % Ellipse n 11002 9769 160 160 0 360 DrawEllipse gs col0 s gr % Polyline 2 slj gs clippath 10993 9044 m 10899 8970 l 10721 9196 l 10917 9045 l 10815 9270 l cp eoclip n 10937 10519 m 10936 10518 l 10934 10516 l 10931 10512 l 10926 10505 l 10919 10496 l 10910 10484 l 10899 10469 l 10887 10452 l 10872 10432 l 10857 10410 l 10840 10385 l 10823 10359 l 10806 10331 l 10788 10302 l 10771 10272 l 10754 10240 l 10737 10207 l 10721 10173 l 10706 10137 l 10692 10099 l 10680 10059 l 10668 10016 l 10658 9972 l 10649 9924 l 10643 9874 l 10638 9822 l 10637 9769 l 10638 9716 l 10643 9664 l 10649 9614 l 10658 9566 l 10668 9522 l 10680 9479 l 10692 9439 l 10706 9401 l 10721 9365 l 10737 9331 l 10754 9298 l 10771 9266 l 10788 9236 l 10806 9206 l 10823 9179 l 10840 9153 l 10857 9128 l 10872 9106 l 10887 9086 l 10899 9069 l 10910 9054 l 10919 9042 l 10926 9033 l 10937 9019 l gs col0 s gr gr % arrowhead 0 slj n 10815 9270 m 10917 9045 l 10721 9196 l col0 s % Polyline 2 slj gs clippath 11073 9098 m 10959 9061 l 10871 9336 l 11002 9126 l 10985 9372 l cp eoclip n 10937 9619 m 10937 9617 l 10936 9613 l 10935 9606 l 10933 9597 l 10932 9584 l 10930 9570 l 10929 9553 l 10928 9535 l 10927 9514 l 10928 9490 l 10929 9462 l 10932 9430 l 10937 9394 l 10942 9361 l 10948 9329 l 10954 9299 l 10960 9272 l 10967 9246 l 10973 9221 l 10980 9198 l 10986 9176 l 10992 9156 l 10998 9137 l 11003 9122 l 11012 9094 l gs col0 s gr gr % arrowhead 0 slj n 10985 9372 m 11002 9126 l 10871 9336 l col0 s % Polyline 2 slj gs clippath 10992 9891 m 10875 9916 l 10935 10198 l 10944 9951 l 11052 10173 l cp eoclip n 11087 10444 m 11086 10442 l 11085 10438 l 11082 10431 l 11078 10422 l 11074 10409 l 11068 10395 l 11062 10378 l 11056 10360 l 11049 10339 l 11041 10315 l 11032 10287 l 11023 10255 l 11012 10219 l 11003 10186 l 10994 10154 l 10986 10124 l 10979 10097 l 10973 10071 l 10967 10046 l 10961 10023 l 10956 10001 l 10951 9981 l 10947 9962 l 10943 9947 l 10937 9919 l gs col0 s gr gr % arrowhead 0 slj n 11052 10173 m 10944 9951 l 10935 10198 l col0 s /Times-Roman ff 405.00 scf sf 10337 9907 m gs 1 -1 sc (t) col0 sh gr /Times-Roman ff 270.00 scf sf 10435 10005 m gs 1 -1 sc (1) col0 sh gr /Times-Roman ff 405.00 scf sf 11038 9430 m gs 1 -1 sc (t) col0 sh gr /Times-Roman ff 270.00 scf sf 11136 9528 m gs 1 -1 sc (2) col0 sh gr /Times-Roman ff 405.00 scf sf 11094 10355 m gs 1 -1 sc (t) col0 sh gr /Times-Roman ff 270.00 scf sf 11192 10453 m gs 1 -1 sc (12) col0 sh gr /Times-Roman ff 300.00 scf sf 12146 9787 m gs 1 -1 sc (B) col0 sh gr /Symbol ff 240.00 scf sf 12341 9847 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 180.00 scf sf 12596 9899 m gs 1 -1 sc (H) col0 sh gr % Polyline 2 slj 75.000 slw gs clippath 13166 8988 m 13014 8897 l 12856 9161 l 13016 9068 l 13008 9252 l cp eoclip n 13028 10650 m 13027 10649 l 13026 10646 l 13024 10641 l 13020 10634 l 13015 10623 l 13008 10609 l 13001 10591 l 12991 10571 l 12981 10547 l 12970 10521 l 12958 10492 l 12945 10462 l 12933 10429 l 12920 10395 l 12908 10359 l 12896 10322 l 12884 10284 l 12873 10244 l 12863 10202 l 12853 10158 l 12844 10112 l 12837 10064 l 12831 10012 l 12826 9958 l 12823 9901 l 12821 9842 l 12822 9782 l 12825 9722 l 12830 9663 l 12837 9608 l 12846 9555 l 12855 9505 l 12866 9458 l 12877 9414 l 12890 9372 l 12903 9332 l 12916 9294 l 12930 9258 l 12945 9223 l 12959 9190 l 12974 9159 l 12989 9128 l 13003 9100 l 13017 9074 l 13030 9050 l 13041 9028 l 13052 9009 l 13061 8994 l 13068 8981 l 13074 8971 l 13083 8956 l gs col0 s gr gr % arrowhead 0 slj 120.000 slw n 13008 9252 m 13016 9068 l 12856 9161 l 13008 9252 l cp gs 0.00 setgray ef gr col0 s /Times-Roman ff 435.00 scf sf 11620 9852 m gs 1 -1 sc (=) col0 sh gr % Ellipse 15.000 slw n 7934 10607 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 3728 8855 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 7934 8864 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 1650 8855 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 3734 7183 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 5860 7180 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 7940 7192 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 1656 7183 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 5854 8852 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 1650 10598 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 5854 10595 436 217 0 360 DrawEllipse gs col0 s gr % Ellipse n 3704 10610 436 217 0 360 DrawEllipse gs col0 s gr % Polyline 2 slj gs clippath 1695 8632 m 1807 8675 l 1909 8405 l 1769 8609 l 1797 8363 l cp eoclip n 1747 7403 m 1747 7404 l 1749 7407 l 1751 7413 l 1754 7422 l 1758 7434 l 1763 7449 l 1769 7467 l 1776 7489 l 1783 7513 l 1791 7539 l 1799 7567 l 1807 7596 l 1815 7627 l 1823 7660 l 1831 7693 l 1838 7729 l 1844 7766 l 1850 7806 l 1856 7848 l 1861 7893 l 1864 7941 l 1867 7991 l 1868 8042 l 1868 8093 l 1866 8142 l 1863 8189 l 1859 8232 l 1854 8273 l 1849 8310 l 1843 8345 l 1836 8378 l 1829 8410 l 1822 8439 l 1814 8468 l 1806 8494 l 1799 8520 l 1791 8543 l 1784 8564 l 1778 8583 l 1772 8600 l 1767 8613 l 1763 8624 l 1757 8640 l gs col0 s gr gr % arrowhead 0 slj n 1797 8363 m 1769 8609 l 1909 8405 l col0 s % Polyline 2 slj gs clippath 1654 7401 m 1551 7339 l 1403 7585 l 1578 7411 l 1505 7647 l cp eoclip n 1544 8620 m 1544 8619 l 1542 8616 l 1541 8611 l 1538 8604 l 1534 8593 l 1528 8580 l 1522 8563 l 1515 8543 l 1507 8521 l 1499 8497 l 1490 8471 l 1481 8443 l 1473 8414 l 1464 8384 l 1455 8352 l 1447 8320 l 1440 8286 l 1433 8251 l 1427 8214 l 1422 8175 l 1417 8134 l 1414 8091 l 1412 8045 l 1411 7999 l 1412 7951 l 1415 7900 l 1420 7851 l 1427 7806 l 1434 7764 l 1443 7725 l 1452 7688 l 1462 7655 l 1473 7624 l 1484 7594 l 1496 7566 l 1508 7540 l 1520 7516 l 1532 7492 l 1543 7471 l 1554 7452 l 1564 7434 l 1572 7419 l 1580 7407 l 1586 7398 l 1595 7383 l gs col0 s gr gr % arrowhead 0 slj n 1505 7647 m 1578 7411 l 1403 7585 l col0 s % Polyline 2 slj gs clippath 1726 10345 m 1838 10388 l 1940 10118 l 1800 10322 l 1828 10076 l cp eoclip n 1778 9116 m 1778 9117 l 1780 9120 l 1782 9126 l 1785 9135 l 1789 9147 l 1794 9162 l 1800 9180 l 1807 9202 l 1814 9226 l 1822 9252 l 1830 9280 l 1838 9309 l 1846 9340 l 1854 9373 l 1862 9406 l 1869 9442 l 1875 9479 l 1881 9519 l 1887 9561 l 1892 9606 l 1895 9654 l 1898 9704 l 1899 9755 l 1899 9806 l 1897 9855 l 1894 9902 l 1890 9945 l 1885 9986 l 1880 10023 l 1874 10058 l 1867 10091 l 1860 10123 l 1853 10152 l 1845 10181 l 1837 10207 l 1830 10233 l 1822 10256 l 1815 10277 l 1809 10296 l 1803 10313 l 1798 10326 l 1794 10337 l 1788 10353 l gs col0 s gr gr % arrowhead 0 slj n 1828 10076 m 1800 10322 l 1940 10118 l col0 s % Polyline 2 slj gs clippath 3773 8632 m 3885 8675 l 3987 8405 l 3847 8609 l 3875 8363 l cp eoclip n 3825 7403 m 3825 7404 l 3827 7407 l 3829 7413 l 3832 7422 l 3836 7434 l 3841 7449 l 3847 7467 l 3854 7489 l 3861 7513 l 3869 7539 l 3877 7567 l 3885 7596 l 3893 7627 l 3901 7660 l 3909 7693 l 3916 7729 l 3922 7766 l 3928 7806 l 3934 7848 l 3939 7893 l 3942 7941 l 3945 7991 l 3946 8042 l 3946 8093 l 3944 8142 l 3941 8189 l 3937 8232 l 3932 8273 l 3927 8310 l 3921 8345 l 3914 8378 l 3907 8410 l 3900 8439 l 3892 8468 l 3884 8494 l 3877 8520 l 3869 8543 l 3862 8564 l 3856 8583 l 3850 8600 l 3845 8613 l 3841 8624 l 3835 8640 l gs col0 s gr gr % arrowhead 0 slj n 3875 8363 m 3847 8609 l 3987 8405 l col0 s % Polyline 2 slj gs clippath 5881 8652 m 5993 8695 l 6095 8425 l 5955 8629 l 5983 8383 l cp eoclip n 5933 7423 m 5933 7424 l 5935 7427 l 5937 7433 l 5940 7442 l 5944 7454 l 5949 7469 l 5955 7487 l 5962 7509 l 5969 7533 l 5977 7559 l 5985 7587 l 5993 7616 l 6001 7647 l 6009 7680 l 6017 7713 l 6024 7749 l 6030 7786 l 6036 7826 l 6042 7868 l 6047 7913 l 6050 7961 l 6053 8011 l 6054 8062 l 6054 8113 l 6052 8162 l 6049 8209 l 6045 8252 l 6040 8293 l 6035 8330 l 6029 8365 l 6022 8398 l 6015 8430 l 6008 8459 l 6000 8488 l 5992 8514 l 5985 8540 l 5977 8563 l 5970 8584 l 5964 8603 l 5958 8620 l 5953 8633 l 5949 8644 l 5943 8660 l gs col0 s gr gr % arrowhead 0 slj n 5983 8383 m 5955 8629 l 6095 8425 l col0 s % Polyline 2 slj gs clippath 7969 8652 m 8081 8695 l 8183 8425 l 8043 8629 l 8071 8383 l cp eoclip n 8021 7423 m 8021 7424 l 8023 7427 l 8025 7433 l 8028 7442 l 8032 7454 l 8037 7469 l 8043 7487 l 8050 7509 l 8057 7533 l 8065 7559 l 8073 7587 l 8081 7616 l 8089 7647 l 8097 7680 l 8105 7713 l 8112 7749 l 8118 7786 l 8124 7826 l 8130 7868 l 8135 7913 l 8138 7961 l 8141 8011 l 8142 8062 l 8142 8113 l 8140 8162 l 8137 8209 l 8133 8252 l 8128 8293 l 8123 8330 l 8117 8365 l 8110 8398 l 8103 8430 l 8096 8459 l 8088 8488 l 8080 8514 l 8073 8540 l 8065 8563 l 8058 8584 l 8052 8603 l 8046 8620 l 8041 8633 l 8037 8644 l 8031 8660 l gs col0 s gr gr % arrowhead 0 slj n 8071 8383 m 8043 8629 l 8183 8425 l col0 s % Polyline 2 slj gs clippath 3730 7409 m 3627 7347 l 3479 7593 l 3654 7419 l 3581 7655 l cp eoclip n 3620 8628 m 3620 8627 l 3618 8624 l 3617 8619 l 3614 8612 l 3610 8601 l 3604 8588 l 3598 8571 l 3591 8551 l 3583 8529 l 3575 8505 l 3566 8479 l 3557 8451 l 3549 8422 l 3540 8392 l 3531 8360 l 3523 8328 l 3516 8294 l 3509 8259 l 3503 8222 l 3498 8183 l 3493 8142 l 3490 8099 l 3488 8053 l 3487 8007 l 3488 7959 l 3491 7908 l 3496 7859 l 3503 7814 l 3510 7772 l 3519 7733 l 3528 7696 l 3538 7663 l 3549 7632 l 3560 7602 l 3572 7574 l 3584 7548 l 3596 7524 l 3608 7500 l 3619 7479 l 3630 7460 l 3640 7442 l 3648 7427 l 3656 7415 l 3662 7406 l 3671 7391 l gs col0 s gr gr % arrowhead 0 slj n 3581 7655 m 3654 7419 l 3479 7593 l col0 s % Polyline 2 slj gs clippath 5838 7439 m 5735 7377 l 5587 7623 l 5762 7449 l 5689 7685 l cp eoclip n 5728 8658 m 5728 8657 l 5726 8654 l 5725 8649 l 5722 8642 l 5718 8631 l 5712 8618 l 5706 8601 l 5699 8581 l 5691 8559 l 5683 8535 l 5674 8509 l 5665 8481 l 5657 8452 l 5648 8422 l 5639 8390 l 5631 8358 l 5624 8324 l 5617 8289 l 5611 8252 l 5606 8213 l 5601 8172 l 5598 8129 l 5596 8083 l 5595 8037 l 5596 7989 l 5599 7938 l 5604 7889 l 5611 7844 l 5618 7802 l 5627 7763 l 5636 7726 l 5646 7693 l 5657 7662 l 5668 7632 l 5680 7604 l 5692 7578 l 5704 7554 l 5716 7530 l 5727 7509 l 5738 7490 l 5748 7472 l 5756 7457 l 5764 7445 l 5770 7436 l 5779 7421 l gs col0 s gr gr % arrowhead 0 slj n 5689 7685 m 5762 7449 l 5587 7623 l col0 s % Polyline 2 slj gs clippath 7926 7459 m 7823 7397 l 7675 7643 l 7850 7469 l 7777 7705 l cp eoclip n 7816 8678 m 7816 8677 l 7814 8674 l 7813 8669 l 7810 8662 l 7806 8651 l 7800 8638 l 7794 8621 l 7787 8601 l 7779 8579 l 7771 8555 l 7762 8529 l 7753 8501 l 7745 8472 l 7736 8442 l 7727 8410 l 7719 8378 l 7712 8344 l 7705 8309 l 7699 8272 l 7694 8233 l 7689 8192 l 7686 8149 l 7684 8103 l 7683 8057 l 7684 8009 l 7687 7958 l 7692 7909 l 7699 7864 l 7706 7822 l 7715 7783 l 7724 7746 l 7734 7713 l 7745 7682 l 7756 7652 l 7768 7624 l 7780 7598 l 7792 7574 l 7804 7550 l 7815 7529 l 7826 7510 l 7836 7492 l 7844 7477 l 7852 7465 l 7858 7456 l 7867 7441 l gs col0 s gr gr % arrowhead 0 slj n 7777 7705 m 7850 7469 l 7675 7643 l col0 s % Polyline 2 slj gs clippath 3773 10365 m 3885 10408 l 3987 10138 l 3847 10342 l 3875 10096 l cp eoclip n 3825 9136 m 3825 9137 l 3827 9140 l 3829 9146 l 3832 9155 l 3836 9167 l 3841 9182 l 3847 9200 l 3854 9222 l 3861 9246 l 3869 9272 l 3877 9300 l 3885 9329 l 3893 9360 l 3901 9393 l 3909 9426 l 3916 9462 l 3922 9499 l 3928 9539 l 3934 9581 l 3939 9626 l 3942 9674 l 3945 9724 l 3946 9775 l 3946 9826 l 3944 9875 l 3941 9922 l 3937 9965 l 3932 10006 l 3927 10043 l 3921 10078 l 3914 10111 l 3907 10143 l 3900 10172 l 3892 10201 l 3884 10227 l 3877 10253 l 3869 10276 l 3862 10297 l 3856 10316 l 3850 10333 l 3845 10346 l 3841 10357 l 3835 10373 l gs col0 s gr gr % arrowhead 0 slj n 3875 10096 m 3847 10342 l 3987 10138 l col0 s % Polyline 2 slj gs clippath 5942 10345 m 6054 10388 l 6156 10118 l 6016 10322 l 6044 10076 l cp eoclip n 5994 9116 m 5994 9117 l 5996 9120 l 5998 9126 l 6001 9135 l 6005 9147 l 6010 9162 l 6016 9180 l 6023 9202 l 6030 9226 l 6038 9252 l 6046 9280 l 6054 9309 l 6062 9340 l 6070 9373 l 6078 9406 l 6085 9442 l 6091 9479 l 6097 9519 l 6103 9561 l 6108 9606 l 6111 9654 l 6114 9704 l 6115 9755 l 6115 9806 l 6113 9855 l 6110 9902 l 6106 9945 l 6101 9986 l 6096 10023 l 6090 10058 l 6083 10091 l 6076 10123 l 6069 10152 l 6061 10181 l 6053 10207 l 6046 10233 l 6038 10256 l 6031 10277 l 6025 10296 l 6019 10313 l 6014 10326 l 6010 10337 l 6004 10353 l gs col0 s gr gr % arrowhead 0 slj n 6044 10076 m 6016 10322 l 6156 10118 l col0 s % Polyline 2 slj gs clippath 8009 10345 m 8121 10388 l 8223 10118 l 8083 10322 l 8111 10076 l cp eoclip n 8061 9116 m 8061 9117 l 8063 9120 l 8065 9126 l 8068 9135 l 8072 9147 l 8077 9162 l 8083 9180 l 8090 9202 l 8097 9226 l 8105 9252 l 8113 9280 l 8121 9309 l 8129 9340 l 8137 9373 l 8145 9406 l 8152 9442 l 8158 9479 l 8164 9519 l 8170 9561 l 8175 9606 l 8178 9654 l 8181 9704 l 8182 9755 l 8182 9806 l 8180 9855 l 8177 9902 l 8173 9945 l 8168 9986 l 8163 10023 l 8157 10058 l 8150 10091 l 8143 10123 l 8136 10152 l 8128 10181 l 8120 10207 l 8113 10233 l 8105 10256 l 8098 10277 l 8092 10296 l 8086 10313 l 8081 10326 l 8077 10337 l 8071 10353 l gs col0 s gr gr % arrowhead 0 slj n 8111 10076 m 8083 10322 l 8223 10118 l col0 s % Polyline 2 slj gs clippath 3293 10591 m 3356 10488 l 3110 10338 l 3284 10515 l 3047 10441 l cp eoclip n 2025 10481 m 2026 10480 l 2029 10479 l 2035 10476 l 2044 10471 l 2055 10465 l 2071 10458 l 2089 10449 l 2110 10439 l 2134 10428 l 2160 10417 l 2188 10405 l 2218 10394 l 2249 10382 l 2282 10371 l 2316 10361 l 2352 10351 l 2390 10342 l 2431 10335 l 2474 10328 l 2520 10323 l 2569 10320 l 2621 10318 l 2674 10319 l 2727 10322 l 2779 10328 l 2828 10335 l 2873 10344 l 2916 10354 l 2956 10365 l 2993 10377 l 3029 10389 l 3062 10402 l 3094 10416 l 3125 10430 l 3154 10444 l 3181 10457 l 3206 10471 l 3229 10484 l 3250 10495 l 3268 10505 l 3283 10514 l 3294 10521 l 3312 10532 l gs col0 s gr gr % arrowhead 0 slj n 3047 10441 m 3284 10515 l 3110 10338 l col0 s % Polyline 2 slj gs clippath 7499 10601 m 7562 10498 l 7316 10348 l 7490 10525 l 7253 10451 l cp eoclip n 6231 10491 m 6232 10490 l 6235 10489 l 6241 10486 l 6250 10481 l 6261 10475 l 6277 10468 l 6295 10459 l 6316 10449 l 6340 10438 l 6366 10427 l 6394 10415 l 6424 10404 l 6455 10392 l 6488 10381 l 6522 10371 l 6558 10361 l 6596 10352 l 6637 10345 l 6680 10338 l 6726 10333 l 6775 10330 l 6827 10328 l 6880 10329 l 6933 10332 l 6985 10338 l 7034 10345 l 7079 10354 l 7122 10364 l 7162 10375 l 7199 10387 l 7235 10399 l 7268 10412 l 7300 10426 l 7331 10440 l 7360 10454 l 7387 10467 l 7412 10481 l 7435 10494 l 7456 10505 l 7474 10515 l 7489 10524 l 7500 10531 l 7518 10542 l gs col0 s gr gr % arrowhead 0 slj n 7253 10451 m 7490 10525 l 7316 10348 l col0 s % Polyline 2 slj gs clippath 3293 8848 m 3356 8745 l 3110 8595 l 3284 8772 l 3047 8698 l cp eoclip n 2025 8738 m 2026 8737 l 2029 8736 l 2035 8733 l 2044 8728 l 2055 8722 l 2071 8715 l 2089 8706 l 2110 8696 l 2134 8685 l 2160 8674 l 2188 8662 l 2218 8651 l 2249 8639 l 2282 8628 l 2316 8618 l 2352 8608 l 2390 8599 l 2431 8592 l 2474 8585 l 2520 8580 l 2569 8577 l 2621 8575 l 2674 8576 l 2727 8579 l 2779 8585 l 2828 8592 l 2873 8601 l 2916 8611 l 2956 8622 l 2993 8634 l 3029 8646 l 3062 8659 l 3094 8673 l 3125 8687 l 3154 8701 l 3181 8714 l 3206 8728 l 3229 8741 l 3250 8752 l 3268 8762 l 3283 8771 l 3294 8778 l 3312 8789 l gs col0 s gr gr % arrowhead 0 slj n 3047 8698 m 3284 8772 l 3110 8595 l col0 s % Polyline 2 slj gs clippath 5391 8848 m 5454 8745 l 5208 8595 l 5382 8772 l 5145 8698 l cp eoclip n 4123 8738 m 4124 8737 l 4127 8736 l 4133 8733 l 4142 8728 l 4153 8722 l 4169 8715 l 4187 8706 l 4208 8696 l 4232 8685 l 4258 8674 l 4286 8662 l 4316 8651 l 4347 8639 l 4380 8628 l 4414 8618 l 4450 8608 l 4488 8599 l 4529 8592 l 4572 8585 l 4618 8580 l 4667 8577 l 4719 8575 l 4772 8576 l 4825 8579 l 4877 8585 l 4926 8592 l 4971 8601 l 5014 8611 l 5054 8622 l 5091 8634 l 5127 8646 l 5160 8659 l 5192 8673 l 5223 8687 l 5252 8701 l 5279 8714 l 5304 8728 l 5327 8741 l 5348 8752 l 5366 8762 l 5381 8771 l 5392 8778 l 5410 8789 l gs col0 s gr gr % arrowhead 0 slj n 5145 8698 m 5382 8772 l 5208 8595 l col0 s % Polyline 2 slj gs clippath 7499 8858 m 7562 8755 l 7316 8605 l 7490 8782 l 7253 8708 l cp eoclip n 6231 8748 m 6232 8747 l 6235 8746 l 6241 8743 l 6250 8738 l 6261 8732 l 6277 8725 l 6295 8716 l 6316 8706 l 6340 8695 l 6366 8684 l 6394 8672 l 6424 8661 l 6455 8649 l 6488 8638 l 6522 8628 l 6558 8618 l 6596 8609 l 6637 8602 l 6680 8595 l 6726 8590 l 6775 8587 l 6827 8585 l 6880 8586 l 6933 8589 l 6985 8595 l 7034 8602 l 7079 8611 l 7122 8621 l 7162 8632 l 7199 8644 l 7235 8656 l 7268 8669 l 7300 8683 l 7331 8697 l 7360 8711 l 7387 8724 l 7412 8738 l 7435 8751 l 7456 8762 l 7474 8772 l 7489 8781 l 7500 8788 l 7518 8799 l gs col0 s gr gr % arrowhead 0 slj n 7253 8708 m 7490 8782 l 7316 8605 l col0 s % Polyline 2 slj gs clippath 4217 8863 m 4146 8960 l 4376 9132 l 4220 8941 l 4448 9036 l cp eoclip n 5410 8910 m 5409 8911 l 5406 8913 l 5400 8917 l 5392 8922 l 5380 8930 l 5365 8939 l 5347 8950 l 5326 8963 l 5302 8977 l 5277 8992 l 5249 9007 l 5220 9022 l 5190 9037 l 5158 9051 l 5125 9065 l 5090 9078 l 5053 9090 l 5014 9102 l 4973 9111 l 4928 9120 l 4882 9127 l 4832 9131 l 4782 9133 l 4732 9132 l 4683 9128 l 4638 9123 l 4595 9115 l 4555 9106 l 4518 9095 l 4484 9084 l 4451 9071 l 4421 9058 l 4391 9044 l 4364 9029 l 4337 9015 l 4313 9000 l 4290 8986 l 4269 8973 l 4250 8960 l 4234 8949 l 4221 8940 l 4210 8933 l 4194 8921 l gs col0 s gr gr % arrowhead 0 slj n 4448 9036 m 4220 8941 l 4376 9132 l col0 s % Polyline 2 slj gs clippath 6305 8843 m 6234 8940 l 6464 9112 l 6308 8921 l 6536 9016 l cp eoclip n 7498 8890 m 7497 8891 l 7494 8893 l 7488 8897 l 7480 8902 l 7468 8910 l 7453 8919 l 7435 8930 l 7414 8943 l 7390 8957 l 7365 8972 l 7337 8987 l 7308 9002 l 7278 9017 l 7246 9031 l 7213 9045 l 7178 9058 l 7141 9070 l 7102 9082 l 7061 9091 l 7016 9100 l 6970 9107 l 6920 9111 l 6870 9113 l 6820 9112 l 6771 9108 l 6726 9103 l 6683 9095 l 6643 9086 l 6606 9075 l 6572 9064 l 6539 9051 l 6509 9038 l 6479 9024 l 6452 9009 l 6425 8995 l 6401 8980 l 6378 8966 l 6357 8953 l 6338 8940 l 6322 8929 l 6309 8920 l 6298 8913 l 6282 8901 l gs col0 s gr gr % arrowhead 0 slj n 6536 9016 m 6308 8921 l 6464 9112 l col0 s % Polyline 2 slj gs clippath 3299 7176 m 3362 7073 l 3116 6923 l 3290 7100 l 3053 7026 l cp eoclip n 2031 7066 m 2032 7065 l 2035 7064 l 2041 7061 l 2050 7056 l 2061 7050 l 2077 7043 l 2095 7034 l 2116 7024 l 2140 7013 l 2166 7002 l 2194 6990 l 2224 6979 l 2255 6967 l 2288 6956 l 2322 6946 l 2358 6936 l 2396 6927 l 2437 6920 l 2480 6913 l 2526 6908 l 2575 6905 l 2627 6903 l 2680 6904 l 2733 6907 l 2785 6913 l 2834 6920 l 2879 6929 l 2922 6939 l 2962 6950 l 2999 6962 l 3035 6974 l 3068 6987 l 3100 7001 l 3131 7015 l 3160 7029 l 3187 7042 l 3212 7056 l 3235 7069 l 3256 7080 l 3274 7090 l 3289 7099 l 3300 7106 l 3318 7117 l gs col0 s gr gr % arrowhead 0 slj n 3053 7026 m 3290 7100 l 3116 6923 l col0 s % Polyline 2 slj gs clippath 2105 7191 m 2034 7288 l 2264 7460 l 2108 7269 l 2336 7364 l cp eoclip n 3298 7238 m 3297 7239 l 3294 7241 l 3288 7245 l 3280 7250 l 3268 7258 l 3253 7267 l 3235 7278 l 3214 7291 l 3190 7305 l 3165 7320 l 3137 7335 l 3108 7350 l 3078 7365 l 3046 7379 l 3013 7393 l 2978 7406 l 2941 7418 l 2902 7430 l 2861 7439 l 2816 7448 l 2770 7455 l 2720 7459 l 2670 7461 l 2620 7460 l 2571 7456 l 2526 7451 l 2483 7443 l 2443 7434 l 2406 7423 l 2372 7412 l 2339 7399 l 2309 7386 l 2279 7372 l 2252 7357 l 2225 7343 l 2201 7328 l 2178 7314 l 2157 7301 l 2138 7288 l 2122 7277 l 2109 7268 l 2098 7261 l 2082 7249 l gs col0 s gr gr % arrowhead 0 slj n 2336 7364 m 2108 7269 l 2264 7460 l col0 s % Polyline 2 slj gs clippath 5397 7176 m 5460 7073 l 5214 6923 l 5388 7100 l 5151 7026 l cp eoclip n 4129 7066 m 4130 7065 l 4133 7064 l 4139 7061 l 4148 7056 l 4159 7050 l 4175 7043 l 4193 7034 l 4214 7024 l 4238 7013 l 4264 7002 l 4292 6990 l 4322 6979 l 4353 6967 l 4386 6956 l 4420 6946 l 4456 6936 l 4494 6927 l 4535 6920 l 4578 6913 l 4624 6908 l 4673 6905 l 4725 6903 l 4778 6904 l 4831 6907 l 4883 6913 l 4932 6920 l 4977 6929 l 5020 6939 l 5060 6950 l 5097 6962 l 5133 6974 l 5166 6987 l 5198 7001 l 5229 7015 l 5258 7029 l 5285 7042 l 5310 7056 l 5333 7069 l 5354 7080 l 5372 7090 l 5387 7099 l 5398 7106 l 5416 7117 l gs col0 s gr gr % arrowhead 0 slj n 5151 7026 m 5388 7100 l 5214 6923 l col0 s % Polyline 2 slj gs clippath 7505 7186 m 7568 7083 l 7322 6933 l 7496 7110 l 7259 7036 l cp eoclip n 6237 7076 m 6238 7075 l 6241 7074 l 6247 7071 l 6256 7066 l 6267 7060 l 6283 7053 l 6301 7044 l 6322 7034 l 6346 7023 l 6372 7012 l 6400 7000 l 6430 6989 l 6461 6977 l 6494 6966 l 6528 6956 l 6564 6946 l 6602 6937 l 6643 6930 l 6686 6923 l 6732 6918 l 6781 6915 l 6833 6913 l 6886 6914 l 6939 6917 l 6991 6923 l 7040 6930 l 7085 6939 l 7128 6949 l 7168 6960 l 7205 6972 l 7241 6984 l 7274 6997 l 7306 7011 l 7337 7025 l 7366 7039 l 7393 7052 l 7418 7066 l 7441 7079 l 7462 7090 l 7480 7100 l 7495 7109 l 7506 7116 l 7524 7127 l gs col0 s gr gr % arrowhead 0 slj n 7259 7036 m 7496 7110 l 7322 6933 l col0 s % Polyline 2 slj gs clippath 4223 7191 m 4152 7288 l 4382 7460 l 4226 7269 l 4454 7364 l cp eoclip n 5416 7238 m 5415 7239 l 5412 7241 l 5406 7245 l 5398 7250 l 5386 7258 l 5371 7267 l 5353 7278 l 5332 7291 l 5308 7305 l 5283 7320 l 5255 7335 l 5226 7350 l 5196 7365 l 5164 7379 l 5131 7393 l 5096 7406 l 5059 7418 l 5020 7430 l 4979 7439 l 4934 7448 l 4888 7455 l 4838 7459 l 4788 7461 l 4738 7460 l 4689 7456 l 4644 7451 l 4601 7443 l 4561 7434 l 4524 7423 l 4490 7412 l 4457 7399 l 4427 7386 l 4397 7372 l 4370 7357 l 4343 7343 l 4319 7328 l 4296 7314 l 4275 7301 l 4256 7288 l 4240 7277 l 4227 7268 l 4216 7261 l 4200 7249 l gs col0 s gr gr % arrowhead 0 slj n 4454 7364 m 4226 7269 l 4382 7460 l col0 s % Polyline 2 slj gs clippath 6311 7171 m 6240 7268 l 6470 7440 l 6314 7249 l 6542 7344 l cp eoclip n 7504 7218 m 7503 7219 l 7500 7221 l 7494 7225 l 7486 7230 l 7474 7238 l 7459 7247 l 7441 7258 l 7420 7271 l 7396 7285 l 7371 7300 l 7343 7315 l 7314 7330 l 7284 7345 l 7252 7359 l 7219 7373 l 7184 7386 l 7147 7398 l 7108 7410 l 7067 7419 l 7022 7428 l 6976 7435 l 6926 7439 l 6876 7441 l 6826 7440 l 6777 7436 l 6732 7431 l 6689 7423 l 6649 7414 l 6612 7403 l 6578 7392 l 6545 7379 l 6515 7366 l 6485 7352 l 6458 7337 l 6431 7323 l 6407 7308 l 6384 7294 l 6363 7281 l 6344 7268 l 6328 7257 l 6315 7248 l 6304 7241 l 6288 7229 l gs col0 s gr gr % arrowhead 0 slj n 6542 7344 m 6314 7249 l 6470 7440 l col0 s % Polyline 2 slj gs clippath 5385 10610 m 5448 10507 l 5202 10357 l 5376 10534 l 5139 10460 l cp eoclip n 4117 10500 m 4118 10499 l 4121 10498 l 4127 10495 l 4136 10490 l 4147 10484 l 4163 10477 l 4181 10468 l 4202 10458 l 4226 10447 l 4252 10436 l 4280 10424 l 4310 10413 l 4341 10401 l 4374 10390 l 4408 10380 l 4444 10370 l 4482 10361 l 4523 10354 l 4566 10347 l 4612 10342 l 4661 10339 l 4713 10337 l 4766 10338 l 4819 10341 l 4871 10347 l 4920 10354 l 4965 10363 l 5008 10373 l 5048 10384 l 5085 10396 l 5121 10408 l 5154 10421 l 5186 10435 l 5217 10449 l 5246 10463 l 5273 10476 l 5298 10490 l 5321 10503 l 5342 10514 l 5360 10524 l 5375 10533 l 5386 10540 l 5404 10551 l gs col0 s gr gr % arrowhead 0 slj n 5139 10460 m 5376 10534 l 5202 10357 l col0 s % Polyline 2 slj [90] 0 sd gs clippath 7492 9736 m 7535 9624 l 7265 9522 l 7469 9663 l 7223 9634 l cp eoclip n 5637 9616 m 5638 9616 l 5640 9615 l 5644 9613 l 5650 9611 l 5659 9607 l 5670 9603 l 5684 9597 l 5701 9591 l 5720 9583 l 5742 9575 l 5766 9566 l 5793 9557 l 5821 9547 l 5851 9538 l 5882 9528 l 5915 9519 l 5949 9509 l 5985 9501 l 6022 9492 l 6061 9484 l 6102 9477 l 6145 9470 l 6191 9464 l 6240 9459 l 6291 9454 l 6346 9451 l 6403 9449 l 6463 9449 l 6525 9450 l 6587 9453 l 6648 9457 l 6707 9463 l 6764 9469 l 6818 9477 l 6870 9485 l 6919 9494 l 6966 9504 l 7011 9514 l 7054 9525 l 7095 9536 l 7136 9547 l 7174 9559 l 7212 9570 l 7248 9582 l 7283 9594 l 7316 9605 l 7346 9616 l 7375 9627 l 7401 9636 l 7424 9645 l 7444 9653 l 7461 9659 l 7474 9665 l 7484 9669 l 7500 9675 l gs col0 s gr gr [] 0 sd % arrowhead 0 slj n 7223 9634 m 7469 9663 l 7265 9522 l col0 s % Polyline 2 slj [90] 0 sd gs clippath 5392 9736 m 5435 9624 l 5165 9522 l 5369 9663 l 5123 9634 l cp eoclip n 3537 9616 m 3538 9616 l 3540 9615 l 3544 9613 l 3550 9611 l 3559 9607 l 3570 9603 l 3584 9597 l 3601 9591 l 3620 9583 l 3642 9575 l 3666 9566 l 3693 9557 l 3721 9547 l 3751 9538 l 3782 9528 l 3815 9519 l 3849 9509 l 3885 9501 l 3922 9492 l 3961 9484 l 4002 9477 l 4045 9470 l 4091 9464 l 4140 9459 l 4191 9454 l 4246 9451 l 4303 9449 l 4363 9449 l 4425 9450 l 4487 9453 l 4548 9457 l 4607 9463 l 4664 9469 l 4718 9477 l 4770 9485 l 4819 9494 l 4866 9504 l 4911 9514 l 4954 9525 l 4995 9536 l 5036 9547 l 5074 9559 l 5112 9570 l 5148 9582 l 5183 9594 l 5216 9605 l 5246 9616 l 5275 9627 l 5301 9636 l 5324 9645 l 5344 9653 l 5361 9659 l 5374 9665 l 5384 9669 l 5400 9675 l gs col0 s gr gr [] 0 sd % arrowhead 0 slj n 5123 9634 m 5369 9663 l 5165 9522 l col0 s % Polyline 2 slj [90] 0 sd gs clippath 3292 9736 m 3335 9624 l 3065 9522 l 3269 9663 l 3023 9634 l cp eoclip n 1437 9616 m 1438 9616 l 1440 9615 l 1444 9613 l 1450 9611 l 1459 9607 l 1470 9603 l 1484 9597 l 1501 9591 l 1520 9583 l 1542 9575 l 1566 9566 l 1593 9557 l 1621 9547 l 1651 9538 l 1682 9528 l 1715 9519 l 1749 9509 l 1785 9501 l 1822 9492 l 1861 9484 l 1902 9477 l 1945 9470 l 1991 9464 l 2040 9459 l 2091 9454 l 2146 9451 l 2203 9449 l 2263 9449 l 2325 9450 l 2387 9453 l 2448 9457 l 2507 9463 l 2564 9469 l 2618 9477 l 2670 9485 l 2719 9494 l 2766 9504 l 2811 9514 l 2854 9525 l 2895 9536 l 2936 9547 l 2974 9559 l 3012 9570 l 3048 9582 l 3083 9594 l 3116 9605 l 3146 9616 l 3175 9627 l 3201 9636 l 3224 9645 l 3244 9653 l 3261 9659 l 3274 9665 l 3284 9669 l 3300 9675 l gs col0 s gr gr [] 0 sd % arrowhead 0 slj n 3023 9634 m 3269 9663 l 3065 9522 l col0 s % Polyline 2 slj gs clippath 2099 8863 m 2028 8960 l 2258 9132 l 2102 8941 l 2330 9036 l cp eoclip n 3292 8910 m 3291 8911 l 3288 8913 l 3282 8917 l 3274 8922 l 3262 8930 l 3247 8939 l 3229 8950 l 3208 8963 l 3184 8977 l 3159 8992 l 3131 9007 l 3102 9022 l 3072 9037 l 3040 9051 l 3007 9065 l 2972 9078 l 2935 9090 l 2896 9102 l 2855 9111 l 2810 9120 l 2764 9127 l 2714 9131 l 2664 9133 l 2614 9132 l 2565 9128 l 2520 9123 l 2477 9115 l 2437 9106 l 2400 9095 l 2366 9084 l 2333 9071 l 2303 9058 l 2273 9044 l 2246 9029 l 2219 9015 l 2195 9000 l 2172 8986 l 2151 8973 l 2132 8960 l 2116 8949 l 2103 8940 l 2092 8933 l 2076 8921 l gs col0 s gr gr % arrowhead 0 slj n 2330 9036 m 2102 8941 l 2258 9132 l col0 s /Times-Roman ff 270.00 scf sf 3390 7279 m gs 1 -1 sc (0H,1L) col0 sh gr /Times-Roman ff 270.00 scf sf 7626 7299 m gs 1 -1 sc (0H,3L) col0 sh gr /Times-Roman ff 270.00 scf sf 1332 7279 m gs 1 -1 sc (0H,0L) col0 sh gr /Times-Roman ff 270.00 scf sf 5538 7279 m gs 1 -1 sc (0H,2L) col0 sh gr /Times-Roman ff 270.00 scf sf 1326 8951 m gs 1 -1 sc (1H,0L) col0 sh gr /Times-Roman ff 270.00 scf sf 3384 8951 m gs 1 -1 sc (1H,1L) col0 sh gr /Times-Roman ff 270.00 scf sf 5532 8951 m gs 1 -1 sc (1H,2L) col0 sh gr /Times-Roman ff 270.00 scf sf 7620 8971 m gs 1 -1 sc (1H,3L) col0 sh gr % here ends figure; F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psEnd rs showpage %%EndDocument endTexFig 1895 2574 a FI(\(c\))0 2770 y FB(Figure)31 b(1:)44 b Fs(\(a\))31 b(Mark)o(o)o(v)h(c)o(hain)g(for)f(an)g(M/M/2)g(queue)h (with)f(two)f(priority)j(classes.)53 b(This)31 b(Mark)o(o)o(v)h(c)o (hain)g(is)e(in\002nite)0 2883 y(in)e(two)g(dimensions.)46 b(V)-7 b(ia)28 b(the)h(Dimensionality)i(Reduction)f(tec)o(hnique)o(,)i (we)c(arrive)i(at)e(the)h(c)o(hain)g(in)f(\(b\),)i(whic)o(h)e(uses)0 2996 y(b)n(usy)35 b(period)h(tr)o(ansitions,)j(and)34 b(is)g(only)h(in\002nite)h(in)e(one)g(dimension.)62 b(In)34 b(\(b\),)j(the)d(b)n(usy)h(period)h(is)e(r)m(epr)m(esented)i(by)0 3109 y(a)e(single)i(tr)o(ansition.)63 b(In)34 b(\(c\),)j(the)e(b)n(usy) g(period)h(is)e(r)m(epr)m(esented)j(by)d(a)g(two)g(phase)h(PH)e (distrib)n(ution)38 b(\(with)c(Coxian)0 3222 y(r)m(epr)m(esentation\),) 27 b(yielding)f(a)d(1D-in\002nite)j(Mark)o(o)o(v)e(c)o(hain.)0 3598 y FB(time)e(is)g(well-kno)n(wn.)30 b(Lo)n(w)21 b(priority)j(jobs,) f(ho)n(we)n(v)o(er)l(,)g(ha)n(v)o(e)g(access)g(to)f(either)i(an)e (M/M/2,)g(M/M/1,)g(or)h(no)f(serv)o(er)h(at)f(all,)0 3745 y(depending)i(on)e(the)f(number)h(of)f(high)h(priority)i(jobs.)k (Thus)22 b(their)g(mean)f(response)j(time)d(is)g(more)g(complicated,)j (and)e(this)0 3891 y(is)h(where)h(we)f(focus)i(our)e(ef)n(forts.)141 4038 y(Figure)32 b(1\(b\))g(illustrates)i(the)e(reduction)i(of)e(the)f (2D-in\002nite)i(Mark)o(o)o(v)f(chain)h(to)e(a)g(1D-in\002nite)i (chain.)54 b(The)31 b(1D-)0 4185 y(in\002nite)23 b(chain)h(tracks)g (the)f(number)g(of)g(lo)n(w)e(priority)k(jobs)e(e)o(xactly)-6 b(.)30 b(F)o(or)22 b(the)g(high)i(priority)g(jobs,)g(the)e (1D-in\002nite)i(chain)0 4332 y(only)f(dif)n(ferentiates)j(between)e (zero,)f(one,)f(and)h(tw)o(o-or)n(-more)i(high)e(priority)h(jobs.)29 b(As)22 b(soon)h(as)f(there)i(are)e(tw)o(o-or)n(-more)0 4479 y(high)30 b(priority)g(jobs,)h(a)d Fs(high)h(priority)i(b)n(usy)f (period)g FB(is)e(started.)46 b(During)29 b(the)g(high)h(priority)h(b)n (usy)e(period,)i(the)e(system)0 4625 y(only)i(services)h(high)f (priority)h(jobs,)h(until)e(the)f(number)h(of)g(high)g(priority)h(jobs) f(drops)g(to)f(one.)3119 4592 y Fw(2)3206 4625 y FB(The)g(length)h(of)f (time)0 4772 y(spent)e(in)f(this)g(high)h(priority)g(b)n(usy)g(period)g (is)f(e)o(xactly)h(an)f(M/M/1)f(b)n(usy)i(period)h(where)e(the)g (service)h(rate)f(is)g Fu(2)p Fv(\026)3653 4786 y Fp(H)3720 4772 y FB(.)38 b(W)-7 b(e)0 4919 y(denote)25 b(the)f(duration)i(of)d (this)h(b)n(usy)h(period)g(by)e(the)h(transition)i(labeled)g Fv(B)2393 4933 y Fn(2)p Fp(\026)2470 4944 y Fm(H)2532 4919 y FB(.)p 0 5090 1560 4 v 105 5145 a Fr(2)134 5177 y Fy(Throughout)f(the)d(paper)h(a)g(\223higher)g(priority)f(b)o(usy)h (period\224)h(is)e(de\002ned)h(as)f(the)h(time)f(from)g(when)h(the)g (system)g(has)g Fl(k)h Fy(higher)f(priority)f(jobs)0 5269 y(until)d(there)g(are)g(only)g Fl(k)g Fx(\000)e Fk(1)i Fy(higher)h(priority)f(jobs.)1927 5596 y FB(6)p eop end %%Page: 7 7 TeXDict begin 7 6 bop 141 159 a FB(The)36 b(b)n(usy)h(period)h Fv(B)860 173 y Fn(2)p Fp(\026)937 184 y Fm(H)1034 159 y FB(is)e Fs(not)h FB(e)o(xponentially-distri)q(b)n(u)q(ted)q(.)71 b(Hence)37 b(it)f(is)g(not)g(clear)h(ho)n(w)f(it)g(should)h(\002t)f (into)0 305 y(a)f(Mark)o(o)o(v)i(model.)65 b(W)-7 b(e)35 b(use)h(a)f(PH)f(distrib)n(ution)40 b(\(speci\002cally)e(a)d(Coxian)i (distrib)n(ution\))i(to)d(match)g(the)g(\002rst)f(three)0 452 y(moments)27 b(of)g(the)f(distrib)n(ution)31 b(of)26 b Fv(B)1211 466 y Fn(2)p Fp(\026)1288 477 y Fm(H)1351 452 y FB(.)37 b(P)o(arameters)27 b(of)f(the)h(PH)e(distrib)n(ution,)31 b(whose)c(\002rst)f(three)i(moments)f(match)0 599 y(those)e(of)e Fv(B)382 613 y Fn(2)p Fp(\026)459 624 y Fm(H)522 599 y FB(,)f(are)i(calculated)i(via)e(the)g(closed)h(form)e(solutions)j (pro)o(vided)g(in)d([25)q(].)141 746 y(Figure)g(1\(c\))f(illustrates)j (the)e(same)f(1D-in\002nite)h(chain)g(as)f(in)g(Figure)h(1\(b\),)g(e)o (xcept)g(that)f(the)h(b)n(usy)g(period)h(transition)0 892 y(is)29 b(no)n(w)f(replaced)j(by)e(a)g(tw)o(o)g(phase)h(PH)d (distrib)n(ution)33 b(with)c(parameters)i Fv(t)2434 906 y Fn(1)2473 892 y FB(,)e Fv(t)2558 906 y Fn(12)2661 892 y FB(and)g Fv(t)2853 906 y Fn(2)2893 892 y FB(.)44 b(The)28 b(limiting)i(probabilities)0 1039 y(in)c(this)g(1D-in\002nite)i(chain)f (can)f(be)g(analyzed)i(using)g(matrix)e(analytic)i(methods)f([16)q(].) 36 b(These)26 b(in)g(turn)h(yield)g(the)f(mean)0 1186 y(number)34 b(of)g(lo)n(w-priority)h(jobs,)i(which)d(via)f(Little')-5 b(s)35 b(la)o(w)d(yields)j(the)f(mean)f(response)j(time)d(for)h(lo)n (w-priority)i(jobs.)0 1333 y(The)26 b(only)h(inaccurac)o(y)i(in)e(the)g (abo)o(v)o(e)g(approach)i(is)d(that)h(only)g(three)h(moments)f(of)f (the)h(high-priority)j(b)n(usy)e(period)g(are)0 1480 y(matched.)44 b(W)-7 b(e)28 b(will)f(see)i(later)g(that)g(this)g(suf)n (\002ces)g(to)f(obtain)i(v)o(ery)e(high)h(accurac)o(y)h(across)g(a)e (wide)g(range)i(of)e(load)h(and)0 1626 y(job)24 b(size)g(distrib)n (utions.)141 1773 y(More)j(formally)-6 b(,)29 b(the)e(1D-in\002nite)g (Mark)o(o)o(v)h(chain)g(is)e(modeled)i(as)f(a)f(\(nonhomogeneous\))32 b(QBD)25 b(process,)k(where)0 1920 y(le)n(v)o(el)20 b Fv(`)f FB(of)h(the)g(process)i(denotes)g(the)e Fv(`)p FB(-th)g(column,)h(namely)g(all)f(states)h(of)f(the)g(form)g(\()p Fv(i)p FB(H,)p Fv(`)p FB(L\))f(for)h(each)h Fv(`)p FB(.)26 b(The)20 b(generator)0 2067 y(matrix,)k Fj(Q)p FB(,)e(of)h(this)h (process)i(can)e(be)f(e)o(xpressed)j(as)d(a)h(block)g(diagonal)i (matrix:)1192 2541 y Fj(Q)f Fu(=)1392 2223 y Fi(0)1392 2369 y(B)1392 2419 y(B)1392 2468 y(B)1392 2518 y(B)1392 2568 y(B)1392 2618 y(B)1392 2671 y(@)1506 2316 y Fj(L)1569 2283 y Fn(\(0\))1758 2316 y Fj(F)1824 2283 y Fn(\(0\))1506 2463 y Fj(B)1580 2430 y Fn(\(1\))1758 2463 y Fj(L)1821 2430 y Fn(\(1\))2009 2463 y Fj(F)2075 2430 y Fn(\(1\))1758 2610 y Fj(B)1832 2577 y Fn(\(2\))2009 2610 y Fj(L)2072 2577 y Fn(\(2\))2252 2610 y Fj(F)2318 2577 y Fn(\(2\))2014 2721 y FB(.)2047 2746 y(.)2080 2771 y(.)2257 2721 y(.)2290 2746 y(.)2323 2771 y(.)2501 2721 y(.)2533 2746 y(.)2566 2771 y(.)2635 2223 y Fi(1)2635 2369 y(C)2635 2419 y(C)2635 2468 y(C)2635 2518 y(C)2635 2568 y(C)2635 2618 y(C)2635 2671 y(A)0 3033 y FB(where)c(submatrix)i Fj(F)692 3000 y Fn(\()p Fp(`)p Fn(\))800 3033 y FB(encodes)g(\(forw)o(ard\))g (transitions)h(from)d(le)n(v)o(el)g(\(column\))i Fv(`)d FB(to)h(le)n(v)o(el)g Fv(`)11 b Fu(+)g(1)20 b FB(for)h Fv(`)k Fo(\025)g Fu(0)p FB(,)c(submatrix)0 3180 y Fj(B)74 3147 y Fn(\()p Fp(`)p Fn(\))183 3180 y FB(encodes)j(\(backw)o(ard\))f (transitions)i(from)c(le)n(v)o(el)h Fv(`)f FB(to)g(le)n(v)o(el)h Fv(`)13 b Fo(\000)g Fu(1)21 b FB(for)h Fv(`)j Fo(\025)g Fu(1)p FB(,)c(and)h(submatrix)i Fj(L)3241 3147 y Fn(\()p Fp(`)p Fn(\))3349 3180 y FB(encodes)g(\(local\))0 3327 y(transitions)i(within)e(le)n(v)o(el)f Fv(`)f FB(for)i Fv(`)h Fo(\025)g Fu(0)p FB(.)j(Speci\002cally)-6 b(,)24 b(for)g(the)f(Mark)o(o)o(v)h(Chain)f(depicted)i(in)e(Figure)h(1\(c\),)g (we)e(order)i(the)0 3473 y(4)g(states)i(in)f(le)n(v)o(el)g Fv(`)f FB(as:)32 b Fu(\(0)p Fv(H)r(;)15 b(`L)p Fu(\))p FB(,)25 b Fu(\(1)p Fv(H)r(;)15 b(`L)p Fu(\))p FB(,)25 b Fu(\(2)1623 3440 y Fn(+)1683 3473 y Fv(H)r(;)15 b(`L)p Fu(\))p FB(,)24 b Fu(\()p Fv(xH)r(;)15 b(`L)p Fu(\))p FB(.)32 b(The)25 b(pair)g(of)g(states)h Fo(f)p Fu(\(2)3160 3440 y Fn(+)3220 3473 y Fv(H)r(;)15 b(`L)p Fu(\))p Fv(;)g Fu(\()p Fv(xH)r(;)g(`L)p Fu(\))p Fo(g)0 3620 y FB(are)33 b(the)g(states)g(used)h(to)e(represent)j(the)e(b)n(usy)h(period,)i (where)d(the)g(state)g Fu(\(2)2494 3587 y Fn(+)2554 3620 y Fv(H)r(;)15 b(`L)p Fu(\))32 b FB(denotes)j(the)d(start)i(of)e(the)h (b)n(usy)0 3767 y(period)i(and)f Fu(\()p Fv(xH)r(;)15 b(`L)p Fu(\))34 b FB(denotes)i(the)e(intermediate)i(\223b)n(ubble\224)g (state)f(in)e(the)h(b)n(usy)h(period.)61 b(Gi)n(v)o(en)33 b(this)h(ordering)i(of)0 3914 y(states,)24 b(we)f(ha)n(v)o(e:)1251 4390 y Fj(L)1314 4353 y Fn(\()p Fp(`)p Fn(\))1427 4390 y Fu(=)1523 4072 y Fi(0)1523 4218 y(B)1523 4268 y(B)1523 4318 y(B)1523 4368 y(B)1523 4418 y(B)1523 4467 y(B)1523 4520 y(@)1637 4175 y Fo(\000)p Fv(\033)1760 4189 y Fn(1)1903 4175 y Fv(\025)1956 4189 y Fp(H)p 2084 4219 4 147 v 1657 4322 a Fv(\026)1712 4336 y Fp(H)1882 4322 y Fo(\000)p Fv(\033)2005 4336 y Fn(2)p 2084 4366 V 2148 4322 a Fv(\025)2201 4336 y Fp(H)p 1596 4369 981 4 v 1927 4472 a Fv(t)1960 4486 y Fn(1)p 2084 4516 4 147 v 2127 4472 a Fo(\000)p Fv(\033)2250 4486 y Fn(3)2400 4472 y Fv(t)2433 4486 y Fn(12)1927 4619 y Fv(t)1960 4633 y Fn(2)p 2084 4663 V 2373 4619 a Fo(\000)p Fv(\033)2496 4633 y Fn(4)2576 4072 y Fi(1)2576 4218 y(C)2576 4268 y(C)2576 4318 y(C)2576 4368 y(C)2576 4418 y(C)2576 4467 y(C)2576 4520 y(A)0 4828 y FB(where)37 b Fv(\033)310 4842 y Fp(i)388 4828 y Fu(=)508 4764 y Fi(P)595 4851 y Fp(j)t FH(6)p Fn(=)p Fp(i)726 4828 y Fj(Q)805 4842 y Fp(ij)865 4828 y FB(.)67 b(The)36 b(delineations)41 b(of)36 b(the)h(matrix)g Fj(L)2202 4795 y Fn(\()p Fp(`)p Fn(\))2326 4828 y FB(are)g(intended)i(to)d (highlight)j(the)e(b)n(usy)h(period.)1927 5596 y(7)p eop end %%Page: 8 8 TeXDict begin 8 7 bop 1073 67 a 13853544 8173585 0 0 46705049 27694120 startTexFig 1073 67 a %%BeginDocument: ../../figures/original3.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: original3.fig %%Creator: fig2dev Version 3.2 Patchlevel 4 %%CreationDate: Fri Sep 17 23:53:09 2004 %%For: harchol@mor.sync.cs.cmu.edu (Mor Harchol-Balter) %%BoundingBox: 0 0 710 421 %%Magnification: 1.0000 %%EndComments /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 421 moveto 0 0 lineto 710 0 lineto 710 421 lineto closepath clip newpath -32.3 575.1 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psBegin 10 setmiterlimit 0 slj 0 slc 0.06000 0.06000 sc % % Fig objects follow % % % here starts figure with depth 50 % Ellipse 7.500 slw n 11697 5246 49 49 0 360 DrawEllipse gs col0 s gr % Ellipse n 11968 5246 49 49 0 360 DrawEllipse gs col0 s gr % Ellipse n 12239 5246 49 49 0 360 DrawEllipse gs col0 s gr /Symbol ff 360.00 scf sf 2986 4813 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 3150 4875 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 5911 4813 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 6075 4875 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 8986 4738 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 9150 4800 m gs 1 -1 sc (L) col0 sh gr /Times-Roman ff 300.00 scf sf 4125 4425 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 3900 4350 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 300.00 scf sf 3450 5925 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 3225 5850 m gs 1 -1 sc (m) col0 sh gr % Polyline 2 slj 15.000 slw gs clippath 1724 3658 m 1649 3589 l 1479 3774 l 1655 3659 l 1554 3843 l cp eoclip n 1621 4980 m 1620 4979 l 1618 4976 l 1615 4970 l 1610 4962 l 1604 4951 l 1595 4936 l 1585 4918 l 1573 4896 l 1560 4872 l 1546 4846 l 1531 4817 l 1516 4787 l 1502 4755 l 1487 4722 l 1473 4687 l 1459 4652 l 1446 4615 l 1434 4576 l 1424 4536 l 1414 4493 l 1406 4449 l 1400 4402 l 1395 4353 l 1393 4302 l 1394 4250 l 1398 4199 l 1404 4150 l 1412 4103 l 1422 4060 l 1434 4020 l 1447 3983 l 1461 3948 l 1475 3915 l 1491 3885 l 1507 3856 l 1524 3828 l 1541 3803 l 1558 3778 l 1576 3755 l 1592 3733 l 1608 3714 l 1623 3696 l 1636 3680 l 1648 3667 l 1658 3656 l 1665 3648 l 1677 3635 l gs col0 s gr gr % arrowhead 0 slj n 1554 3843 m 1655 3659 l 1479 3774 l col0 s % Polyline 2 slj gs clippath 2069 4941 m 2144 5010 l 2314 4825 l 2139 4941 l 2239 4756 l cp eoclip n 2173 3620 m 2174 3621 l 2176 3624 l 2179 3630 l 2184 3638 l 2190 3649 l 2199 3664 l 2209 3682 l 2221 3704 l 2234 3728 l 2248 3754 l 2263 3783 l 2278 3813 l 2292 3845 l 2307 3878 l 2321 3913 l 2335 3948 l 2348 3985 l 2360 4024 l 2370 4064 l 2380 4107 l 2388 4151 l 2394 4198 l 2399 4247 l 2401 4298 l 2400 4350 l 2396 4401 l 2390 4450 l 2382 4497 l 2372 4540 l 2360 4580 l 2347 4617 l 2333 4652 l 2319 4685 l 2303 4715 l 2287 4744 l 2270 4772 l 2253 4797 l 2236 4822 l 2218 4845 l 2202 4867 l 2186 4886 l 2171 4904 l 2158 4920 l 2146 4933 l 2136 4944 l 2129 4952 l 2117 4965 l gs col0 s gr gr % arrowhead 0 slj n 2239 4756 m 2139 4941 l 2314 4825 l col0 s % Polyline 2 slj gs clippath 4649 3658 m 4574 3589 l 4404 3774 l 4580 3659 l 4479 3843 l cp eoclip n 4546 4980 m 4545 4979 l 4543 4976 l 4540 4970 l 4535 4962 l 4529 4951 l 4520 4936 l 4510 4918 l 4498 4896 l 4485 4872 l 4471 4846 l 4456 4817 l 4441 4787 l 4427 4755 l 4412 4722 l 4398 4687 l 4384 4652 l 4371 4615 l 4359 4576 l 4349 4536 l 4339 4493 l 4331 4449 l 4325 4402 l 4320 4353 l 4318 4302 l 4319 4250 l 4323 4199 l 4329 4150 l 4337 4103 l 4347 4060 l 4359 4020 l 4372 3983 l 4386 3948 l 4400 3915 l 4416 3885 l 4432 3856 l 4449 3828 l 4466 3803 l 4483 3778 l 4501 3755 l 4517 3733 l 4533 3714 l 4548 3696 l 4561 3680 l 4573 3667 l 4583 3656 l 4590 3648 l 4602 3635 l gs col0 s gr gr % arrowhead 0 slj n 4479 3843 m 4580 3659 l 4404 3774 l col0 s % Polyline 2 slj gs clippath 4994 4941 m 5069 5010 l 5239 4825 l 5064 4941 l 5164 4756 l cp eoclip n 5098 3620 m 5099 3621 l 5101 3624 l 5104 3630 l 5109 3638 l 5115 3649 l 5124 3664 l 5134 3682 l 5146 3704 l 5159 3728 l 5173 3754 l 5188 3783 l 5203 3813 l 5217 3845 l 5232 3878 l 5246 3913 l 5260 3948 l 5273 3985 l 5285 4024 l 5295 4064 l 5305 4107 l 5313 4151 l 5319 4198 l 5324 4247 l 5326 4298 l 5325 4350 l 5321 4401 l 5315 4450 l 5307 4497 l 5297 4540 l 5285 4580 l 5272 4617 l 5258 4652 l 5244 4685 l 5228 4715 l 5212 4744 l 5195 4772 l 5178 4797 l 5161 4822 l 5143 4845 l 5127 4867 l 5111 4886 l 5096 4904 l 5083 4920 l 5071 4933 l 5061 4944 l 5054 4952 l 5042 4965 l gs col0 s gr gr % arrowhead 0 slj n 5164 4756 m 5064 4941 l 5239 4825 l col0 s % Polyline 2 slj gs clippath 7649 3658 m 7574 3589 l 7404 3774 l 7580 3659 l 7479 3843 l cp eoclip n 7546 4980 m 7545 4979 l 7543 4976 l 7540 4970 l 7535 4962 l 7529 4951 l 7520 4936 l 7510 4918 l 7498 4896 l 7485 4872 l 7471 4846 l 7456 4817 l 7441 4787 l 7427 4755 l 7412 4722 l 7398 4687 l 7384 4652 l 7371 4615 l 7359 4576 l 7349 4536 l 7339 4493 l 7331 4449 l 7325 4402 l 7320 4353 l 7318 4302 l 7319 4250 l 7323 4199 l 7329 4150 l 7337 4103 l 7347 4060 l 7359 4020 l 7372 3983 l 7386 3948 l 7400 3915 l 7416 3885 l 7432 3856 l 7449 3828 l 7466 3803 l 7483 3778 l 7501 3755 l 7517 3733 l 7533 3714 l 7548 3696 l 7561 3680 l 7573 3667 l 7583 3656 l 7590 3648 l 7602 3635 l gs col0 s gr gr % arrowhead 0 slj n 7479 3843 m 7580 3659 l 7404 3774 l col0 s % Polyline 2 slj gs clippath 7994 4941 m 8069 5010 l 8239 4825 l 8064 4941 l 8164 4756 l cp eoclip n 8098 3620 m 8099 3621 l 8101 3624 l 8104 3630 l 8109 3638 l 8115 3649 l 8124 3664 l 8134 3682 l 8146 3704 l 8159 3728 l 8173 3754 l 8188 3783 l 8203 3813 l 8217 3845 l 8232 3878 l 8246 3913 l 8260 3948 l 8273 3985 l 8285 4024 l 8295 4064 l 8305 4107 l 8313 4151 l 8319 4198 l 8324 4247 l 8326 4298 l 8325 4350 l 8321 4401 l 8315 4450 l 8307 4497 l 8297 4540 l 8285 4580 l 8272 4617 l 8258 4652 l 8244 4685 l 8228 4715 l 8212 4744 l 8195 4772 l 8178 4797 l 8161 4822 l 8143 4845 l 8127 4867 l 8111 4886 l 8096 4904 l 8083 4920 l 8071 4933 l 8061 4944 l 8054 4952 l 8042 4965 l gs col0 s gr gr % arrowhead 0 slj n 8164 4756 m 8064 4941 l 8239 4825 l col0 s % Polyline 2 slj gs clippath 10649 3658 m 10574 3589 l 10404 3774 l 10580 3659 l 10479 3843 l cp eoclip n 10546 4980 m 10545 4979 l 10543 4976 l 10540 4970 l 10535 4962 l 10529 4951 l 10520 4936 l 10510 4918 l 10498 4896 l 10485 4872 l 10471 4846 l 10456 4817 l 10441 4787 l 10427 4755 l 10412 4722 l 10398 4687 l 10384 4652 l 10371 4615 l 10359 4576 l 10349 4536 l 10339 4493 l 10331 4449 l 10325 4402 l 10320 4353 l 10318 4302 l 10319 4250 l 10323 4199 l 10329 4150 l 10337 4103 l 10347 4060 l 10359 4020 l 10372 3983 l 10386 3948 l 10400 3915 l 10416 3885 l 10432 3856 l 10449 3828 l 10466 3803 l 10483 3778 l 10501 3755 l 10517 3733 l 10533 3714 l 10548 3696 l 10561 3680 l 10573 3667 l 10583 3656 l 10590 3648 l 10602 3635 l gs col0 s gr gr % arrowhead 0 slj n 10479 3843 m 10580 3659 l 10404 3774 l col0 s % Polyline 2 slj gs clippath 10994 4941 m 11069 5010 l 11239 4825 l 11064 4941 l 11164 4756 l cp eoclip n 11098 3620 m 11099 3621 l 11101 3624 l 11104 3630 l 11109 3638 l 11115 3649 l 11124 3664 l 11134 3682 l 11146 3704 l 11159 3728 l 11173 3754 l 11188 3783 l 11203 3813 l 11217 3845 l 11232 3878 l 11246 3913 l 11260 3948 l 11273 3985 l 11285 4024 l 11295 4064 l 11305 4107 l 11313 4151 l 11319 4198 l 11324 4247 l 11326 4298 l 11325 4350 l 11321 4401 l 11315 4450 l 11307 4497 l 11297 4540 l 11285 4580 l 11272 4617 l 11258 4652 l 11244 4685 l 11228 4715 l 11212 4744 l 11195 4772 l 11178 4797 l 11161 4822 l 11143 4845 l 11127 4867 l 11111 4886 l 11096 4904 l 11083 4920 l 11071 4933 l 11061 4944 l 11054 4952 l 11042 4965 l gs col0 s gr gr % arrowhead 0 slj n 11164 4756 m 11064 4941 l 11239 4825 l col0 s /Times-Roman ff 300.00 scf sf 1125 4500 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 900 4425 m gs 1 -1 sc (m) col0 sh gr /Symbol ff 360.00 scf sf 2461 4363 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 2625 4425 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 5386 4363 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 5550 4425 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 7050 4500 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 6825 4425 m gs 1 -1 sc (m) col0 sh gr /Symbol ff 360.00 scf sf 8386 4363 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 8550 4425 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 11386 4288 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 11550 4350 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 10050 4500 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 9825 4425 m gs 1 -1 sc (m) col0 sh gr % Ellipse 7.500 slw n 11697 3371 49 49 0 360 DrawEllipse gs col0 s gr % Ellipse n 11968 3371 49 49 0 360 DrawEllipse gs col0 s gr % Ellipse n 12239 3371 49 49 0 360 DrawEllipse gs col0 s gr /Times-Roman ff 300.00 scf sf 3300 4050 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 3075 3975 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 300.00 scf sf 6375 4125 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 6000 4050 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 300.00 scf sf 9300 4050 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 8925 3975 m gs 1 -1 sc (3m) col0 sh gr /Symbol ff 360.00 scf sf 5911 2938 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 6075 3000 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 2986 2938 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 3150 3000 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 8986 2863 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 9150 2925 m gs 1 -1 sc (L) col0 sh gr % Ellipse n 1864 3371 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse 15.000 slw n 1864 3371 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse n 4848 3371 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse n 7831 3371 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse n 10815 3371 678 271 0 360 DrawEllipse gs col0 s gr % Polyline 2 slj gs clippath 2563 3387 m 2497 3472 l 2707 3634 l 2568 3459 l 2773 3548 l cp eoclip n 4169 3439 m 4168 3440 l 4166 3441 l 4161 3443 l 4155 3447 l 4145 3452 l 4133 3459 l 4117 3468 l 4098 3477 l 4077 3489 l 4053 3501 l 4027 3514 l 3998 3528 l 3968 3543 l 3936 3558 l 3903 3572 l 3869 3587 l 3833 3601 l 3796 3616 l 3759 3629 l 3720 3642 l 3679 3654 l 3637 3665 l 3593 3676 l 3547 3685 l 3498 3694 l 3448 3700 l 3396 3706 l 3342 3709 l 3288 3710 l 3230 3709 l 3175 3705 l 3122 3699 l 3073 3691 l 3027 3682 l 2983 3672 l 2943 3660 l 2905 3647 l 2869 3634 l 2835 3619 l 2803 3605 l 2773 3589 l 2743 3573 l 2716 3558 l 2690 3542 l 2665 3526 l 2643 3511 l 2622 3497 l 2603 3484 l 2587 3473 l 2574 3463 l 2563 3455 l 2555 3449 l 2542 3439 l gs col0 s gr gr % arrowhead 0 slj n 2773 3548 m 2568 3459 l 2707 3634 l col0 s % Polyline 2 slj gs clippath 7070 3357 m 7125 3264 l 6897 3127 l 7056 3286 l 6841 3220 l cp eoclip n 5458 3235 m 5459 3234 l 5462 3233 l 5466 3231 l 5473 3227 l 5483 3222 l 5496 3215 l 5512 3208 l 5531 3198 l 5552 3188 l 5577 3177 l 5603 3165 l 5631 3152 l 5662 3140 l 5693 3127 l 5726 3115 l 5761 3103 l 5797 3091 l 5834 3080 l 5873 3070 l 5914 3061 l 5958 3052 l 6004 3045 l 6052 3039 l 6104 3035 l 6158 3032 l 6214 3031 l 6272 3032 l 6330 3036 l 6386 3041 l 6440 3049 l 6492 3058 l 6540 3068 l 6586 3079 l 6630 3091 l 6671 3104 l 6710 3117 l 6747 3131 l 6783 3146 l 6817 3160 l 6850 3176 l 6882 3191 l 6912 3206 l 6940 3221 l 6967 3235 l 6991 3248 l 7012 3260 l 7031 3271 l 7047 3280 l 7060 3288 l 7070 3294 l 7085 3303 l gs col0 s gr gr % arrowhead 0 slj n 6841 3220 m 7056 3286 l 6897 3127 l col0 s % Polyline 2 slj gs clippath 5547 3387 m 5481 3472 l 5691 3634 l 5552 3459 l 5757 3548 l cp eoclip n 7153 3439 m 7152 3440 l 7150 3441 l 7145 3443 l 7139 3447 l 7129 3452 l 7117 3459 l 7101 3468 l 7082 3477 l 7061 3489 l 7037 3501 l 7011 3514 l 6982 3528 l 6952 3543 l 6920 3558 l 6887 3572 l 6853 3587 l 6817 3601 l 6780 3616 l 6743 3629 l 6704 3642 l 6663 3654 l 6621 3665 l 6577 3676 l 6531 3685 l 6482 3694 l 6432 3700 l 6380 3706 l 6326 3709 l 6272 3710 l 6214 3709 l 6159 3705 l 6106 3699 l 6057 3691 l 6011 3682 l 5967 3672 l 5927 3660 l 5889 3647 l 5853 3634 l 5819 3619 l 5787 3605 l 5757 3589 l 5727 3573 l 5700 3558 l 5674 3542 l 5649 3526 l 5627 3511 l 5606 3497 l 5587 3484 l 5571 3473 l 5558 3463 l 5547 3455 l 5539 3449 l 5526 3439 l gs col0 s gr gr % arrowhead 0 slj n 5757 3548 m 5552 3459 l 5691 3634 l col0 s % Polyline 2 slj gs clippath 10122 3289 m 10177 3196 l 9949 3059 l 10108 3218 l 9893 3152 l cp eoclip n 8510 3167 m 8511 3166 l 8514 3165 l 8518 3163 l 8525 3159 l 8535 3154 l 8548 3147 l 8564 3140 l 8583 3130 l 8604 3120 l 8628 3109 l 8655 3097 l 8683 3084 l 8713 3072 l 8745 3059 l 8778 3047 l 8812 3035 l 8848 3023 l 8885 3012 l 8924 3002 l 8965 2993 l 9009 2984 l 9055 2977 l 9103 2971 l 9155 2967 l 9209 2964 l 9265 2963 l 9323 2964 l 9381 2968 l 9437 2973 l 9491 2981 l 9543 2990 l 9591 3000 l 9637 3011 l 9681 3023 l 9722 3036 l 9761 3049 l 9798 3063 l 9834 3078 l 9869 3092 l 9902 3108 l 9933 3123 l 9964 3138 l 9992 3153 l 10018 3167 l 10043 3180 l 10064 3192 l 10083 3203 l 10099 3212 l 10112 3220 l 10122 3226 l 10137 3235 l gs col0 s gr gr % arrowhead 0 slj n 9893 3152 m 10108 3218 l 9949 3059 l col0 s % Polyline 2 slj gs clippath 8531 3387 m 8465 3472 l 8675 3634 l 8536 3459 l 8741 3548 l cp eoclip n 10137 3439 m 10136 3440 l 10134 3441 l 10129 3443 l 10123 3447 l 10113 3452 l 10101 3459 l 10085 3468 l 10066 3477 l 10045 3489 l 10021 3501 l 9995 3514 l 9966 3528 l 9936 3543 l 9904 3558 l 9871 3572 l 9837 3587 l 9801 3601 l 9764 3616 l 9727 3629 l 9688 3642 l 9647 3654 l 9605 3665 l 9561 3676 l 9515 3685 l 9466 3694 l 9416 3700 l 9364 3706 l 9310 3709 l 9256 3710 l 9198 3709 l 9143 3705 l 9090 3699 l 9041 3691 l 8995 3682 l 8951 3672 l 8911 3660 l 8873 3647 l 8837 3634 l 8803 3619 l 8771 3605 l 8741 3589 l 8711 3573 l 8684 3558 l 8658 3542 l 8633 3526 l 8611 3511 l 8590 3497 l 8571 3484 l 8555 3473 l 8542 3463 l 8531 3455 l 8523 3449 l 8510 3439 l gs col0 s gr gr % arrowhead 0 slj n 8741 3548 m 8536 3459 l 8675 3634 l col0 s % Polyline 2 slj gs clippath 4154 3357 m 4209 3264 l 3981 3127 l 4140 3286 l 3925 3220 l cp eoclip n 2542 3235 m 2543 3234 l 2546 3233 l 2550 3231 l 2557 3227 l 2567 3222 l 2580 3215 l 2596 3208 l 2615 3198 l 2636 3188 l 2661 3177 l 2687 3165 l 2715 3152 l 2746 3140 l 2777 3127 l 2810 3115 l 2845 3103 l 2881 3091 l 2918 3080 l 2957 3070 l 2998 3061 l 3042 3052 l 3088 3045 l 3136 3039 l 3188 3035 l 3242 3032 l 3298 3031 l 3356 3032 l 3414 3036 l 3470 3041 l 3524 3049 l 3576 3058 l 3624 3068 l 3670 3079 l 3714 3091 l 3755 3104 l 3794 3117 l 3831 3131 l 3867 3146 l 3901 3160 l 3934 3176 l 3966 3191 l 3996 3206 l 4024 3221 l 4051 3235 l 4075 3248 l 4096 3260 l 4115 3271 l 4131 3280 l 4144 3288 l 4154 3294 l 4169 3303 l gs col0 s gr gr % arrowhead 0 slj n 3925 3220 m 4140 3286 l 3981 3127 l col0 s /Times-Roman ff 360.00 scf sf 1350 3525 m gs 1 -1 sc (0H,0L) col0 sh gr /Times-Roman ff 360.00 scf sf 4350 3525 m gs 1 -1 sc (0H,1L) col0 sh gr /Times-Roman ff 360.00 scf sf 7350 3525 m gs 1 -1 sc (0H,2L) col0 sh gr /Times-Roman ff 360.00 scf sf 10350 3525 m gs 1 -1 sc (0H,3L) col0 sh gr % Polyline 2 slj gs clippath 1724 5533 m 1649 5464 l 1479 5649 l 1655 5534 l 1554 5718 l cp eoclip n 1621 6855 m 1620 6854 l 1618 6851 l 1615 6845 l 1610 6837 l 1604 6826 l 1595 6811 l 1585 6793 l 1573 6771 l 1560 6747 l 1546 6721 l 1531 6692 l 1516 6662 l 1502 6630 l 1487 6597 l 1473 6562 l 1459 6527 l 1446 6490 l 1434 6451 l 1424 6411 l 1414 6368 l 1406 6324 l 1400 6277 l 1395 6228 l 1393 6177 l 1394 6125 l 1398 6074 l 1404 6025 l 1412 5978 l 1422 5935 l 1434 5895 l 1447 5858 l 1461 5823 l 1475 5790 l 1491 5760 l 1507 5731 l 1524 5703 l 1541 5678 l 1558 5653 l 1576 5630 l 1592 5608 l 1608 5589 l 1623 5571 l 1636 5555 l 1648 5542 l 1658 5531 l 1665 5523 l 1677 5510 l gs col0 s gr gr % arrowhead 0 slj n 1554 5718 m 1655 5534 l 1479 5649 l col0 s % Polyline 2 slj gs clippath 2069 6816 m 2144 6885 l 2314 6700 l 2139 6816 l 2239 6631 l cp eoclip n 2173 5495 m 2174 5496 l 2176 5499 l 2179 5505 l 2184 5513 l 2190 5524 l 2199 5539 l 2209 5557 l 2221 5579 l 2234 5603 l 2248 5629 l 2263 5658 l 2278 5688 l 2292 5720 l 2307 5753 l 2321 5788 l 2335 5823 l 2348 5860 l 2360 5899 l 2370 5939 l 2380 5982 l 2388 6026 l 2394 6073 l 2399 6122 l 2401 6173 l 2400 6225 l 2396 6276 l 2390 6325 l 2382 6372 l 2372 6415 l 2360 6455 l 2347 6492 l 2333 6527 l 2319 6560 l 2303 6590 l 2287 6619 l 2270 6647 l 2253 6672 l 2236 6697 l 2218 6720 l 2202 6742 l 2186 6761 l 2171 6779 l 2158 6795 l 2146 6808 l 2136 6819 l 2129 6827 l 2117 6840 l gs col0 s gr gr % arrowhead 0 slj n 2239 6631 m 2139 6816 l 2314 6700 l col0 s % Polyline 2 slj gs clippath 4649 5533 m 4574 5464 l 4404 5649 l 4580 5534 l 4479 5718 l cp eoclip n 4546 6855 m 4545 6854 l 4543 6851 l 4540 6845 l 4535 6837 l 4529 6826 l 4520 6811 l 4510 6793 l 4498 6771 l 4485 6747 l 4471 6721 l 4456 6692 l 4441 6662 l 4427 6630 l 4412 6597 l 4398 6562 l 4384 6527 l 4371 6490 l 4359 6451 l 4349 6411 l 4339 6368 l 4331 6324 l 4325 6277 l 4320 6228 l 4318 6177 l 4319 6125 l 4323 6074 l 4329 6025 l 4337 5978 l 4347 5935 l 4359 5895 l 4372 5858 l 4386 5823 l 4400 5790 l 4416 5760 l 4432 5731 l 4449 5703 l 4466 5678 l 4483 5653 l 4501 5630 l 4517 5608 l 4533 5589 l 4548 5571 l 4561 5555 l 4573 5542 l 4583 5531 l 4590 5523 l 4602 5510 l gs col0 s gr gr % arrowhead 0 slj n 4479 5718 m 4580 5534 l 4404 5649 l col0 s % Polyline 2 slj gs clippath 4994 6816 m 5069 6885 l 5239 6700 l 5064 6816 l 5164 6631 l cp eoclip n 5098 5495 m 5099 5496 l 5101 5499 l 5104 5505 l 5109 5513 l 5115 5524 l 5124 5539 l 5134 5557 l 5146 5579 l 5159 5603 l 5173 5629 l 5188 5658 l 5203 5688 l 5217 5720 l 5232 5753 l 5246 5788 l 5260 5823 l 5273 5860 l 5285 5899 l 5295 5939 l 5305 5982 l 5313 6026 l 5319 6073 l 5324 6122 l 5326 6173 l 5325 6225 l 5321 6276 l 5315 6325 l 5307 6372 l 5297 6415 l 5285 6455 l 5272 6492 l 5258 6527 l 5244 6560 l 5228 6590 l 5212 6619 l 5195 6647 l 5178 6672 l 5161 6697 l 5143 6720 l 5127 6742 l 5111 6761 l 5096 6779 l 5083 6795 l 5071 6808 l 5061 6819 l 5054 6827 l 5042 6840 l gs col0 s gr gr % arrowhead 0 slj n 5164 6631 m 5064 6816 l 5239 6700 l col0 s % Polyline 2 slj gs clippath 7649 5533 m 7574 5464 l 7404 5649 l 7580 5534 l 7479 5718 l cp eoclip n 7546 6855 m 7545 6854 l 7543 6851 l 7540 6845 l 7535 6837 l 7529 6826 l 7520 6811 l 7510 6793 l 7498 6771 l 7485 6747 l 7471 6721 l 7456 6692 l 7441 6662 l 7427 6630 l 7412 6597 l 7398 6562 l 7384 6527 l 7371 6490 l 7359 6451 l 7349 6411 l 7339 6368 l 7331 6324 l 7325 6277 l 7320 6228 l 7318 6177 l 7319 6125 l 7323 6074 l 7329 6025 l 7337 5978 l 7347 5935 l 7359 5895 l 7372 5858 l 7386 5823 l 7400 5790 l 7416 5760 l 7432 5731 l 7449 5703 l 7466 5678 l 7483 5653 l 7501 5630 l 7517 5608 l 7533 5589 l 7548 5571 l 7561 5555 l 7573 5542 l 7583 5531 l 7590 5523 l 7602 5510 l gs col0 s gr gr % arrowhead 0 slj n 7479 5718 m 7580 5534 l 7404 5649 l col0 s % Polyline 2 slj gs clippath 7994 6816 m 8069 6885 l 8239 6700 l 8064 6816 l 8164 6631 l cp eoclip n 8098 5495 m 8099 5496 l 8101 5499 l 8104 5505 l 8109 5513 l 8115 5524 l 8124 5539 l 8134 5557 l 8146 5579 l 8159 5603 l 8173 5629 l 8188 5658 l 8203 5688 l 8217 5720 l 8232 5753 l 8246 5788 l 8260 5823 l 8273 5860 l 8285 5899 l 8295 5939 l 8305 5982 l 8313 6026 l 8319 6073 l 8324 6122 l 8326 6173 l 8325 6225 l 8321 6276 l 8315 6325 l 8307 6372 l 8297 6415 l 8285 6455 l 8272 6492 l 8258 6527 l 8244 6560 l 8228 6590 l 8212 6619 l 8195 6647 l 8178 6672 l 8161 6697 l 8143 6720 l 8127 6742 l 8111 6761 l 8096 6779 l 8083 6795 l 8071 6808 l 8061 6819 l 8054 6827 l 8042 6840 l gs col0 s gr gr % arrowhead 0 slj n 8164 6631 m 8064 6816 l 8239 6700 l col0 s % Polyline 2 slj gs clippath 10649 5533 m 10574 5464 l 10404 5649 l 10580 5534 l 10479 5718 l cp eoclip n 10546 6855 m 10545 6854 l 10543 6851 l 10540 6845 l 10535 6837 l 10529 6826 l 10520 6811 l 10510 6793 l 10498 6771 l 10485 6747 l 10471 6721 l 10456 6692 l 10441 6662 l 10427 6630 l 10412 6597 l 10398 6562 l 10384 6527 l 10371 6490 l 10359 6451 l 10349 6411 l 10339 6368 l 10331 6324 l 10325 6277 l 10320 6228 l 10318 6177 l 10319 6125 l 10323 6074 l 10329 6025 l 10337 5978 l 10347 5935 l 10359 5895 l 10372 5858 l 10386 5823 l 10400 5790 l 10416 5760 l 10432 5731 l 10449 5703 l 10466 5678 l 10483 5653 l 10501 5630 l 10517 5608 l 10533 5589 l 10548 5571 l 10561 5555 l 10573 5542 l 10583 5531 l 10590 5523 l 10602 5510 l gs col0 s gr gr % arrowhead 0 slj n 10479 5718 m 10580 5534 l 10404 5649 l col0 s % Polyline 2 slj gs clippath 10994 6816 m 11069 6885 l 11239 6700 l 11064 6816 l 11164 6631 l cp eoclip n 11098 5495 m 11099 5496 l 11101 5499 l 11104 5505 l 11109 5513 l 11115 5524 l 11124 5539 l 11134 5557 l 11146 5579 l 11159 5603 l 11173 5629 l 11188 5658 l 11203 5688 l 11217 5720 l 11232 5753 l 11246 5788 l 11260 5823 l 11273 5860 l 11285 5899 l 11295 5939 l 11305 5982 l 11313 6026 l 11319 6073 l 11324 6122 l 11326 6173 l 11325 6225 l 11321 6276 l 11315 6325 l 11307 6372 l 11297 6415 l 11285 6455 l 11272 6492 l 11258 6527 l 11244 6560 l 11228 6590 l 11212 6619 l 11195 6647 l 11178 6672 l 11161 6697 l 11143 6720 l 11127 6742 l 11111 6761 l 11096 6779 l 11083 6795 l 11071 6808 l 11061 6819 l 11054 6827 l 11042 6840 l gs col0 s gr gr % arrowhead 0 slj n 11164 6631 m 11064 6816 l 11239 6700 l col0 s /Times-Roman ff 300.00 scf sf 1200 6450 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 825 6375 m gs 1 -1 sc (2m) col0 sh gr /Symbol ff 360.00 scf sf 2461 6238 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 2625 6300 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 5386 6238 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 5550 6300 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 4125 6450 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 3750 6375 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 300.00 scf sf 7125 6450 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 6750 6375 m gs 1 -1 sc (2m) col0 sh gr /Symbol ff 360.00 scf sf 8386 6238 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 8550 6300 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 10125 6450 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 9750 6375 m gs 1 -1 sc (2m) col0 sh gr /Symbol ff 360.00 scf sf 11386 6238 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 11550 6300 m gs 1 -1 sc (H) col0 sh gr % Ellipse 7.500 slw n 11765 9218 49 49 0 360 DrawEllipse gs col0 s gr % Ellipse n 12036 9218 49 49 0 360 DrawEllipse gs col0 s gr % Ellipse n 12307 9218 49 49 0 360 DrawEllipse gs col0 s gr % Ellipse n 11765 7116 49 49 0 360 DrawEllipse gs col0 s gr % Ellipse n 12036 7116 49 49 0 360 DrawEllipse gs col0 s gr % Ellipse n 12307 7116 49 49 0 360 DrawEllipse gs col0 s gr /Times-Roman ff 360.00 scf sf 538 8431 m gs 1 -1 sc (B) col0 sh gr /Symbol ff 300.00 scf sf 750 8475 m gs 1 -1 sc (3m) col0 sh gr /Times-Roman ff 270.00 scf sf 1050 8550 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 360.00 scf sf 3388 8431 m gs 1 -1 sc (B) col0 sh gr /Symbol ff 300.00 scf sf 3600 8475 m gs 1 -1 sc (3m) col0 sh gr /Times-Roman ff 270.00 scf sf 3900 8550 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 360.00 scf sf 6388 8431 m gs 1 -1 sc (B) col0 sh gr /Symbol ff 300.00 scf sf 6600 8475 m gs 1 -1 sc (3m) col0 sh gr /Times-Roman ff 270.00 scf sf 6900 8550 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 360.00 scf sf 9463 8431 m gs 1 -1 sc (B) col0 sh gr /Symbol ff 300.00 scf sf 9675 8475 m gs 1 -1 sc (3m) col0 sh gr /Times-Roman ff 270.00 scf sf 9975 8550 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 11461 8188 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 11625 8250 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 8386 8188 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 8550 8250 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 5461 8188 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 5625 8250 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 360.00 scf sf 2461 8188 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 2625 8250 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 3450 7875 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 3225 7800 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 300.00 scf sf 6450 7800 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 6225 7725 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 300.00 scf sf 9450 7725 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 9225 7650 m gs 1 -1 sc (m) col0 sh gr /Symbol ff 360.00 scf sf 8986 8788 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 9150 8850 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 5986 8788 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 6150 8850 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 2986 8788 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 3150 8850 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 2986 6688 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 3150 6750 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 5911 6688 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 6075 6750 m gs 1 -1 sc (L) col0 sh gr /Times-Roman ff 300.00 scf sf 6450 5925 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 6075 5850 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 300.00 scf sf 9525 6000 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 9150 5925 m gs 1 -1 sc (2m) col0 sh gr /Symbol ff 360.00 scf sf 8911 6613 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 300.00 scf sf 9075 6675 m gs 1 -1 sc (L) col0 sh gr % Ellipse n 1864 5246 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse 15.000 slw n 1864 5246 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse n 4848 5246 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse n 10815 5246 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse n 7831 5246 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse n 1864 7116 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse n 4848 7116 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse n 10883 7116 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse n 4848 9286 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse n 10815 9286 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse n 7831 7116 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse n 7831 9286 678 271 0 360 DrawEllipse gs col0 s gr % Ellipse n 1878 9300 678 271 0 360 DrawEllipse gs col0 s gr % Polyline 2 slj gs clippath 2563 5262 m 2497 5347 l 2707 5509 l 2568 5334 l 2773 5423 l cp eoclip n 4169 5314 m 4168 5315 l 4166 5316 l 4161 5318 l 4155 5322 l 4145 5327 l 4133 5334 l 4117 5343 l 4098 5352 l 4077 5364 l 4053 5376 l 4027 5389 l 3998 5403 l 3968 5418 l 3936 5433 l 3903 5447 l 3869 5462 l 3833 5476 l 3796 5491 l 3759 5504 l 3720 5517 l 3679 5529 l 3637 5540 l 3593 5551 l 3547 5560 l 3498 5569 l 3448 5575 l 3396 5581 l 3342 5584 l 3288 5585 l 3230 5584 l 3175 5580 l 3122 5574 l 3073 5566 l 3027 5557 l 2983 5547 l 2943 5535 l 2905 5522 l 2869 5509 l 2835 5494 l 2803 5480 l 2773 5464 l 2743 5448 l 2716 5433 l 2690 5417 l 2665 5401 l 2643 5386 l 2622 5372 l 2603 5359 l 2587 5348 l 2574 5338 l 2563 5330 l 2555 5324 l 2542 5314 l gs col0 s gr gr % arrowhead 0 slj n 2773 5423 m 2568 5334 l 2707 5509 l col0 s % Polyline 2 slj gs clippath 7070 5232 m 7125 5139 l 6897 5002 l 7056 5161 l 6841 5095 l cp eoclip n 5458 5110 m 5459 5109 l 5462 5108 l 5466 5106 l 5473 5102 l 5483 5097 l 5496 5090 l 5512 5083 l 5531 5073 l 5552 5063 l 5577 5052 l 5603 5040 l 5631 5027 l 5662 5015 l 5693 5002 l 5726 4990 l 5761 4978 l 5797 4966 l 5834 4955 l 5873 4945 l 5914 4936 l 5958 4927 l 6004 4920 l 6052 4914 l 6104 4910 l 6158 4907 l 6214 4906 l 6272 4907 l 6330 4911 l 6386 4916 l 6440 4924 l 6492 4933 l 6540 4943 l 6586 4954 l 6630 4966 l 6671 4979 l 6710 4992 l 6747 5006 l 6783 5021 l 6817 5035 l 6850 5051 l 6882 5066 l 6912 5081 l 6940 5096 l 6967 5110 l 6991 5123 l 7012 5135 l 7031 5146 l 7047 5155 l 7060 5163 l 7070 5169 l 7085 5178 l gs col0 s gr gr % arrowhead 0 slj n 6841 5095 m 7056 5161 l 6897 5002 l col0 s % Polyline 2 slj gs clippath 5547 5262 m 5481 5347 l 5691 5509 l 5552 5334 l 5757 5423 l cp eoclip n 7153 5314 m 7152 5315 l 7150 5316 l 7145 5318 l 7139 5322 l 7129 5327 l 7117 5334 l 7101 5343 l 7082 5352 l 7061 5364 l 7037 5376 l 7011 5389 l 6982 5403 l 6952 5418 l 6920 5433 l 6887 5447 l 6853 5462 l 6817 5476 l 6780 5491 l 6743 5504 l 6704 5517 l 6663 5529 l 6621 5540 l 6577 5551 l 6531 5560 l 6482 5569 l 6432 5575 l 6380 5581 l 6326 5584 l 6272 5585 l 6214 5584 l 6159 5580 l 6106 5574 l 6057 5566 l 6011 5557 l 5967 5547 l 5927 5535 l 5889 5522 l 5853 5509 l 5819 5494 l 5787 5480 l 5757 5464 l 5727 5448 l 5700 5433 l 5674 5417 l 5649 5401 l 5627 5386 l 5606 5372 l 5587 5359 l 5571 5348 l 5558 5338 l 5547 5330 l 5539 5324 l 5526 5314 l gs col0 s gr gr % arrowhead 0 slj n 5757 5423 m 5552 5334 l 5691 5509 l col0 s % Polyline 2 slj gs clippath 10122 5164 m 10177 5071 l 9949 4934 l 10108 5093 l 9893 5027 l cp eoclip n 8510 5042 m 8511 5041 l 8514 5040 l 8518 5038 l 8525 5034 l 8535 5029 l 8548 5022 l 8564 5015 l 8583 5005 l 8604 4995 l 8628 4984 l 8655 4972 l 8683 4959 l 8713 4947 l 8745 4934 l 8778 4922 l 8812 4910 l 8848 4898 l 8885 4887 l 8924 4877 l 8965 4868 l 9009 4859 l 9055 4852 l 9103 4846 l 9155 4842 l 9209 4839 l 9265 4838 l 9323 4839 l 9381 4843 l 9437 4848 l 9491 4856 l 9543 4865 l 9591 4875 l 9637 4886 l 9681 4898 l 9722 4911 l 9761 4924 l 9798 4938 l 9834 4953 l 9869 4967 l 9902 4983 l 9933 4998 l 9964 5013 l 9992 5028 l 10018 5042 l 10043 5055 l 10064 5067 l 10083 5078 l 10099 5087 l 10112 5095 l 10122 5101 l 10137 5110 l gs col0 s gr gr % arrowhead 0 slj n 9893 5027 m 10108 5093 l 9949 4934 l col0 s % Polyline 2 slj gs clippath 8531 5262 m 8465 5347 l 8675 5509 l 8536 5334 l 8741 5423 l cp eoclip n 10137 5314 m 10136 5315 l 10134 5316 l 10129 5318 l 10123 5322 l 10113 5327 l 10101 5334 l 10085 5343 l 10066 5352 l 10045 5364 l 10021 5376 l 9995 5389 l 9966 5403 l 9936 5418 l 9904 5433 l 9871 5447 l 9837 5462 l 9801 5476 l 9764 5491 l 9727 5504 l 9688 5517 l 9647 5529 l 9605 5540 l 9561 5551 l 9515 5560 l 9466 5569 l 9416 5575 l 9364 5581 l 9310 5584 l 9256 5585 l 9198 5584 l 9143 5580 l 9090 5574 l 9041 5566 l 8995 5557 l 8951 5547 l 8911 5535 l 8873 5522 l 8837 5509 l 8803 5494 l 8771 5480 l 8741 5464 l 8711 5448 l 8684 5433 l 8658 5417 l 8633 5401 l 8611 5386 l 8590 5372 l 8571 5359 l 8555 5348 l 8542 5338 l 8531 5330 l 8523 5324 l 8510 5314 l gs col0 s gr gr % arrowhead 0 slj n 8741 5423 m 8536 5334 l 8675 5509 l col0 s % Polyline 2 slj gs clippath 4154 5232 m 4209 5139 l 3981 5002 l 4140 5161 l 3925 5095 l cp eoclip n 2542 5110 m 2543 5109 l 2546 5108 l 2550 5106 l 2557 5102 l 2567 5097 l 2580 5090 l 2596 5083 l 2615 5073 l 2636 5063 l 2661 5052 l 2687 5040 l 2715 5027 l 2746 5015 l 2777 5002 l 2810 4990 l 2845 4978 l 2881 4966 l 2918 4955 l 2957 4945 l 2998 4936 l 3042 4927 l 3088 4920 l 3136 4914 l 3188 4910 l 3242 4907 l 3298 4906 l 3356 4907 l 3414 4911 l 3470 4916 l 3524 4924 l 3576 4933 l 3624 4943 l 3670 4954 l 3714 4966 l 3755 4979 l 3794 4992 l 3831 5006 l 3867 5021 l 3901 5035 l 3934 5051 l 3966 5066 l 3996 5081 l 4024 5096 l 4051 5110 l 4075 5123 l 4096 5135 l 4115 5146 l 4131 5155 l 4144 5163 l 4154 5169 l 4169 5178 l gs col0 s gr gr % arrowhead 0 slj n 3925 5095 m 4140 5161 l 3981 5002 l col0 s % Polyline 2 slj gs clippath 7141 9256 m 7203 9153 l 6957 9005 l 7132 9180 l 6895 9107 l cp eoclip n 5532 9130 m 5533 9129 l 5536 9128 l 5540 9126 l 5547 9122 l 5557 9117 l 5570 9110 l 5586 9102 l 5605 9093 l 5626 9083 l 5651 9071 l 5677 9059 l 5705 9047 l 5736 9034 l 5767 9022 l 5800 9009 l 5835 8997 l 5870 8986 l 5908 8975 l 5947 8965 l 5988 8955 l 6032 8947 l 6077 8939 l 6126 8933 l 6177 8929 l 6232 8926 l 6288 8925 l 6346 8926 l 6404 8930 l 6460 8935 l 6515 8943 l 6566 8951 l 6615 8962 l 6660 8973 l 6704 8985 l 6745 8997 l 6784 9011 l 6822 9025 l 6857 9039 l 6892 9054 l 6925 9070 l 6957 9085 l 6987 9100 l 7015 9115 l 7041 9129 l 7066 9142 l 7087 9154 l 7106 9165 l 7122 9174 l 7135 9182 l 7145 9188 l 7160 9197 l gs col0 s gr gr % arrowhead 0 slj n 6895 9107 m 7132 9180 l 6957 9005 l col0 s % Polyline 2 slj gs clippath 4154 7102 m 4209 7009 l 3981 6872 l 4140 7031 l 3925 6965 l cp eoclip n 2542 6980 m 2543 6979 l 2546 6978 l 2550 6976 l 2557 6972 l 2567 6967 l 2580 6960 l 2596 6953 l 2615 6943 l 2636 6933 l 2661 6922 l 2687 6910 l 2715 6897 l 2746 6885 l 2777 6872 l 2810 6860 l 2845 6848 l 2881 6836 l 2918 6825 l 2957 6815 l 2998 6806 l 3042 6797 l 3088 6790 l 3136 6784 l 3188 6780 l 3242 6777 l 3298 6776 l 3356 6777 l 3414 6781 l 3470 6786 l 3524 6794 l 3576 6803 l 3624 6813 l 3670 6824 l 3714 6836 l 3755 6849 l 3794 6862 l 3831 6876 l 3867 6891 l 3901 6905 l 3934 6921 l 3966 6936 l 3996 6951 l 4024 6966 l 4051 6980 l 4075 6993 l 4096 7005 l 4115 7016 l 4131 7025 l 4144 7033 l 4154 7039 l 4169 7048 l gs col0 s gr gr % arrowhead 0 slj n 3925 6965 m 4140 7031 l 3981 6872 l col0 s % Polyline 2 slj gs clippath 7070 7102 m 7125 7009 l 6897 6872 l 7056 7031 l 6841 6965 l cp eoclip n 5458 6980 m 5459 6979 l 5462 6978 l 5466 6976 l 5473 6972 l 5483 6967 l 5496 6960 l 5512 6953 l 5531 6943 l 5552 6933 l 5577 6922 l 5603 6910 l 5631 6897 l 5662 6885 l 5693 6872 l 5726 6860 l 5761 6848 l 5797 6836 l 5834 6825 l 5873 6815 l 5914 6806 l 5958 6797 l 6004 6790 l 6052 6784 l 6104 6780 l 6158 6777 l 6214 6776 l 6272 6777 l 6330 6781 l 6386 6786 l 6440 6794 l 6492 6803 l 6540 6813 l 6586 6824 l 6630 6836 l 6671 6849 l 6710 6862 l 6747 6876 l 6783 6891 l 6817 6905 l 6850 6921 l 6882 6936 l 6912 6951 l 6940 6966 l 6967 6980 l 6991 6993 l 7012 7005 l 7031 7016 l 7047 7025 l 7060 7033 l 7070 7039 l 7085 7048 l gs col0 s gr gr % arrowhead 0 slj n 6841 6965 m 7056 7031 l 6897 6872 l col0 s % Polyline 2 slj gs clippath 10061 7014 m 10116 6921 l 9888 6784 l 10047 6943 l 9832 6877 l cp eoclip n 8448 6892 m 8449 6891 l 8452 6890 l 8456 6888 l 8463 6884 l 8473 6879 l 8486 6872 l 8502 6864 l 8521 6855 l 8542 6845 l 8567 6833 l 8593 6821 l 8621 6809 l 8652 6796 l 8683 6784 l 8716 6771 l 8751 6759 l 8786 6748 l 8824 6737 l 8863 6726 l 8904 6717 l 8948 6709 l 8993 6701 l 9042 6695 l 9093 6691 l 9148 6688 l 9204 6687 l 9262 6688 l 9320 6692 l 9376 6697 l 9431 6705 l 9482 6714 l 9531 6724 l 9576 6735 l 9620 6747 l 9661 6760 l 9700 6773 l 9738 6787 l 9773 6802 l 9808 6817 l 9841 6832 l 9873 6847 l 9903 6863 l 9931 6877 l 9957 6892 l 9982 6905 l 10003 6917 l 10022 6928 l 10038 6937 l 10051 6945 l 10061 6951 l 10076 6960 l gs col0 s gr gr % arrowhead 0 slj n 9832 6877 m 10047 6943 l 9888 6784 l col0 s % Polyline 2 slj gs clippath 8531 7064 m 8465 7149 l 8675 7311 l 8536 7136 l 8741 7225 l cp eoclip n 10137 7116 m 10136 7117 l 10134 7118 l 10129 7120 l 10123 7124 l 10113 7129 l 10101 7136 l 10085 7145 l 10066 7154 l 10045 7166 l 10021 7178 l 9995 7191 l 9966 7205 l 9936 7220 l 9904 7235 l 9871 7249 l 9837 7264 l 9801 7278 l 9764 7293 l 9727 7306 l 9688 7319 l 9647 7331 l 9605 7342 l 9561 7353 l 9515 7362 l 9466 7371 l 9416 7377 l 9364 7383 l 9310 7386 l 9256 7387 l 9198 7386 l 9143 7382 l 9090 7376 l 9041 7368 l 8995 7359 l 8951 7349 l 8911 7337 l 8873 7324 l 8837 7311 l 8803 7296 l 8771 7282 l 8741 7266 l 8711 7250 l 8684 7235 l 8658 7219 l 8633 7203 l 8611 7188 l 8590 7174 l 8571 7161 l 8555 7150 l 8542 7140 l 8531 7132 l 8523 7126 l 8510 7116 l gs col0 s gr gr % arrowhead 0 slj n 8741 7225 m 8536 7136 l 8675 7311 l col0 s % Polyline 2 slj gs clippath 5552 7151 m 5486 7236 l 5696 7398 l 5557 7223 l 5762 7312 l cp eoclip n 7159 7203 m 7158 7204 l 7156 7205 l 7151 7207 l 7145 7211 l 7135 7216 l 7122 7223 l 7107 7232 l 7088 7241 l 7067 7253 l 7043 7265 l 7016 7278 l 6988 7292 l 6958 7307 l 6926 7322 l 6893 7336 l 6858 7351 l 6823 7365 l 6786 7380 l 6748 7393 l 6709 7406 l 6668 7418 l 6626 7429 l 6582 7440 l 6536 7449 l 6488 7458 l 6437 7464 l 6385 7470 l 6331 7473 l 6277 7474 l 6219 7473 l 6164 7469 l 6111 7463 l 6062 7455 l 6015 7446 l 5972 7436 l 5932 7424 l 5894 7411 l 5858 7398 l 5824 7383 l 5792 7369 l 5761 7353 l 5732 7337 l 5705 7322 l 5679 7306 l 5654 7290 l 5631 7275 l 5611 7261 l 5592 7248 l 5576 7237 l 5563 7227 l 5552 7219 l 5544 7213 l 5531 7203 l gs col0 s gr gr % arrowhead 0 slj n 5762 7312 m 5557 7223 l 5696 7398 l col0 s % Polyline 2 slj gs clippath 2568 7219 m 2502 7304 l 2712 7466 l 2573 7291 l 2778 7380 l cp eoclip n 4175 7271 m 4174 7272 l 4172 7273 l 4167 7275 l 4161 7279 l 4151 7284 l 4138 7291 l 4123 7300 l 4104 7309 l 4083 7321 l 4059 7333 l 4032 7346 l 4004 7360 l 3974 7375 l 3942 7390 l 3909 7404 l 3874 7419 l 3839 7433 l 3802 7448 l 3764 7461 l 3725 7474 l 3684 7486 l 3642 7497 l 3598 7508 l 3552 7517 l 3504 7526 l 3453 7532 l 3401 7538 l 3347 7541 l 3293 7542 l 3235 7541 l 3180 7537 l 3127 7531 l 3078 7523 l 3031 7514 l 2988 7504 l 2948 7492 l 2910 7479 l 2874 7466 l 2840 7451 l 2808 7437 l 2777 7421 l 2748 7405 l 2721 7390 l 2695 7374 l 2670 7358 l 2647 7343 l 2627 7329 l 2608 7316 l 2592 7305 l 2579 7295 l 2568 7287 l 2560 7281 l 2547 7271 l gs col0 s gr gr % arrowhead 0 slj n 2778 7380 m 2573 7291 l 2712 7466 l col0 s % Polyline 2 slj gs clippath 2039 8983 m 2139 9049 l 2299 8808 l 2116 8976 l 2200 8741 l cp eoclip n 2098 7376 m 2099 7377 l 2100 7380 l 2103 7384 l 2108 7391 l 2114 7401 l 2122 7414 l 2132 7430 l 2144 7449 l 2157 7470 l 2171 7495 l 2186 7521 l 2201 7549 l 2217 7580 l 2233 7611 l 2249 7644 l 2264 7679 l 2279 7714 l 2293 7752 l 2307 7791 l 2320 7832 l 2331 7876 l 2342 7921 l 2351 7970 l 2359 8021 l 2365 8076 l 2369 8132 l 2370 8190 l 2369 8248 l 2365 8304 l 2359 8359 l 2351 8410 l 2342 8459 l 2331 8504 l 2320 8548 l 2307 8589 l 2293 8628 l 2279 8666 l 2264 8701 l 2249 8736 l 2233 8769 l 2217 8801 l 2201 8831 l 2186 8859 l 2171 8885 l 2157 8910 l 2144 8931 l 2132 8950 l 2122 8966 l 2114 8979 l 2108 8989 l 2098 9004 l gs col0 s gr gr % arrowhead 0 slj n 2200 8741 m 2116 8976 l 2299 8808 l col0 s % Polyline 2 slj gs clippath 11092 8976 m 11192 9042 l 11352 8801 l 11169 8969 l 11253 8734 l cp eoclip n 11151 7369 m 11152 7370 l 11153 7373 l 11156 7377 l 11161 7384 l 11167 7394 l 11175 7407 l 11185 7423 l 11197 7442 l 11210 7463 l 11224 7488 l 11239 7514 l 11254 7542 l 11270 7573 l 11286 7604 l 11302 7637 l 11317 7672 l 11332 7707 l 11346 7745 l 11360 7784 l 11373 7825 l 11384 7869 l 11395 7914 l 11404 7963 l 11412 8014 l 11418 8069 l 11422 8125 l 11423 8183 l 11422 8241 l 11418 8297 l 11412 8352 l 11404 8403 l 11395 8452 l 11384 8497 l 11373 8541 l 11360 8582 l 11346 8621 l 11332 8659 l 11317 8694 l 11302 8729 l 11286 8762 l 11270 8794 l 11254 8824 l 11239 8852 l 11224 8878 l 11210 8903 l 11197 8924 l 11185 8943 l 11175 8959 l 11167 8972 l 11161 8982 l 11151 8997 l gs col0 s gr gr % arrowhead 0 slj n 11253 8734 m 11169 8969 l 11352 8801 l col0 s % Polyline 2 slj gs clippath 7994 8968 m 8094 9034 l 8254 8793 l 8071 8961 l 8155 8726 l cp eoclip n 8053 7361 m 8054 7362 l 8055 7365 l 8058 7369 l 8063 7376 l 8069 7386 l 8077 7399 l 8087 7415 l 8099 7434 l 8112 7455 l 8126 7480 l 8141 7506 l 8156 7534 l 8172 7565 l 8188 7596 l 8204 7629 l 8219 7664 l 8234 7699 l 8248 7737 l 8262 7776 l 8275 7817 l 8286 7861 l 8297 7906 l 8306 7955 l 8314 8006 l 8320 8061 l 8324 8117 l 8325 8175 l 8324 8233 l 8320 8289 l 8314 8344 l 8306 8395 l 8297 8444 l 8286 8489 l 8275 8533 l 8262 8574 l 8248 8613 l 8234 8651 l 8219 8686 l 8204 8721 l 8188 8754 l 8172 8786 l 8156 8816 l 8141 8844 l 8126 8870 l 8112 8895 l 8099 8916 l 8087 8935 l 8077 8951 l 8069 8964 l 8063 8974 l 8053 8989 l gs col0 s gr gr % arrowhead 0 slj n 8155 8726 m 8071 8961 l 8254 8793 l col0 s % Polyline 2 slj gs clippath 5091 8976 m 5191 9042 l 5351 8801 l 5168 8969 l 5252 8734 l cp eoclip n 5150 7369 m 5151 7370 l 5152 7373 l 5155 7377 l 5160 7384 l 5166 7394 l 5174 7407 l 5184 7423 l 5196 7442 l 5209 7463 l 5223 7488 l 5238 7514 l 5253 7542 l 5269 7573 l 5285 7604 l 5301 7637 l 5316 7672 l 5331 7707 l 5345 7745 l 5359 7784 l 5372 7825 l 5383 7869 l 5394 7914 l 5403 7963 l 5411 8014 l 5417 8069 l 5421 8125 l 5422 8183 l 5421 8241 l 5417 8297 l 5411 8352 l 5403 8403 l 5394 8452 l 5383 8497 l 5372 8541 l 5359 8582 l 5345 8621 l 5331 8659 l 5316 8694 l 5301 8729 l 5285 8762 l 5269 8794 l 5253 8824 l 5238 8852 l 5223 8878 l 5209 8903 l 5196 8924 l 5184 8943 l 5174 8959 l 5166 8972 l 5160 8982 l 5150 8997 l gs col0 s gr gr % arrowhead 0 slj n 5252 8734 m 5168 8969 l 5351 8801 l col0 s % Polyline 2 slj gs clippath 4089 9256 m 4151 9153 l 3905 9005 l 4080 9180 l 3843 9107 l cp eoclip n 2480 9130 m 2481 9129 l 2484 9128 l 2488 9126 l 2495 9122 l 2505 9117 l 2518 9110 l 2534 9102 l 2553 9093 l 2574 9083 l 2599 9071 l 2625 9059 l 2653 9047 l 2684 9034 l 2715 9022 l 2748 9009 l 2783 8997 l 2818 8986 l 2856 8975 l 2895 8965 l 2936 8955 l 2980 8947 l 3025 8939 l 3074 8933 l 3125 8929 l 3180 8926 l 3236 8925 l 3294 8926 l 3352 8930 l 3408 8935 l 3463 8943 l 3514 8951 l 3563 8962 l 3608 8973 l 3652 8985 l 3693 8997 l 3732 9011 l 3770 9025 l 3805 9039 l 3840 9054 l 3873 9070 l 3905 9085 l 3935 9100 l 3963 9115 l 3989 9129 l 4014 9142 l 4035 9154 l 4054 9165 l 4070 9174 l 4083 9182 l 4093 9188 l 4108 9197 l gs col0 s gr gr % arrowhead 0 slj n 3843 9107 m 4080 9180 l 3905 9005 l col0 s % Polyline 2 slj gs clippath 10124 9256 m 10186 9153 l 9940 9005 l 10115 9180 l 9878 9107 l cp eoclip n 8516 9130 m 8517 9129 l 8520 9128 l 8524 9126 l 8531 9122 l 8541 9117 l 8554 9110 l 8570 9102 l 8589 9093 l 8610 9083 l 8635 9071 l 8661 9059 l 8689 9047 l 8720 9034 l 8751 9022 l 8784 9009 l 8819 8997 l 8855 8986 l 8892 8975 l 8931 8965 l 8972 8955 l 9016 8947 l 9062 8939 l 9110 8933 l 9162 8929 l 9216 8926 l 9272 8925 l 9330 8926 l 9388 8930 l 9444 8935 l 9498 8943 l 9550 8951 l 9598 8962 l 9644 8973 l 9688 8985 l 9729 8997 l 9768 9011 l 9805 9025 l 9841 9039 l 9875 9054 l 9908 9070 l 9940 9085 l 9970 9100 l 9998 9115 l 10025 9129 l 10049 9142 l 10070 9154 l 10089 9165 l 10105 9174 l 10118 9182 l 10128 9188 l 10143 9197 l gs col0 s gr gr % arrowhead 0 slj n 9878 9107 m 10115 9180 l 9940 9005 l col0 s % Polyline 2 slj 60.000 slw gs clippath 1674 7442 m 1531 7309 l 1274 7588 l 1530 7455 l 1417 7720 l cp eoclip n 1525 9015 m 1524 9014 l 1523 9012 l 1520 9007 l 1516 9001 l 1511 8991 l 1504 8978 l 1495 8963 l 1484 8944 l 1472 8923 l 1459 8899 l 1445 8872 l 1430 8844 l 1415 8814 l 1400 8782 l 1384 8749 l 1369 8714 l 1354 8679 l 1339 8642 l 1326 8604 l 1313 8565 l 1300 8524 l 1289 8482 l 1279 8438 l 1270 8392 l 1263 8344 l 1257 8293 l 1254 8241 l 1252 8187 l 1253 8133 l 1257 8075 l 1264 8020 l 1272 7967 l 1283 7918 l 1296 7871 l 1310 7828 l 1325 7788 l 1341 7750 l 1357 7714 l 1375 7680 l 1393 7648 l 1412 7617 l 1431 7588 l 1451 7561 l 1470 7535 l 1488 7510 l 1506 7487 l 1523 7467 l 1539 7448 l 1552 7432 l 1564 7419 l 1574 7408 l 1581 7400 l 1593 7387 l gs col0 s gr gr % arrowhead 0 slj n 1417 7720 m 1530 7455 l 1274 7588 l 1417 7720 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 4576 7399 m 4433 7266 l 4176 7545 l 4432 7412 l 4319 7677 l cp eoclip n 4427 8971 m 4426 8970 l 4425 8968 l 4422 8963 l 4418 8957 l 4413 8947 l 4406 8935 l 4397 8919 l 4386 8900 l 4375 8879 l 4361 8855 l 4347 8829 l 4333 8800 l 4317 8770 l 4302 8738 l 4287 8705 l 4271 8671 l 4256 8635 l 4242 8598 l 4228 8561 l 4215 8522 l 4203 8481 l 4192 8439 l 4182 8395 l 4173 8349 l 4166 8300 l 4160 8250 l 4157 8198 l 4155 8144 l 4156 8090 l 4160 8032 l 4167 7977 l 4175 7924 l 4186 7875 l 4199 7829 l 4212 7785 l 4227 7745 l 4243 7707 l 4260 7671 l 4278 7637 l 4296 7605 l 4315 7575 l 4334 7545 l 4353 7518 l 4372 7492 l 4391 7467 l 4409 7445 l 4425 7424 l 4441 7405 l 4455 7389 l 4466 7376 l 4476 7365 l 4483 7357 l 4495 7344 l gs col0 s gr gr % arrowhead 0 slj n 4319 7677 m 4432 7412 l 4176 7545 l 4319 7677 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 7506 7442 m 7363 7309 l 7106 7588 l 7362 7455 l 7249 7720 l cp eoclip n 7357 9015 m 7356 9014 l 7355 9012 l 7352 9007 l 7348 9001 l 7343 8991 l 7336 8978 l 7327 8963 l 7316 8944 l 7304 8923 l 7291 8899 l 7277 8872 l 7262 8844 l 7247 8814 l 7232 8782 l 7216 8749 l 7201 8714 l 7186 8679 l 7171 8642 l 7158 8604 l 7145 8565 l 7132 8524 l 7121 8482 l 7111 8438 l 7102 8392 l 7095 8344 l 7089 8293 l 7086 8241 l 7084 8187 l 7085 8133 l 7089 8075 l 7096 8020 l 7104 7967 l 7115 7918 l 7128 7871 l 7142 7828 l 7157 7788 l 7173 7750 l 7189 7714 l 7207 7680 l 7225 7648 l 7244 7617 l 7263 7588 l 7283 7561 l 7302 7535 l 7320 7510 l 7338 7487 l 7355 7467 l 7371 7448 l 7384 7432 l 7396 7419 l 7406 7408 l 7413 7400 l 7425 7387 l gs col0 s gr gr % arrowhead 0 slj n 7249 7720 m 7362 7455 l 7106 7588 l 7249 7720 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 10625 7442 m 10482 7309 l 10225 7588 l 10481 7455 l 10368 7720 l cp eoclip n 10476 9015 m 10475 9014 l 10474 9012 l 10471 9007 l 10467 9001 l 10462 8991 l 10455 8978 l 10446 8963 l 10435 8944 l 10424 8923 l 10410 8899 l 10396 8872 l 10382 8844 l 10366 8814 l 10351 8782 l 10336 8749 l 10320 8714 l 10305 8679 l 10291 8642 l 10277 8604 l 10264 8565 l 10252 8524 l 10241 8482 l 10231 8438 l 10222 8392 l 10215 8344 l 10209 8293 l 10206 8241 l 10204 8187 l 10205 8133 l 10209 8075 l 10216 8020 l 10224 7967 l 10235 7918 l 10248 7871 l 10261 7828 l 10276 7788 l 10292 7750 l 10309 7714 l 10327 7680 l 10345 7648 l 10364 7617 l 10383 7588 l 10402 7561 l 10421 7535 l 10440 7510 l 10458 7487 l 10474 7467 l 10490 7448 l 10504 7432 l 10515 7419 l 10525 7408 l 10532 7400 l 10544 7387 l gs col0 s gr gr % arrowhead 0 slj n 10368 7720 m 10481 7455 l 10225 7588 l 10368 7720 l cp gs 0.00 setgray ef gr col0 s /Times-Roman ff 360.00 scf sf 1350 5400 m gs 1 -1 sc (1H,0L) col0 sh gr /Times-Roman ff 360.00 scf sf 4350 5400 m gs 1 -1 sc (1H,1L) col0 sh gr /Times-Roman ff 360.00 scf sf 7350 5400 m gs 1 -1 sc (1H,2L) col0 sh gr /Times-Roman ff 360.00 scf sf 10350 5400 m gs 1 -1 sc (1H,3L) col0 sh gr /Times-Roman ff 360.00 scf sf 1350 7275 m gs 1 -1 sc (2H,0L) col0 sh gr /Times-Roman ff 360.00 scf sf 4350 7275 m gs 1 -1 sc (2H,1L) col0 sh gr /Times-Roman ff 360.00 scf sf 7350 7275 m gs 1 -1 sc (2H,2L) col0 sh gr /Times-Roman ff 360.00 scf sf 10425 7275 m gs 1 -1 sc (2H,3L) col0 sh gr /Times-Roman ff 345.00 scf sf 4350 9375 m gs 1 -1 sc (3+H,1L) col0 sh gr /Times-Roman ff 345.00 scf sf 7350 9375 m gs 1 -1 sc (3+H,2L) col0 sh gr /Times-Roman ff 345.00 scf sf 10350 9375 m gs 1 -1 sc (3+H,3L) col0 sh gr /Times-Roman ff 345.00 scf sf 1350 9375 m gs 1 -1 sc (3+H,0L) col0 sh gr % here ends figure; F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psEnd rs showpage %%EndDocument endTexFig 0 1299 a FB(Figure)20 b(2:)27 b Fs(This)19 b(c)o(hain)h(illustr)o (ates)i(the)e(case)g(of)f(two)g(priority)j(classes)f(and)f(thr)m(ee)g (server)o(s.)29 b(The)19 b(b)n(usy)h(period)h(tr)o(ansitions)0 1411 y(ar)m(e)28 b(r)m(eplaced)j(by)d(a)g(Coxian)h(phase-type)i (distrib)n(ution)i(matc)o(hing)c(thr)m(ee)g(moments)g(of)f(the)h(b)n (usy)g(period)h(dur)o(ation,)h(as)0 1524 y(shown)24 b(in)g(F)l(igur)m (e)f(1.)0 1801 y Fj(F)66 1768 y Fn(\()p Fp(`)p Fn(\))179 1801 y Fu(=)i Fv(\025)328 1815 y Fp(L)380 1801 y Fj(I)p FB(,)d(for)i Fv(`)h Fo(\025)g Fu(0)p FB(,)e(where)h Fj(I)e FB(is)h(a)h Fu(4)c Fo(\002)g Fu(4)j FB(identity)j(matrix,)e(and)1267 2264 y Fj(B)1341 2226 y Fn(\()p Fp(`)p Fn(\))1455 2264 y Fu(=)h Fv(\026)1606 2278 y Fp(L)1673 1970 y Fi(0)1673 2116 y(B)1673 2166 y(B)1673 2216 y(B)1673 2266 y(B)1673 2316 y(B)1673 2369 y(@)1787 2050 y Fu(min\(2)p Fv(;)15 b(`)p Fu(\))2216 2197 y(1)2345 2344 y(0)2473 2490 y(0)2560 1970 y Fi(1)2560 2116 y(C)2560 2166 y(C)2560 2216 y(C)2560 2266 y(C)2560 2316 y(C)2560 2369 y(A)0 2725 y FB(for)24 b Fv(`)h Fo(\025)g Fu(1)p FB(.)141 2871 y(The)32 b(stationary)k (probabilities)g(of)d(being)g(in)g(le)n(v)o(el)g Fv(`)p FB(,)e Fv(~)-43 b(\031)1986 2886 y Fp(`)2019 2871 y FB(,)34 b(are)f(then)g(gi)n(v)o(en)g(recursi)n(v)o(ely)i(by)c Fv(~)-43 b(\031)3244 2886 y Fp(`)3319 2871 y Fu(=)39 b Fv(~)-42 b(\031)3484 2886 y Fp(`)p FH(\000)p Fn(1)3634 2871 y Fo(\001)27 b Fj(R)3764 2838 y Fn(\()p Fp(`)p Fn(\))3852 2871 y Fv(:)p FB(,)0 3018 y(where)d Fv(~)-43 b(\031)299 3032 y Fn(0)363 3018 y FB(and)25 b Fj(R)596 2985 y Fn(\()p Fp(`)p Fn(\))709 3018 y FB(are)h(calculated)i(as)d(follo)n(ws:)34 b(De\002ne)1939 2994 y Fu(^)1933 3018 y Fv(`)25 b FB(to)g(be)g(the)h (le)n(v)o(el)g(that)g(the)f(QBD)f(process)j(starts)g(repeating)0 3165 y(\(in)d(Figure)g(1\(c\),)582 3141 y Fu(^)576 3165 y Fv(`)h Fu(=)g(1)p FB(\),)e(then)h(for)g Fv(`)h Fu(=)g(1)p Fv(;)15 b(:)g(:)g(:)i(;)1577 3141 y Fu(^)1570 3165 y Fv(`)p FB(,)23 b(we)g(ha)n(v)o(e)h(that)g Fj(R)2211 3132 y Fn(\()p Fp(`)p Fn(\))2322 3165 y FB(is)f(gi)n(v)o(en)h(recursi)n(v)o (ely)i(by:)1023 3430 y Fj(F)1089 3393 y Fn(\()p Fp(`)p FH(\000)p Fn(1\))1287 3430 y Fu(+)20 b Fj(R)1456 3393 y Fn(\()p Fp(`)p Fn(\))1564 3430 y Fo(\001)h Fj(L)1673 3393 y Fn(\()p Fp(`)p Fn(\))1781 3430 y Fu(+)f Fj(R)1950 3393 y Fn(\()p Fp(`)p Fn(\))2058 3430 y Fo(\001)h Fj(R)2182 3393 y Fn(\()p Fp(`)p Fn(+1\))2380 3430 y Fo(\001)g Fj(B)2500 3393 y Fn(\()p Fp(`)p Fn(+1\))2703 3430 y Fu(=)k Fj(0)p Fv(;)0 3696 y FB(where)g Fj(0)g FB(is)g(a)f(zero)i(matrix)g(of)f (appropriate)j(dimension)f(\()p Fu(4)22 b Fo(\002)f Fu(4)p FB(\).)33 b(F)o(or)24 b Fv(`)k Fo(\025)2496 3672 y Fu(^)2490 3696 y Fv(`)21 b Fu(+)g(1)p FB(,)k Fj(R)2812 3663 y Fn(\()p Fp(`)p Fn(\))2928 3696 y Fu(=)j Fj(R)p FB(,)d(where)g Fj(R)g FB(is)f(gi)n(v)o(en)i(by)0 3843 y(the)e(minimal)g(solution)h(to) f(the)g(follo)n(wing)h(matrix)f(quadratic)i(equation:)1342 4108 y Fj(F)1408 4071 y Fn(\()1440 4053 y(^)1435 4071 y Fp(`)p Fn(\))1516 4108 y Fu(+)20 b Fj(R)h Fo(\001)f Fj(L)1814 4071 y Fn(\()1846 4053 y(^)1841 4071 y Fp(`)p Fn(\))1922 4108 y Fu(+)g Fj(R)2091 4071 y Fn(2)2151 4108 y Fo(\001)h Fj(B)2271 4071 y Fn(\()2303 4053 y(^)2298 4071 y Fp(`)p Fn(\))2384 4108 y Fu(=)k Fj(0)p Fv(:)0 4374 y FB(V)-10 b(ector)36 b Fv(~)-43 b(\031)326 4388 y Fn(0)402 4374 y FB(is)38 b(gi)n(v)o(en)g(by)g(a)f(positi)n(v)o(e)i (solution)h(of)35 b Fv(~)-43 b(\031)1755 4388 y Fn(0)1810 4280 y Fi(\020)1859 4374 y Fj(L)1922 4341 y Fn(\(0\))2037 4374 y Fu(+)20 b Fj(R)2206 4341 y Fn(\(1\))2321 4374 y Fo(\001)g Fj(B)2440 4341 y Fn(\(1\))2535 4280 y Fi(\021)2636 4374 y Fu(=)2751 4354 y Fv(~)2758 4374 y Fu(0)p Fv(;)37 b FB(normalized)j(by)e(the)g(equation)-2 4520 y Fv(~)-43 b(\031)52 4534 y Fn(0)106 4456 y Fi(P)194 4482 y FH(1)194 4543 y Fp(`)p Fn(=0)332 4456 y Fi(Q)411 4482 y Fp(`)411 4543 y(i)p Fn(=1)544 4520 y Fj(R)622 4487 y Fn(\()p Fp(i)p Fn(\))733 4520 y Fo(\001)778 4501 y Fv(~)785 4520 y Fu(1)43 b(=)f(1)p Fv(;)33 b FB(where)1336 4501 y Fv(~)1343 4520 y Fu(0)f FB(and)1577 4501 y Fv(~)1584 4520 y Fu(1)g FB(are)h(column)h (v)o(ectors)g(with)f(an)f(appropriate)k(number)e(of)f(elements)0 4667 y(of)27 b(0)h(and)g(1,)g(respecti)n(v)o(ely)-6 b(.)43 b(The)27 b(mean)h(response)i(time)d(can)h(no)n(w)f(be)g(computed)j (using)e(the)g(stationary)i(distrib)n(utions,)-2 4814 y Fv(~)-43 b(\031)52 4829 y Fp(`)85 4814 y FB(')-5 b(s,)23 b(gi)n(v)o(en)h(abo)o(v)o(e,)g(via)g(Little')-5 b(s)24 b(la)o(w)-6 b(.)141 4961 y(Figure)21 b(2)g(sho)n(ws)f(the)h (generalization)k(to)c(a)f(three)h(serv)o(er)h(system.)28 b(W)-7 b(e)20 b(simply)h(add)g(one)g(ro)n(w)f(to)h(the)g(chain)g(sho)n (wn)g(in)0 5108 y(Figure)i(1,)f(and)h(no)n(w)f(dif)n(ferentiate)j (between)f(0,)e(1,)g(2,)g(or)g(3-or)n(-more)i(high)g(priority)g(jobs.) 29 b(This)22 b(can)h(be)g(easily)g(e)o(xtended)0 5254 y(to)g(the)h(case)g(of)g Fv(k)k(>)d Fu(3)e FB(serv)o(ers.)1927 5596 y(8)p eop end %%Page: 9 9 TeXDict begin 9 8 bop 0 159 a Ft(2.2)99 b(Harder)25 b(case:)32 b(m)24 b(priority)h(classes,)f(exponential)i(job)f(sizes)0 367 y FB(W)-7 b(e)31 b(no)n(w)h(turn)g(to)g(the)g(more)g(dif)n (\002cult)h(case)g(of)f Fv(m)41 b(>)f Fu(2)32 b FB(priority)i(classes.) 55 b(W)-7 b(e)32 b(illustrate)i(this)f(for)f(the)g(case)h(of)f(tw)o(o)0 513 y(serv)o(ers)d(and)f(three)g(priority)i(classes:)38 b(high-priority)32 b(\(H\),)26 b(medium-priority)31 b(\(M\),)c(and)h (lo)n(w-priority)i(\(L\).)c(The)h(mean)0 660 y(response)k(time)d(for)h (class)g(H)e(jobs)i(and)g(that)g(for)g(class)g(M)e(jobs)j(are)e(easy)h (to)g(compute.)44 b(Class)29 b(H)e(jobs)i(simply)g(see)g(an)0 807 y(M/M/2)e(queue.)39 b(Class)27 b(M)f(jobs)h(see)g(the)g(same)g (system)g(that)g(the)g(lo)n(w-priority)i(jobs)f(see)f(in)f(an)h(M/M/2)f (queue)i(ha)n(ving)0 954 y(tw)o(o)22 b(priority)j(classes.)30 b(Replacing)24 b(the)f(L)-8 b(')j(s)22 b(by)h(M')-5 b(s)22 b(in)g(the)h(chain)h(in)f(Figure)g(1)f(yields)i(the)f(mean)g(response)i (time)d(for)h(the)0 1101 y(M)g(class)h(jobs.)141 1247 y(The)g(analysis)j(of)e(the)g(class)g(L)e(jobs)j(is)e(the)h(dif)n (\002cult)h(part.)32 b(The)24 b(ob)o(vious)j(approach)g(w)o(ould)e(be)g (to)f(aggre)o(gate)i(the)f(H)0 1394 y(and)g(M)f(jobs)h(into)g(a)f (single)i(class,)f(so)g(that)g(we)f(ha)n(v)o(e)h(a)f(2-class)i(system)g (\(H-M)d(v)o(ersus)j(L)d(jobs\).)33 b(Then)25 b(we)e(could)j(apply)0 1541 y(the)35 b(technique)j(of)c(the)i(pre)n(vious)g(section,)k (tracking)d(e)o(xactly)f(the)f(number)h(of)f(lo)n(w-priority)i(jobs)e (and)h(maintaining)0 1688 y(limited)28 b(state)h(information)h(on)e (the)f(H-M)g(class.)42 b(This)27 b(is)h(the)g(approach)h(that)g(we)d (follo)n(w)i(in)g(Section)g(2.5)g(in)f(deri)n(ving)0 1834 y(our)h(RDR-A)e(approximation.)45 b(Ho)n(we)n(v)o(er)l(,)28 b(this)g(approach)i(is)e(imprecise)h(because)h(the)e(duration)i(of)e (the)g(b)n(usy)g(periods)0 1981 y(in)f(the)g(H-M)f(class)i(depends)h (on)e(whether)h(the)f(b)n(usy)h(period)g(w)o(as)f(started)h(by)f(2H)f (jobs,)j(1H)d(and)h(1M)f(job,)i(or)f(2M)f(jobs)0 2128 y(in)g(service.)38 b(By)25 b(ignoring)j(the)e(priorities)j(among)d(H') -5 b(s)26 b(and)g(M')-5 b(s,)26 b(we)f(are)i(ignoring)h(the)e(f)o(act)h (that)f(some)g(types)h(of)f(b)n(usy)0 2275 y(periods)e(are)f(more)f (lik)o(ely)h(than)h(others.)29 b(Ev)o(en)22 b(gi)n(v)o(en)h(the)f (information)j(on)e(who)f(starts)h(the)g(b)n(usy)g(period,)h(this)e (still)h(does)0 2422 y(not)31 b(suf)n(\002ce)g(to)f(determine)j(its)d (duration,)35 b(because)d(the)f(duration)i(is)d(also)h(af)n(fected)i (by)d(the)h(prioritization)k(within)c(the)0 2568 y(aggre)o(gated)26 b(H-M)c(class.)141 2715 y(Thus,)33 b(a)f(precise)h(response)h(time)d (analysis)j(of)d(class)i(L)d(requires)j(maintaining)i(more)c (information.)55 b(As)31 b(before,)0 2862 y(we)d(w)o(ant)h(to)f(e)o (xactly)i(track)g(the)f(number)h(of)e(class)i(L)e(jobs.)45 b(Gi)n(v)o(en)28 b(that)h(there)h(are)f(tw)o(o)f(serv)o(ers,)j(we)d (need)i(to)f(further)0 3009 y(dif)n(ferentiate)g(between)d(whether)h (there)f(are)g(zero)g(H)e(and)i(M)e(jobs,)j(one)f(H)e(or)h(M)g(job,)h (or)f(tw)o(o)g(or)h(more)f(H)f(and)i(M)f(jobs.)0 3156 y(Whene)n(v)o(er)30 b(there)f(are)g(tw)o(o)f(or)h(more)f(H)g(and)h(M)e (jobs,)k(we)d(are)g(in)h(an)g(H-M)e(b)n(usy)j(period.)45 b(F)o(or)28 b(an)g(M/M/2)h(with)f(three)0 3302 y(priority)h(classes,)h (there)e(are)g Fs(six)f(types)h(of)g(b)n(usy)g(periods)h FB(possible,)h(depending)g(on)e(the)f(state)i(at)e(the)g(start)h(of)g (the)f(b)n(usy)0 3449 y(period)g(\226)e Fu(\(2)p Fv(H)r(;)15 b Fu(0)p Fv(M)10 b Fu(\))p FB(,)26 b Fu(\(1)p Fv(H)r(;)15 b Fu(1)p Fv(M)10 b Fu(\))p FB(,)27 b(or)e Fu(\(0)p Fv(H)r(;)15 b Fu(2)p Fv(M)10 b Fu(\))26 b FB(\226)f(and)h(the)g(state)g(in)f(which) g(the)h(b)n(usy)g(period)h(ends)f(\226)f Fu(\(1)p Fv(H)r(;)15 b Fu(0)p Fv(M)10 b Fu(\))26 b FB(or)0 3596 y Fu(\(0)p Fv(H)r(;)15 b Fu(1)p Fv(M)10 b Fu(\))p FB(.)30 b(W)-7 b(e)23 b(deri)n(v)o(e)h(the)g(b)n(usy)g(period)h(duration)h(by)e (conditioning)j(on)d(who)f(starts)i(and)f(ends)g(the)g(b)n(usy)g (period.)141 3743 y(Figure)33 b(3)f(\(left\))h(sho)n(ws)f(the)h(le)n(v) o(el)f(of)g(the)h(1D-in\002nite)g(chain)g(in)f(which)h(the)f(number)h (of)g(class)g(L)d(jobs)j(is)f Fv(u)p FB(.)54 b(In)0 3889 y(state)28 b(\()p Fv(w)r FB(H,)p Fv(v)s FB(M,)p Fv(u)p FB(L\),)d Fv(v)30 b FB(class)d(M)f(jobs)i(and)f Fv(w)i FB(class)e(H)f(jobs)i(are)f(in)f(the)h(system)h(if)f Fv(v)f Fu(+)c Fv(w)34 b(<)d Fu(2)p FB(;)d(otherwise,)h(the)e(state)0 4036 y(\()p Fv(w)r FB(H,)p Fv(v)s FB(M,)p Fv(u)p FB(L\))h(denotes)j (that)f(we)f(are)g(in)g(a)g(H-M)f(b)n(usy)i(period)h(that)f(w)o(as)f (started)h(by)g Fv(v)h FB(class)f(M)f(jobs)h(and)f Fv(w)i FB(class)f(H)0 4183 y(jobs.)36 b(Observ)o(e)27 b(that)f(there)h(are)f (six)g(types)h(of)f(b)n(usy)h(periods)g(depicted,)i(labeled)e Fv(B)2689 4197 y Fn(1)2729 4183 y FB(,)e Fv(B)2846 4197 y Fn(2)2885 4183 y FB(,)h(.)14 b(.)g(.)g(,)23 b Fv(B)3160 4197 y Fn(6)3200 4183 y FB(;)j(the)g(b)n(usy)h(period)g(is)0 4330 y(determined)f(by)d(the)h(state)g(in)f(which)h(it)f(w)o(as)g (started)h(and)g(the)g(state)g(in)f(which)h(it)f(ends.)29 b(Notice,)24 b(for)g(e)o(xample,)f(that)h(both)0 4477 y(states)32 b(in)e(the)h(fourth)g(and)g(\002fth)f(ro)n(w)g(are)h (labeled)h(\(0H,2M,)p Fv(u)p FB(L\),)d(meaning)j(that)f(the)f(b)n(usy)i (period)g(is)e(started)i(by)f(tw)o(o)0 4623 y(class)25 b(M)d(jobs;)j(b)n(ut)g(these)f(tw)o(o)g(states)h(dif)n(fer)f(in)g(the)g (class)h(of)f(the)g(job)g(that)g(is)g(left)g(at)f(the)h(end)h(of)e(the) h(H-M)f(b)n(usy)i(period.)0 4770 y(In)j(state)h(\(0H,2M,)p Fv(u)p FB(L\))f(of)g(the)h(fourth)g(ro)n(w)-6 b(,)29 b(the)g(b)n(usy)g(period)h(ends)f(lea)n(ving)h(a)e(class)h(H)e(job,)j (whereas)f(in)g(state)g(of)f(the)0 4917 y(\002fth)f(ro)n(w)-6 b(,)27 b(the)h(b)n(usy)g(period)g(ends)g(lea)n(ving)i(a)c(class)i(M)f (job)l(.)40 b(\(Recall)28 b(that)g(the)f(class)h(of)f(job)h(left)f(at)g (the)h(end)f(of)g(a)g(b)n(usy)0 5064 y(period)c(is)e(probabilistically) 26 b(determined)d(at)f(the)f Fs(be)l(ginning)j FB(of)e(the)f(b)n(usy)h (period)h(and)f(the)f(duration)j(of)d(the)g(b)n(usy)i(period)0 5211 y(is)32 b(conditioned)j(on)d(the)g(class)h(of)f(the)g(job)g(left)g (at)g(the)g(end.\))54 b(Here)32 b Fv(p)2302 5225 y Fn(2)p Fp(M)s(;H)2495 5211 y FB(,)h(for)f(e)o(xample,)i(denotes)g(the)e (probability)1927 5596 y(9)p eop end %%Page: 10 10 TeXDict begin 10 9 bop -133 67 a 15942354 15629760 0 0 45784104 44863160 startTexFig -133 67 a %%BeginDocument: ../../figures/3class1column.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: 3class1column.fig %%Creator: fig2dev Version 3.2 Patchlevel 4 %%CreationDate: Sun Jan 30 13:59:17 2005 %%For: harchol@mor.sync.cs.cmu.edu (Mor Harchol-Balter) %%BoundingBox: 0 0 696 682 %%Magnification: 1.0000 %%EndComments /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 682 moveto 0 0 lineto 696 0 lineto 696 682 lineto closepath clip newpath -14.5 671.5 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /reencdict 12 dict def /ReEncode { reencdict begin /newcodesandnames exch def /newfontname exch def /basefontname exch def /basefontdict basefontname findfont def /newfont basefontdict maxlength dict def basefontdict { exch dup /FID ne { dup /Encoding eq { exch dup length array copy newfont 3 1 roll put } { exch newfont 3 1 roll put } ifelse } { pop pop } ifelse } forall newfont /FontName newfontname put newcodesandnames aload pop 128 1 255 { newfont /Encoding get exch /.notdef put } for newcodesandnames length 2 idiv { newfont /Encoding get 3 1 roll put } repeat newfontname newfont definefont pop end } def /isovec [ 8#055 /minus 8#200 /grave 8#201 /acute 8#202 /circumflex 8#203 /tilde 8#204 /macron 8#205 /breve 8#206 /dotaccent 8#207 /dieresis 8#210 /ring 8#211 /cedilla 8#212 /hungarumlaut 8#213 /ogonek 8#214 /caron 8#220 /dotlessi 8#230 /oe 8#231 /OE 8#240 /space 8#241 /exclamdown 8#242 /cent 8#243 /sterling 8#244 /currency 8#245 /yen 8#246 /brokenbar 8#247 /section 8#250 /dieresis 8#251 /copyright 8#252 /ordfeminine 8#253 /guillemotleft 8#254 /logicalnot 8#255 /hyphen 8#256 /registered 8#257 /macron 8#260 /degree 8#261 /plusminus 8#262 /twosuperior 8#263 /threesuperior 8#264 /acute 8#265 /mu 8#266 /paragraph 8#267 /periodcentered 8#270 /cedilla 8#271 /onesuperior 8#272 /ordmasculine 8#273 /guillemotright 8#274 /onequarter 8#275 /onehalf 8#276 /threequarters 8#277 /questiondown 8#300 /Agrave 8#301 /Aacute 8#302 /Acircumflex 8#303 /Atilde 8#304 /Adieresis 8#305 /Aring 8#306 /AE 8#307 /Ccedilla 8#310 /Egrave 8#311 /Eacute 8#312 /Ecircumflex 8#313 /Edieresis 8#314 /Igrave 8#315 /Iacute 8#316 /Icircumflex 8#317 /Idieresis 8#320 /Eth 8#321 /Ntilde 8#322 /Ograve 8#323 /Oacute 8#324 /Ocircumflex 8#325 /Otilde 8#326 /Odieresis 8#327 /multiply 8#330 /Oslash 8#331 /Ugrave 8#332 /Uacute 8#333 /Ucircumflex 8#334 /Udieresis 8#335 /Yacute 8#336 /Thorn 8#337 /germandbls 8#340 /agrave 8#341 /aacute 8#342 /acircumflex 8#343 /atilde 8#344 /adieresis 8#345 /aring 8#346 /ae 8#347 /ccedilla 8#350 /egrave 8#351 /eacute 8#352 /ecircumflex 8#353 /edieresis 8#354 /igrave 8#355 /iacute 8#356 /icircumflex 8#357 /idieresis 8#360 /eth 8#361 /ntilde 8#362 /ograve 8#363 /oacute 8#364 /ocircumflex 8#365 /otilde 8#366 /odieresis 8#367 /divide 8#370 /oslash 8#371 /ugrave 8#372 /uacute 8#373 /ucircumflex 8#374 /udieresis 8#375 /yacute 8#376 /thorn 8#377 /ydieresis] def /Times-Roman /Times-Roman-iso isovec ReEncode /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psBegin 10 setmiterlimit 0 slj 0 slc 0.06000 0.06000 sc % % Fig objects follow % % % here starts figure with depth 50 /Times-Roman-iso ff 330.00 scf sf 6450 4350 m gs 1 -1 sc (B) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 6675 4425 m gs 1 -1 sc (2) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 6675 5400 m gs 1 -1 sc (B) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 6900 5475 m gs 1 -1 sc (1) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 6975 6750 m gs 1 -1 sc (B) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 7200 6825 m gs 1 -1 sc (4) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 7200 7725 m gs 1 -1 sc (B) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 7425 7800 m gs 1 -1 sc (3) col0 sh gr /Symbol ff 330.00 scf sf 4575 4350 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 4950 4275 m gs 1 -1 sc (p) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5100 4425 m gs 1 -1 sc (2M,H) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4725 4425 m gs 1 -1 sc (M) col0 sh gr /Symbol ff 330.00 scf sf 6225 1425 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 6375 1500 m gs 1 -1 sc (M) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5475 1500 m gs 1 -1 sc (M) col0 sh gr /Symbol ff 330.00 scf sf 5325 1350 m gs 1 -1 sc (m) col0 sh gr /Symbol ff 330.00 scf sf 7275 1425 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 7425 1500 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 4425 1350 m gs 1 -1 sc (m) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4575 1500 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 4125 7425 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 4500 7350 m gs 1 -1 sc (p) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4650 7500 m gs 1 -1 sc (MH,H) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4275 7500 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 4425 6600 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 4800 6525 m gs 1 -1 sc (p) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4950 6675 m gs 1 -1 sc (MH,H) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4575 6675 m gs 1 -1 sc (M) col0 sh gr % Arc 15.000 slw gs clippath 6624 623 m 6600 719 l 6764 758 l 6649 680 l 6787 663 l cp eoclip [90] 0 sd n 8406.5 -6249.4 7149.4 75.6 104.4 arc gs col0 s gr gr [] 0 sd % arrowhead n 6787 663 m 6649 680 l 6764 758 l col0 s % Arc gs clippath 10188 501 m 10212 405 l 10048 366 l 10164 445 l 10025 461 l cp eoclip [90] 0 sd n 8406.5 7374.4 7149.4 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 10025 461 m 10164 445 l 10048 366 l col0 s % Arc gs clippath 6536 2123 m 6512 2219 l 6676 2258 l 6561 2180 l 6699 2163 l cp eoclip [90] 0 sd n 8318.5 -4749.4 7149.4 75.6 104.4 arc gs col0 s gr gr [] 0 sd % arrowhead n 6699 2163 m 6561 2180 l 6676 2258 l col0 s % Arc gs clippath 10100 2001 m 10124 1905 l 9960 1866 l 10076 1945 l 9937 1961 l cp eoclip [90] 0 sd n 8318.5 8874.4 7149.4 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 9937 1961 m 10076 1945 l 9960 1866 l col0 s % Arc gs clippath 6536 3323 m 6512 3419 l 6676 3458 l 6561 3380 l 6699 3363 l cp eoclip [90] 0 sd n 8318.5 -3549.4 7149.4 75.6 104.4 arc gs col0 s gr gr [] 0 sd % arrowhead n 6699 3363 m 6561 3380 l 6676 3458 l col0 s % Arc gs clippath 10100 3201 m 10124 3105 l 9960 3066 l 10076 3145 l 9937 3161 l cp eoclip [90] 0 sd n 8318.5 10074.4 7149.4 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 9937 3161 m 10076 3145 l 9960 3066 l col0 s % Arc gs clippath 10100 4701 m 10124 4605 l 9960 4566 l 10076 4645 l 9937 4661 l cp eoclip [90] 0 sd n 8318.5 11574.4 7149.4 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 9937 4661 m 10076 4645 l 9960 4566 l col0 s % Arc gs clippath 10100 5901 m 10124 5805 l 9960 5766 l 10076 5845 l 9937 5861 l cp eoclip [90] 0 sd n 8318.5 12774.4 7149.4 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 9937 5861 m 10076 5845 l 9960 5766 l col0 s % Arc gs clippath 10100 7101 m 10124 7005 l 9960 6966 l 10076 7045 l 9937 7061 l cp eoclip [90] 0 sd n 8318.5 13974.4 7149.4 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 9937 7061 m 10076 7045 l 9960 6966 l col0 s % Arc gs clippath 10100 8376 m 10124 8280 l 9960 8241 l 10076 8320 l 9937 8336 l cp eoclip [90] 0 sd n 8318.5 15249.4 7149.4 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 9937 8336 m 10076 8320 l 9960 8241 l col0 s % Arc gs clippath 10100 9501 m 10124 9405 l 9960 9366 l 10076 9445 l 9937 9461 l cp eoclip [90] 0 sd n 8318.5 16374.4 7149.4 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 9937 9461 m 10076 9445 l 9960 9366 l col0 s % Arc gs clippath 10100 10701 m 10124 10605 l 9960 10566 l 10076 10645 l 9937 10661 l cp eoclip [90] 0 sd n 8318.5 17574.4 7149.4 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 9937 10661 m 10076 10645 l 9960 10566 l col0 s /Symbol ff 330.00 scf sf 3975 9675 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 4350 9600 m gs 1 -1 sc (p) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4500 9750 m gs 1 -1 sc (2H,H) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4125 9750 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 3825 10875 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 4200 10800 m gs 1 -1 sc (p) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4350 10950 m gs 1 -1 sc (2H,M) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 3975 10950 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 3975 8625 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 4350 8550 m gs 1 -1 sc (p) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4500 8700 m gs 1 -1 sc (MH,M) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4125 8700 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 4350 7875 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 4725 7800 m gs 1 -1 sc (p) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4875 7950 m gs 1 -1 sc (MH,M) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4500 7950 m gs 1 -1 sc (M) col0 sh gr /Symbol ff 330.00 scf sf 4350 5550 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 4725 5475 m gs 1 -1 sc (p) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4875 5625 m gs 1 -1 sc (2M,M) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4500 5625 m gs 1 -1 sc (M) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 7500 8925 m gs 1 -1 sc (B) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 7725 9000 m gs 1 -1 sc (6) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 7725 9900 m gs 1 -1 sc (B) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 7950 9975 m gs 1 -1 sc (5) col0 sh gr % Ellipse n 6000 8400 600 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 6000 600 600 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 5999 3298 600 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 6000 4800 600 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 5999 9602 600 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 5999 10802 600 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 6000 2100 600 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 6000 6000 600 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 6000 7200 600 300 0 360 DrawEllipse gs col0 s gr /Times-Roman-iso ff 270.00 scf sf 5475 675 m gs 1 -1 sc (0H,0M,uL) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5475 2175 m gs 1 -1 sc (0H,1M,uL) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5475 3375 m gs 1 -1 sc (1H,0M,uL) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5475 4875 m gs 1 -1 sc (0H,2M,uL) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5475 6075 m gs 1 -1 sc (0H,2M,uL) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5475 7275 m gs 1 -1 sc (1H,1M,uL) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5475 8475 m gs 1 -1 sc (1H,1M,uL) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5475 9675 m gs 1 -1 sc (2H,0M,uL) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5475 10875 m gs 1 -1 sc (2H,0M,uL) col0 sh gr % Arc gs clippath 1886 3398 m 1862 3494 l 2026 3534 l 1911 3455 l 2050 3438 l cp eoclip [90] 0 sd n 3675.0 -3525.9 7200.9 75.6 104.4 arc gs col0 s gr gr [] 0 sd % arrowhead n 2050 3438 m 1911 3455 l 2026 3534 l col0 s % Arc gs clippath 5463 3276 m 5487 3180 l 5323 3140 l 5439 3220 l 5299 3236 l cp eoclip [90] 0 sd n 3675.0 10200.9 7200.9 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 5299 3236 m 5439 3220 l 5323 3140 l col0 s % Arc gs clippath 1886 2198 m 1862 2294 l 2026 2334 l 1911 2255 l 2050 2238 l cp eoclip [90] 0 sd n 3675.0 -4725.9 7200.9 75.6 104.4 arc gs col0 s gr gr [] 0 sd % arrowhead n 2050 2238 m 1911 2255 l 2026 2334 l col0 s % Arc gs clippath 5463 2076 m 5487 1980 l 5323 1940 l 5439 2020 l 5299 2036 l cp eoclip [90] 0 sd n 3675.0 9000.9 7200.9 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 5299 2036 m 5439 2020 l 5323 1940 l col0 s % Arc gs clippath 1886 698 m 1862 794 l 2026 834 l 1911 755 l 2050 738 l cp eoclip [90] 0 sd n 3675.0 -6225.9 7200.9 75.6 104.4 arc gs col0 s gr gr [] 0 sd % arrowhead n 2050 738 m 1911 755 l 2026 834 l col0 s % Arc gs clippath 5463 576 m 5487 480 l 5323 440 l 5439 520 l 5299 536 l cp eoclip [90] 0 sd n 3675.0 7500.9 7200.9 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 5299 536 m 5439 520 l 5323 440 l col0 s % Arc gs clippath 5463 8301 m 5487 8205 l 5323 8165 l 5439 8245 l 5299 8261 l cp eoclip [90] 0 sd n 3675.0 15225.9 7200.9 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 5299 8261 m 5439 8245 l 5323 8165 l col0 s % Arc gs clippath 5463 7176 m 5487 7080 l 5323 7040 l 5439 7120 l 5299 7136 l cp eoclip [90] 0 sd n 3675.0 14100.9 7200.9 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 5299 7136 m 5439 7120 l 5323 7040 l col0 s % Arc gs clippath 5463 5901 m 5487 5805 l 5323 5765 l 5439 5845 l 5299 5861 l cp eoclip [90] 0 sd n 3675.0 12825.9 7200.9 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 5299 5861 m 5439 5845 l 5323 5765 l col0 s % Arc gs clippath 5463 4776 m 5487 4680 l 5323 4640 l 5439 4720 l 5299 4736 l cp eoclip [90] 0 sd n 3675.0 11700.9 7200.9 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 5299 4736 m 5439 4720 l 5323 4640 l col0 s % Arc gs clippath 5463 9501 m 5487 9405 l 5323 9365 l 5439 9445 l 5299 9461 l cp eoclip [90] 0 sd n 3675.0 16425.9 7200.9 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 5299 9461 m 5439 9445 l 5323 9365 l col0 s % Arc gs clippath 5463 10701 m 5487 10605 l 5323 10565 l 5439 10645 l 5299 10661 l cp eoclip [90] 0 sd n 3675.0 17625.9 7200.9 -104.4 -75.6 arc gs col0 s gr gr [] 0 sd % arrowhead n 5299 10661 m 5439 10645 l 5323 10565 l col0 s /Symbol ff 405.00 scf sf 3265 128 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 3469 230 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 405.00 scf sf 8136 111 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 8340 213 m gs 1 -1 sc (L) col0 sh gr % Arc gs clippath 6323 1841 m 6404 1929 l 6584 1762 l 6412 1841 l 6503 1674 l cp eoclip n 6016.1 1321.7 659.5 -48.9 57.0 arc gs col0 s gr gr % arrowhead 30.000 slw n 6503 1674 m 6412 1841 l 6584 1762 l col0 s % Arc 15.000 slw gs clippath 5668 868 m 5607 765 l 5395 891 l 5581 851 l 5457 994 l cp eoclip n 5817.2 1366.4 574.5 117.7 -109.5 arc gs col0 s gr gr % arrowhead 30.000 slw n 5457 994 m 5581 851 l 5395 891 l col0 s % Arc 15.000 slw gs clippath 5402 4861 m 5426 4744 l 5185 4695 l 5350 4790 l 5161 4812 l cp eoclip n 5559.4 3450.0 1359.4 -96.7 96.7 arcn gs col0 s gr gr % arrowhead 30.000 slw n 5161 4812 m 5350 4790 l 5185 4695 l col0 s % Arc 15.000 slw gs clippath 5406 6061 m 5423 5942 l 5179 5908 l 5350 5993 l 5163 6027 l cp eoclip n 5556.2 4050.0 1956.2 -94.6 94.6 arcn gs col0 s gr gr % arrowhead 30.000 slw n 5163 6027 m 5350 5993 l 5179 5908 l col0 s % Arc 90.000 slw gs clippath 6562 3366 m 6462 3516 l 6698 3673 l 6599 3499 l 6798 3524 l cp eoclip n 6214.8 4144.3 760.5 59.6 -65.9 arcn gs col0 s gr gr % arrowhead 75.000 slw n 6798 3524 m 6599 3499 l 6698 3673 l col0 s % Arc 90.000 slw gs clippath 6648 2172 m 6528 2307 l 6740 2496 l 6666 2309 l 6860 2361 l cp eoclip n 5100.0 4125.0 2401.2 51.3 -51.3 arcn gs col0 s gr gr % arrowhead 75.000 slw n 6860 2361 m 6666 2309 l 6740 2496 l col0 s % Arc 90.000 slw gs clippath 6614 3209 m 6557 3380 l 6826 3470 l 6684 3328 l 6883 3299 l cp eoclip n 6082.5 5250.0 2017.5 75.1 -75.1 arcn gs col0 s gr gr % arrowhead 75.000 slw n 6883 3299 m 6684 3328 l 6826 3470 l col0 s % Arc 90.000 slw gs clippath 6624 2011 m 6548 2175 l 6806 2294 l 6681 2137 l 6882 2130 l cp eoclip n 5287.5 5250.0 3412.5 67.4 -67.4 arcn gs col0 s gr gr % arrowhead 75.000 slw n 6882 2130 m 6681 2137 l 6806 2294 l col0 s % Arc 15.000 slw gs clippath 5519 718 m 5456 615 l 5247 743 l 5432 701 l 5309 845 l cp eoclip n 6097.5 1912.5 1385.2 116.7 -116.7 arc gs col0 s gr gr % arrowhead 30.000 slw n 5309 845 m 5432 701 l 5247 743 l col0 s % Arc 15.000 slw gs clippath 6486 3026 m 6536 3135 l 6759 3032 l 6571 3054 l 6708 2923 l cp eoclip n 6103.2 1897.7 1250.6 -66.6 70.3 arc gs col0 s gr gr % arrowhead 30.000 slw n 6708 2923 m 6571 3054 l 6759 3032 l col0 s % Arc 90.000 slw gs clippath 6613 1859 m 6557 2030 l 6828 2119 l 6685 1978 l 6884 1948 l cp eoclip n 5283.2 6375.0 4616.8 73.4 -73.4 arcn gs col0 s gr gr % arrowhead 75.000 slw n 6884 1948 m 6685 1978 l 6828 2119 l col0 s % Arc 90.000 slw gs clippath 6681 3059 m 6638 3233 l 6914 3301 l 6761 3171 l 6957 3126 l cp eoclip n 6015.3 6367.8 3284.7 79.7 -78.4 arcn gs col0 s gr gr % arrowhead 75.000 slw n 6957 3126 m 6761 3171 l 6914 3301 l col0 s % Arc 15.000 slw gs clippath 5408 7261 m 5421 7141 l 5177 7116 l 5350 7195 l 5164 7236 l cp eoclip n 5550.0 4650.0 2554.4 -93.4 93.4 arcn gs col0 s gr gr % arrowhead 30.000 slw n 5164 7236 m 5350 7195 l 5177 7116 l col0 s % Arc 15.000 slw gs clippath 5409 8461 m 5420 8341 l 5175 8321 l 5350 8396 l 5165 8440 l cp eoclip n 5552.3 5247.7 3155.9 -94.1 92.8 arcn gs col0 s gr gr % arrowhead 30.000 slw n 5165 8440 m 5350 8396 l 5175 8321 l col0 s % Arc 15.000 slw gs clippath 5395 7261 m 5432 7147 l 5199 7071 l 5352 7184 l 5162 7185 l cp eoclip n 5910.0 5250.0 2015.6 -104.7 104.7 arcn gs col0 s gr gr % arrowhead 30.000 slw n 5162 7185 m 5352 7184 l 5199 7071 l col0 s % Arc 15.000 slw gs clippath 5405 10861 m 5424 10743 l 5181 10704 l 5350 10792 l 5162 10823 l cp eoclip n 5877.3 7050.0 3780.2 -97.3 97.3 arcn gs col0 s gr gr % arrowhead 30.000 slw n 5162 10823 m 5350 10792 l 5181 10704 l col0 s % Arc 15.000 slw gs clippath 5403 9661 m 5425 9543 l 5184 9498 l 5350 9591 l 5161 9616 l cp eoclip n 5886.5 6450.0 3187.3 -98.8 98.8 arcn gs col0 s gr gr % arrowhead 30.000 slw n 5161 9616 m 5350 9591 l 5184 9498 l col0 s % Arc 15.000 slw gs clippath 5400 8461 m 5428 8345 l 5189 8288 l 5351 8388 l 5162 8404 l cp eoclip n 5892.9 5850.0 2597.2 -100.9 100.9 arcn gs col0 s gr gr % arrowhead 30.000 slw n 5162 8404 m 5351 8388 l 5189 8288 l col0 s % Ellipse 15.000 slw [90] 0 sd n 1124 8475 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 1124 675 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 1123 3373 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 1123 9677 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 1123 10877 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 1124 2175 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 1124 7275 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10949 8325 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10949 525 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10948 3223 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10949 4725 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10948 9527 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10948 10727 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10949 2025 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10949 5925 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10949 7125 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 1124 6075 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 1124 4875 866 300 0 360 DrawEllipse gs col0 s gr [] 0 sd /Times-Roman-iso ff 270.00 scf sf 300 750 m gs 1 -1 sc (0H,0M,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 300 2250 m gs 1 -1 sc (0H,1M,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 300 3450 m gs 1 -1 sc (1H,0M,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 300 4950 m gs 1 -1 sc (0H,2M,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 300 6150 m gs 1 -1 sc (0H,2M,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 300 7350 m gs 1 -1 sc (1H,1M,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 300 8550 m gs 1 -1 sc (1H,1M,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 300 9750 m gs 1 -1 sc (2H,0M,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 300 10950 m gs 1 -1 sc (2H,0M,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 10125 10800 m gs 1 -1 sc (2H,0M,\(u+1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 10125 9600 m gs 1 -1 sc (2H,0M,\(u+1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 10125 8400 m gs 1 -1 sc (1H,1M,\(u+1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 10125 7200 m gs 1 -1 sc (1H,1M,\(u+1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 10125 6000 m gs 1 -1 sc (0H,2M,\(u+1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 10125 4800 m gs 1 -1 sc (0H,2M,\(u+1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 10125 3300 m gs 1 -1 sc (1H,0M,\(u+1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 10125 2100 m gs 1 -1 sc (0H,1M,\(u+1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 10125 600 m gs 1 -1 sc (0H,0M,\(u+1\)L) col0 sh gr % here ends figure; F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psEnd rs showpage %%EndDocument endTexFig 2233 535 a 14208860 11935440 0 0 43218616 36640440 startTexFig 2233 535 a %%BeginDocument: ../../figures/passagetimes.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: passagetimes.fig %%Creator: fig2dev Version 3.2 Patchlevel 4 %%CreationDate: Sun Jan 30 14:28:24 2005 %%For: harchol@mor.sync.cs.cmu.edu (Mor Harchol-Balter) %%BoundingBox: 0 0 657 557 %%Magnification: 1.0000 %%EndComments /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 557 moveto 0 0 lineto 657 0 lineto 657 557 lineto closepath clip newpath -201.4 735.1 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /reencdict 12 dict def /ReEncode { reencdict begin /newcodesandnames exch def /newfontname exch def /basefontname exch def /basefontdict basefontname findfont def /newfont basefontdict maxlength dict def basefontdict { exch dup /FID ne { dup /Encoding eq { exch dup length array copy newfont 3 1 roll put } { exch newfont 3 1 roll put } ifelse } { pop pop } ifelse } forall newfont /FontName newfontname put newcodesandnames aload pop 128 1 255 { newfont /Encoding get exch /.notdef put } for newcodesandnames length 2 idiv { newfont /Encoding get 3 1 roll put } repeat newfontname newfont definefont pop end } def /isovec [ 8#055 /minus 8#200 /grave 8#201 /acute 8#202 /circumflex 8#203 /tilde 8#204 /macron 8#205 /breve 8#206 /dotaccent 8#207 /dieresis 8#210 /ring 8#211 /cedilla 8#212 /hungarumlaut 8#213 /ogonek 8#214 /caron 8#220 /dotlessi 8#230 /oe 8#231 /OE 8#240 /space 8#241 /exclamdown 8#242 /cent 8#243 /sterling 8#244 /currency 8#245 /yen 8#246 /brokenbar 8#247 /section 8#250 /dieresis 8#251 /copyright 8#252 /ordfeminine 8#253 /guillemotleft 8#254 /logicalnot 8#255 /hyphen 8#256 /registered 8#257 /macron 8#260 /degree 8#261 /plusminus 8#262 /twosuperior 8#263 /threesuperior 8#264 /acute 8#265 /mu 8#266 /paragraph 8#267 /periodcentered 8#270 /cedilla 8#271 /onesuperior 8#272 /ordmasculine 8#273 /guillemotright 8#274 /onequarter 8#275 /onehalf 8#276 /threequarters 8#277 /questiondown 8#300 /Agrave 8#301 /Aacute 8#302 /Acircumflex 8#303 /Atilde 8#304 /Adieresis 8#305 /Aring 8#306 /AE 8#307 /Ccedilla 8#310 /Egrave 8#311 /Eacute 8#312 /Ecircumflex 8#313 /Edieresis 8#314 /Igrave 8#315 /Iacute 8#316 /Icircumflex 8#317 /Idieresis 8#320 /Eth 8#321 /Ntilde 8#322 /Ograve 8#323 /Oacute 8#324 /Ocircumflex 8#325 /Otilde 8#326 /Odieresis 8#327 /multiply 8#330 /Oslash 8#331 /Ugrave 8#332 /Uacute 8#333 /Ucircumflex 8#334 /Udieresis 8#335 /Yacute 8#336 /Thorn 8#337 /germandbls 8#340 /agrave 8#341 /aacute 8#342 /acircumflex 8#343 /atilde 8#344 /adieresis 8#345 /aring 8#346 /ae 8#347 /ccedilla 8#350 /egrave 8#351 /eacute 8#352 /ecircumflex 8#353 /edieresis 8#354 /igrave 8#355 /iacute 8#356 /icircumflex 8#357 /idieresis 8#360 /eth 8#361 /ntilde 8#362 /ograve 8#363 /oacute 8#364 /ocircumflex 8#365 /otilde 8#366 /odieresis 8#367 /divide 8#370 /oslash 8#371 /ugrave 8#372 /uacute 8#373 /ucircumflex 8#374 /udieresis 8#375 /yacute 8#376 /thorn 8#377 /ydieresis] def /Times-Roman /Times-Roman-iso isovec ReEncode /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psBegin 10 setmiterlimit 0 slj 0 slc 0.06000 0.06000 sc % % Fig objects follow % % % here starts figure with depth 66 % Polyline 2 slj 15.000 slw n 4050 10988 m 3999 11045 l 3951 11102 l 3904 11157 l 3860 11212 l 3817 11265 l 3776 11316 l 3737 11367 l 3700 11416 l 3665 11465 l 3632 11512 l 3601 11557 l 3572 11602 l 3545 11645 l 3519 11688 l 3496 11728 l 3475 11768 l 3456 11806 l 3439 11843 l 3424 11878 l 3411 11912 l 3400 11944 l 3391 11975 l 3385 12004 l 3381 12031 l 3379 12057 l 3379 12081 l 3381 12104 l 3386 12124 l 3392 12143 l 3401 12160 l 3412 12176 l 3426 12189 l 3441 12200 l 3459 12210 l 3478 12218 l 3500 12224 l 3524 12228 l 3550 12230 l 3578 12230 l 3608 12228 l 3640 12224 l 3673 12218 l 3709 12211 l 3746 12201 l 3785 12190 l 3826 12177 l 3869 12162 l 3913 12145 l 3959 12126 l 4007 12106 l 4056 12084 l 4106 12060 l 4158 12034 l 4211 12006 l 4266 11977 l 4323 11946 l 4380 11914 l 4440 11879 l 4500 11843 l 4562 11806 l 4626 11766 l 4691 11725 l 4757 11682 l 4825 11638 l 4877 11603 l 4929 11568 l 4983 11531 l 5037 11493 l 5092 11455 l 5148 11415 l 5206 11374 l 5264 11333 l 5323 11290 l 5383 11246 l 5444 11201 l 5506 11155 l 5569 11108 l 5632 11060 l 5697 11010 l 5763 10960 l 5829 10909 l 5897 10857 l 5965 10804 l 6034 10749 l 6104 10694 l 6175 10638 l 6247 10581 l 6319 10523 l 6392 10465 l 6466 10405 l 6540 10345 l 6615 10283 l 6691 10221 l 6767 10159 l 6843 10095 l 6920 10031 l 6998 9967 l 7075 9902 l 7153 9836 l 7232 9770 l 7310 9703 l 7389 9636 l 7467 9568 l 7546 9501 l 7625 9433 l 7704 9364 l 7782 9296 l 7860 9227 l 7939 9159 l 8017 9090 l 8094 9021 l 8171 8953 l 8248 8884 l 8324 8816 l 8400 8748 l 8475 8680 l 8550 8612 l 8623 8545 l 8697 8478 l 8769 8412 l 8840 8346 l 8911 8280 l 8981 8215 l 9050 8150 l 9118 8087 l 9185 8023 l 9251 7961 l 9316 7899 l 9380 7837 l 9442 7777 l 9504 7717 l 9565 7658 l 9624 7600 l 9682 7542 l 9739 7486 l 9795 7430 l 9850 7375 l 9903 7321 l 9955 7267 l 10006 7215 l 10056 7163 l 10105 7113 l 10152 7063 l 10198 7014 l 10243 6966 l 10287 6918 l 10330 6872 l 10371 6826 l 10411 6781 l 10450 6738 l 10514 6664 l 10575 6592 l 10633 6523 l 10688 6455 l 10740 6390 l 10789 6326 l 10835 6264 l 10878 6203 l 10919 6145 l 10957 6088 l 10992 6032 l 11025 5978 l 11056 5926 l 11084 5875 l 11109 5826 l 11132 5779 l 11153 5733 l 11172 5688 l 11188 5645 l 11202 5604 l 11214 5564 l 11224 5526 l 11232 5490 l 11238 5455 l 11242 5422 l 11244 5390 l 11245 5359 l 11243 5331 l 11241 5304 l 11237 5278 l 11231 5254 l 11225 5231 l 11217 5209 l 11209 5189 l 11199 5170 l 11189 5153 l 11177 5136 l 11166 5121 l 11154 5106 l 11141 5093 l 11128 5081 l 11115 5069 l 11102 5058 l 11089 5048 l 11075 5039 l 11062 5030 l 11049 5022 l 11037 5014 l 11024 5007 l 11013 5000 l 10999 4992 l 10987 4985 l 10975 4978 l 10963 4972 l 10951 4967 l 10939 4962 l 10926 4958 l 10914 4955 l 10901 4952 l 10887 4951 l 10873 4951 l 10858 4953 l 10842 4956 l 10825 4960 l 10806 4966 l 10787 4973 l 10766 4982 l 10744 4993 l 10720 5006 l 10694 5021 l 10666 5038 l 10637 5057 l 10606 5078 l 10573 5101 l 10538 5127 l 10500 5155 l 10461 5185 l 10419 5217 l 10375 5252 l 10329 5289 l 10280 5328 l 10229 5370 l 10176 5414 l 10120 5461 l 10062 5509 l 10001 5560 l 9938 5614 l 9872 5670 l 9803 5729 l 9731 5790 l 9657 5854 l 9579 5920 l 9497 5990 l 9413 6063 l 9367 6102 l 9320 6142 l 9271 6183 l 9222 6225 l 9172 6268 l 9121 6312 l 9068 6357 l 9015 6403 l 8960 6450 l 8904 6498 l 8848 6547 l 8790 6597 l 8731 6647 l 8671 6699 l 8610 6752 l 8547 6805 l 8484 6860 l 8420 6915 l 8355 6972 l 8289 7029 l 8222 7087 l 8154 7146 l 8085 7206 l 8015 7267 l 7945 7328 l 7873 7391 l 7801 7454 l 7729 7517 l 7655 7582 l 7581 7647 l 7507 7712 l 7431 7778 l 7356 7845 l 7280 7912 l 7204 7980 l 7127 8048 l 7050 8116 l 6973 8185 l 6896 8254 l 6818 8323 l 6741 8392 l 6663 8462 l 6586 8531 l 6509 8601 l 6432 8670 l 6355 8740 l 6279 8809 l 6203 8878 l 6128 8947 l 6052 9016 l 5978 9085 l 5904 9153 l 5831 9221 l 5758 9288 l 5686 9355 l 5615 9421 l 5544 9487 l 5475 9553 l 5406 9617 l 5338 9681 l 5272 9745 l 5206 9808 l 5141 9870 l 5078 9931 l 5015 9992 l 4953 10052 l 4893 10111 l 4834 10169 l 4776 10226 l 4719 10283 l 4663 10339 l 4609 10394 l 4556 10448 l 4503 10501 l 4453 10553 l 4403 10605 l 4355 10656 l 4307 10706 l 4261 10755 l 4217 10803 l 4173 10850 l 4131 10897 l 4090 10943 l cp gs col29 1.00 shd ef gr gs col0 s gr % Polyline n 3950 8600 m 3919 8640 l 3889 8679 l 3860 8717 l 3834 8754 l 3808 8791 l 3784 8827 l 3761 8862 l 3740 8897 l 3720 8931 l 3702 8964 l 3685 8996 l 3670 9028 l 3656 9059 l 3643 9089 l 3632 9118 l 3623 9146 l 3615 9174 l 3608 9200 l 3603 9226 l 3600 9250 l 3598 9274 l 3598 9297 l 3599 9318 l 3602 9339 l 3607 9358 l 3613 9376 l 3621 9393 l 3630 9409 l 3641 9423 l 3653 9437 l 3667 9449 l 3683 9459 l 3700 9469 l 3718 9477 l 3738 9483 l 3759 9489 l 3782 9493 l 3805 9496 l 3831 9497 l 3857 9497 l 3885 9496 l 3914 9493 l 3944 9489 l 3975 9484 l 4008 9477 l 4041 9469 l 4076 9460 l 4111 9450 l 4148 9438 l 4185 9425 l 4224 9410 l 4263 9395 l 4304 9378 l 4345 9360 l 4387 9341 l 4430 9320 l 4474 9298 l 4519 9275 l 4565 9251 l 4613 9225 l 4656 9200 l 4701 9175 l 4746 9148 l 4793 9120 l 4840 9091 l 4888 9061 l 4937 9030 l 4988 8997 l 5039 8964 l 5091 8929 l 5144 8893 l 5198 8857 l 5253 8819 l 5309 8779 l 5365 8739 l 5423 8698 l 5481 8656 l 5540 8613 l 5599 8568 l 5660 8523 l 5721 8477 l 5782 8430 l 5844 8383 l 5907 8334 l 5969 8285 l 6033 8235 l 6096 8184 l 6160 8133 l 6223 8082 l 6287 8029 l 6351 7977 l 6415 7924 l 6478 7871 l 6541 7818 l 6604 7764 l 6667 7710 l 6729 7657 l 6791 7603 l 6852 7550 l 6912 7496 l 6971 7443 l 7030 7390 l 7088 7338 l 7145 7286 l 7201 7234 l 7256 7182 l 7310 7132 l 7363 7081 l 7415 7032 l 7465 6983 l 7515 6934 l 7563 6887 l 7610 6840 l 7655 6794 l 7700 6748 l 7743 6703 l 7784 6659 l 7825 6616 l 7864 6574 l 7901 6533 l 7938 6492 l 7973 6452 l 8007 6413 l 8039 6374 l 8070 6337 l 8100 6300 l 8142 6246 l 8182 6194 l 8219 6143 l 8253 6093 l 8285 6045 l 8315 5997 l 8342 5951 l 8367 5906 l 8390 5862 l 8410 5820 l 8429 5778 l 8445 5737 l 8459 5697 l 8472 5659 l 8482 5621 l 8490 5584 l 8497 5549 l 8502 5515 l 8505 5482 l 8506 5450 l 8506 5419 l 8504 5390 l 8501 5361 l 8496 5334 l 8490 5308 l 8483 5284 l 8475 5260 l 8466 5238 l 8456 5217 l 8446 5197 l 8435 5178 l 8423 5160 l 8411 5143 l 8398 5127 l 8386 5112 l 8373 5099 l 8360 5085 l 8347 5073 l 8335 5061 l 8322 5051 l 8310 5040 l 8298 5031 l 8286 5021 l 8275 5013 l 8263 5003 l 8251 4994 l 8239 4985 l 8228 4977 l 8217 4970 l 8206 4964 l 8194 4958 l 8183 4954 l 8171 4950 l 8158 4948 l 8145 4947 l 8131 4947 l 8117 4949 l 8101 4952 l 8084 4957 l 8066 4963 l 8047 4971 l 8027 4981 l 8005 4993 l 7981 5006 l 7956 5022 l 7930 5039 l 7901 5058 l 7871 5080 l 7839 5103 l 7805 5128 l 7770 5155 l 7732 5184 l 7693 5215 l 7651 5248 l 7608 5283 l 7562 5320 l 7514 5360 l 7464 5401 l 7411 5444 l 7356 5489 l 7298 5537 l 7238 5588 l 7201 5618 l 7163 5649 l 7125 5681 l 7085 5713 l 7044 5747 l 7002 5782 l 6959 5818 l 6915 5854 l 6870 5892 l 6824 5930 l 6777 5970 l 6728 6010 l 6679 6051 l 6628 6094 l 6577 6137 l 6525 6181 l 6471 6226 l 6417 6272 l 6362 6318 l 6306 6366 l 6250 6414 l 6193 6463 l 6135 6512 l 6076 6562 l 6017 6613 l 5958 6665 l 5898 6716 l 5838 6769 l 5778 6821 l 5717 6874 l 5656 6928 l 5596 6981 l 5535 7035 l 5474 7089 l 5414 7143 l 5354 7197 l 5294 7251 l 5235 7304 l 5176 7358 l 5118 7411 l 5060 7464 l 5003 7517 l 4947 7569 l 4892 7621 l 4837 7673 l 4783 7724 l 4731 7774 l 4679 7824 l 4628 7873 l 4579 7922 l 4530 7970 l 4483 8017 l 4436 8064 l 4392 8110 l 4348 8155 l 4305 8199 l 4264 8242 l 4224 8285 l 4185 8327 l 4148 8368 l 4112 8409 l 4077 8449 l 4043 8487 l 4011 8526 l 3980 8563 l cp gs col29 1.00 shd ef gr gs col0 s gr % here ends figure; % % here starts figure with depth 50 /Times-Roman-iso ff 405.00 scf sf 7994 4301 m gs 1 -1 sc (busy periods) col0 sh gr /Times-Roman-iso ff 405.00 scf sf 7994 3311 m gs 1 -1 sc (2 possible states) col0 sh gr /Times-Roman-iso ff 405.00 scf sf 7994 3806 m gs 1 -1 sc (for end of H-M) col0 sh gr /Times-Roman-iso ff 405.00 scf sf 11494 3295 m gs 1 -1 sc (3 possible states) col0 sh gr /Times-Roman-iso ff 405.00 scf sf 11494 3790 m gs 1 -1 sc (for start of H-M) col0 sh gr /Times-Roman-iso ff 405.00 scf sf 11494 4285 m gs 1 -1 sc (busy periods) col0 sh gr % Ellipse 15.000 slw n 13489 10866 48 48 0 360 DrawEllipse gs col0 s gr % Ellipse n 13775 10866 48 48 0 360 DrawEllipse gs col0 s gr % Ellipse n 14061 10866 48 48 0 360 DrawEllipse gs col0 s gr % Ellipse n 13489 8650 48 48 0 360 DrawEllipse gs col0 s gr % Ellipse n 13775 8650 48 48 0 360 DrawEllipse gs col0 s gr % Ellipse n 14061 8650 48 48 0 360 DrawEllipse gs col0 s gr % Ellipse n 13496 6525 48 48 0 360 DrawEllipse gs col0 s gr % Ellipse n 13782 6525 48 48 0 360 DrawEllipse gs col0 s gr % Ellipse n 14068 6525 48 48 0 360 DrawEllipse gs col0 s gr /Times-Roman-iso ff 345.00 scf sf 4246 10875 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 4135 11018 m gs 1 -1 sc (2 H,0M) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 6871 10890 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 6760 11033 m gs 1 -1 sc (2 H,1M) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 9605 10875 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 9494 11018 m gs 1 -1 sc (2 H,2M) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 12230 10875 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 12119 11018 m gs 1 -1 sc (2 H,3M) col0 sh gr % Ellipse n 12629 10909 554 276 0 360 DrawEllipse gs col0 s gr % Ellipse n 7283 8682 554 276 0 360 DrawEllipse gs col0 s gr % Ellipse n 12629 8694 554 276 0 360 DrawEllipse gs col0 s gr % Ellipse n 7291 6557 554 276 0 360 DrawEllipse gs col0 s gr % Ellipse n 9993 6553 554 276 0 360 DrawEllipse gs col0 s gr % Ellipse n 12637 6568 554 276 0 360 DrawEllipse gs col0 s gr % Ellipse n 4650 6557 554 276 0 360 DrawEllipse gs col0 s gr % Ellipse n 9986 8678 554 276 0 360 DrawEllipse gs col0 s gr % Ellipse n 4642 10898 554 276 0 360 DrawEllipse gs col0 s gr % Ellipse n 9986 10894 554 276 0 360 DrawEllipse gs col0 s gr % Ellipse n 7287 10897 554 276 0 360 DrawEllipse gs col0 s gr % Ellipse n 4642 8682 554 276 0 360 DrawEllipse gs col0 s gr % Polyline 2 slj gs clippath 8298 5054 m 8389 5133 l 8578 4917 l 8375 5059 l 8487 4838 l cp eoclip n 8879 4483 m 8354 5083 l gs col0 s gr gr % arrowhead 0 slj n 8487 4838 m 8375 5059 l 8578 4917 l 8487 4838 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 11123 5029 m 11218 5102 l 11394 4875 l 11200 5028 l 11299 4801 l cp eoclip n 11705 4379 m 11180 5054 l gs col0 s gr gr % arrowhead 0 slj n 11299 4801 m 11200 5028 l 11394 4875 l 11299 4801 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj gs clippath 4701 8397 m 4844 8448 l 4962 8115 l 4789 8378 l 4818 8064 l cp eoclip n 4765 6836 m 4765 6837 l 4766 6840 l 4768 6844 l 4770 6852 l 4774 6862 l 4778 6875 l 4784 6891 l 4790 6911 l 4797 6933 l 4805 6958 l 4814 6985 l 4822 7014 l 4831 7044 l 4840 7076 l 4849 7110 l 4858 7145 l 4866 7181 l 4874 7218 l 4882 7257 l 4889 7298 l 4896 7341 l 4902 7387 l 4907 7435 l 4912 7485 l 4915 7538 l 4918 7593 l 4919 7649 l 4919 7709 l 4917 7767 l 4914 7822 l 4909 7874 l 4904 7923 l 4898 7968 l 4891 8011 l 4884 8051 l 4876 8089 l 4868 8125 l 4859 8160 l 4850 8193 l 4841 8224 l 4832 8254 l 4823 8281 l 4815 8307 l 4807 8330 l 4800 8350 l 4794 8367 l 4788 8381 l 4784 8392 l 4778 8409 l gs col0 s gr gr % arrowhead 0 slj n 4818 8064 m 4789 8378 l 4962 8115 l col0 s % Polyline 2 slj gs clippath 4643 6840 m 4516 6756 l 4321 7050 l 4554 6839 l 4448 7135 l cp eoclip n 4507 8383 m 4507 8382 l 4505 8379 l 4503 8374 l 4500 8366 l 4496 8355 l 4491 8341 l 4484 8323 l 4476 8302 l 4468 8278 l 4458 8251 l 4448 8222 l 4438 8191 l 4427 8158 l 4417 8124 l 4407 8089 l 4397 8052 l 4387 8014 l 4378 7974 l 4370 7933 l 4362 7890 l 4355 7846 l 4349 7799 l 4344 7750 l 4340 7698 l 4338 7645 l 4338 7589 l 4339 7533 l 4343 7473 l 4348 7416 l 4356 7362 l 4364 7311 l 4374 7264 l 4385 7220 l 4396 7179 l 4408 7141 l 4421 7105 l 4435 7071 l 4448 7039 l 4462 7008 l 4476 6979 l 4490 6952 l 4504 6927 l 4516 6904 l 4528 6883 l 4539 6864 l 4549 6849 l 4556 6836 l 4562 6826 l 4572 6811 l gs col0 s gr gr % arrowhead 0 slj n 4448 7135 m 4554 6839 l 4321 7050 l col0 s % Polyline 2 slj gs clippath 4740 10574 m 4883 10625 l 5001 10292 l 4828 10555 l 4857 10241 l cp eoclip n 4805 9014 m 4805 9015 l 4806 9018 l 4808 9022 l 4810 9030 l 4814 9040 l 4818 9053 l 4824 9069 l 4830 9089 l 4837 9111 l 4845 9135 l 4853 9162 l 4862 9191 l 4871 9222 l 4880 9254 l 4888 9287 l 4897 9322 l 4905 9358 l 4913 9396 l 4921 9435 l 4928 9476 l 4935 9519 l 4941 9564 l 4946 9612 l 4951 9662 l 4954 9715 l 4957 9770 l 4958 9826 l 4958 9886 l 4956 9944 l 4952 9999 l 4948 10051 l 4943 10100 l 4937 10145 l 4930 10188 l 4923 10228 l 4915 10266 l 4906 10302 l 4898 10337 l 4889 10370 l 4880 10401 l 4871 10430 l 4862 10458 l 4854 10484 l 4846 10507 l 4839 10527 l 4833 10544 l 4827 10558 l 4823 10569 l 4817 10586 l gs col0 s gr gr % arrowhead 0 slj n 4857 10241 m 4828 10555 l 5001 10292 l col0 s % Polyline 2 slj gs clippath 7342 8397 m 7485 8448 l 7603 8115 l 7430 8378 l 7459 8064 l cp eoclip n 7407 6836 m 7407 6837 l 7408 6840 l 7410 6844 l 7412 6852 l 7416 6862 l 7420 6875 l 7426 6891 l 7432 6911 l 7439 6933 l 7447 6958 l 7455 6985 l 7464 7014 l 7473 7044 l 7482 7076 l 7490 7110 l 7499 7145 l 7507 7181 l 7515 7218 l 7523 7257 l 7530 7298 l 7537 7341 l 7543 7387 l 7548 7435 l 7553 7485 l 7556 7538 l 7559 7593 l 7560 7649 l 7560 7709 l 7558 7767 l 7554 7822 l 7550 7874 l 7545 7923 l 7539 7968 l 7532 8011 l 7525 8051 l 7517 8089 l 7508 8125 l 7500 8160 l 7491 8193 l 7482 8224 l 7473 8254 l 7464 8281 l 7456 8307 l 7448 8330 l 7441 8350 l 7435 8367 l 7429 8381 l 7425 8392 l 7419 8409 l gs col0 s gr gr % arrowhead 0 slj n 7459 8064 m 7430 8378 l 7603 8115 l col0 s % Polyline 2 slj gs clippath 10022 8422 m 10165 8473 l 10283 8140 l 10110 8403 l 10139 8089 l cp eoclip n 10086 6862 m 10086 6863 l 10087 6866 l 10089 6870 l 10091 6878 l 10095 6888 l 10099 6901 l 10105 6917 l 10111 6937 l 10118 6959 l 10126 6983 l 10135 7010 l 10143 7039 l 10152 7070 l 10161 7102 l 10170 7135 l 10179 7170 l 10187 7206 l 10195 7244 l 10203 7283 l 10210 7324 l 10217 7367 l 10223 7412 l 10228 7460 l 10233 7510 l 10236 7563 l 10239 7618 l 10240 7674 l 10240 7734 l 10238 7792 l 10235 7847 l 10230 7899 l 10225 7948 l 10219 7993 l 10212 8036 l 10205 8076 l 10197 8114 l 10189 8150 l 10180 8185 l 10171 8218 l 10162 8249 l 10153 8278 l 10144 8306 l 10136 8332 l 10128 8355 l 10121 8375 l 10115 8392 l 10109 8406 l 10105 8417 l 10099 8434 l gs col0 s gr gr % arrowhead 0 slj n 10139 8089 m 10110 8403 l 10283 8140 l col0 s % Polyline 2 slj gs clippath 12676 8422 m 12819 8473 l 12937 8140 l 12764 8403 l 12793 8089 l cp eoclip n 12740 6862 m 12740 6863 l 12741 6866 l 12743 6870 l 12745 6878 l 12749 6888 l 12753 6901 l 12759 6917 l 12765 6937 l 12772 6959 l 12780 6983 l 12789 7010 l 12797 7039 l 12806 7070 l 12815 7102 l 12824 7135 l 12833 7170 l 12841 7206 l 12849 7244 l 12857 7283 l 12864 7324 l 12871 7367 l 12877 7412 l 12882 7460 l 12887 7510 l 12890 7563 l 12893 7618 l 12894 7674 l 12894 7734 l 12892 7792 l 12889 7847 l 12884 7899 l 12879 7948 l 12873 7993 l 12866 8036 l 12859 8076 l 12851 8114 l 12843 8150 l 12834 8185 l 12825 8218 l 12816 8249 l 12807 8278 l 12798 8306 l 12790 8332 l 12782 8355 l 12775 8375 l 12769 8392 l 12763 8406 l 12759 8417 l 12753 8434 l gs col0 s gr gr % arrowhead 0 slj n 12793 8089 m 12764 8403 l 12937 8140 l col0 s % Polyline 2 slj gs clippath 7282 6850 m 7155 6766 l 6960 7060 l 7193 6849 l 7087 7145 l cp eoclip n 7146 8394 m 7146 8393 l 7144 8390 l 7142 8385 l 7139 8377 l 7135 8366 l 7130 8352 l 7123 8334 l 7115 8313 l 7107 8289 l 7097 8262 l 7087 8233 l 7077 8202 l 7066 8169 l 7056 8135 l 7046 8099 l 7036 8062 l 7026 8024 l 7017 7984 l 7009 7943 l 7001 7901 l 6994 7856 l 6988 7809 l 6983 7760 l 6979 7708 l 6977 7655 l 6977 7599 l 6978 7543 l 6982 7483 l 6987 7426 l 6995 7371 l 7003 7321 l 7013 7274 l 7024 7230 l 7035 7189 l 7047 7151 l 7060 7115 l 7074 7081 l 7087 7049 l 7101 7018 l 7115 6989 l 7129 6962 l 7143 6937 l 7155 6914 l 7167 6893 l 7178 6874 l 7188 6859 l 7195 6846 l 7201 6836 l 7211 6821 l gs col0 s gr gr % arrowhead 0 slj n 7087 7145 m 7193 6849 l 6960 7060 l col0 s % Polyline 2 slj gs clippath 9961 6888 m 9834 6804 l 9639 7098 l 9872 6887 l 9766 7183 l cp eoclip n 9825 8432 m 9825 8431 l 9823 8428 l 9821 8423 l 9818 8415 l 9814 8404 l 9809 8390 l 9802 8372 l 9794 8351 l 9786 8327 l 9776 8300 l 9767 8271 l 9756 8240 l 9746 8207 l 9735 8173 l 9725 8137 l 9715 8100 l 9706 8062 l 9697 8022 l 9688 7981 l 9681 7939 l 9674 7894 l 9668 7847 l 9663 7798 l 9659 7746 l 9657 7693 l 9657 7637 l 9658 7581 l 9662 7521 l 9667 7464 l 9674 7409 l 9683 7359 l 9693 7312 l 9704 7268 l 9715 7227 l 9727 7189 l 9740 7153 l 9753 7119 l 9767 7087 l 9781 7056 l 9795 7027 l 9808 7000 l 9822 6975 l 9835 6952 l 9847 6931 l 9857 6912 l 9867 6897 l 9874 6884 l 9880 6874 l 9890 6859 l gs col0 s gr gr % arrowhead 0 slj n 9766 7183 m 9872 6887 l 9639 7098 l col0 s % Polyline 2 slj gs clippath 12615 6914 m 12488 6830 l 12293 7124 l 12526 6913 l 12420 7209 l cp eoclip n 12479 8457 m 12479 8456 l 12477 8453 l 12475 8448 l 12472 8440 l 12468 8429 l 12463 8415 l 12456 8397 l 12448 8376 l 12440 8352 l 12430 8325 l 12421 8296 l 12410 8265 l 12400 8232 l 12389 8198 l 12379 8163 l 12369 8126 l 12360 8088 l 12351 8048 l 12342 8007 l 12335 7964 l 12328 7920 l 12322 7873 l 12317 7824 l 12313 7772 l 12311 7719 l 12311 7663 l 12312 7607 l 12316 7547 l 12321 7490 l 12328 7436 l 12337 7385 l 12347 7338 l 12358 7294 l 12369 7253 l 12381 7215 l 12394 7179 l 12407 7145 l 12421 7113 l 12435 7082 l 12449 7053 l 12462 7026 l 12476 7001 l 12489 6978 l 12501 6957 l 12511 6938 l 12521 6923 l 12528 6910 l 12534 6900 l 12544 6885 l gs col0 s gr gr % arrowhead 0 slj n 12420 7209 m 12526 6913 l 12293 7124 l col0 s % Polyline 2 slj gs clippath 7342 10600 m 7485 10651 l 7603 10318 l 7430 10581 l 7459 10267 l cp eoclip n 7407 9039 m 7407 9040 l 7408 9043 l 7410 9047 l 7412 9055 l 7416 9065 l 7420 9078 l 7426 9094 l 7432 9114 l 7439 9136 l 7447 9161 l 7455 9188 l 7464 9217 l 7473 9247 l 7482 9279 l 7490 9313 l 7499 9348 l 7507 9384 l 7515 9421 l 7523 9460 l 7530 9501 l 7537 9544 l 7543 9590 l 7548 9638 l 7553 9688 l 7556 9741 l 7559 9796 l 7560 9852 l 7560 9912 l 7558 9970 l 7554 10025 l 7550 10077 l 7545 10126 l 7539 10171 l 7532 10214 l 7525 10254 l 7517 10292 l 7508 10328 l 7500 10363 l 7491 10396 l 7482 10427 l 7473 10457 l 7464 10484 l 7456 10510 l 7448 10533 l 7441 10553 l 7435 10570 l 7429 10584 l 7425 10595 l 7419 10612 l gs col0 s gr gr % arrowhead 0 slj n 7459 10267 m 7430 10581 l 7603 10318 l col0 s % Polyline 2 slj gs clippath 10099 10574 m 10242 10625 l 10360 10292 l 10187 10555 l 10216 10241 l cp eoclip n 10163 9014 m 10163 9015 l 10164 9018 l 10166 9022 l 10168 9030 l 10172 9040 l 10176 9053 l 10182 9069 l 10188 9089 l 10195 9111 l 10203 9135 l 10212 9162 l 10220 9191 l 10229 9222 l 10238 9254 l 10247 9287 l 10256 9322 l 10264 9358 l 10272 9396 l 10280 9435 l 10287 9476 l 10294 9519 l 10300 9564 l 10305 9612 l 10310 9662 l 10313 9715 l 10316 9770 l 10317 9826 l 10317 9886 l 10315 9944 l 10312 9999 l 10307 10051 l 10302 10100 l 10296 10145 l 10289 10188 l 10282 10228 l 10274 10266 l 10266 10302 l 10257 10337 l 10248 10370 l 10239 10401 l 10230 10430 l 10221 10458 l 10213 10484 l 10205 10507 l 10198 10527 l 10192 10544 l 10186 10558 l 10182 10569 l 10176 10586 l gs col0 s gr gr % arrowhead 0 slj n 10216 10241 m 10187 10555 l 10360 10292 l col0 s % Polyline 2 slj gs clippath 12727 10574 m 12870 10625 l 12988 10292 l 12815 10555 l 12844 10241 l cp eoclip n 12791 9014 m 12791 9015 l 12792 9018 l 12794 9022 l 12796 9030 l 12800 9040 l 12804 9053 l 12810 9069 l 12816 9089 l 12823 9111 l 12831 9135 l 12840 9162 l 12848 9191 l 12857 9222 l 12866 9254 l 12875 9287 l 12884 9322 l 12892 9358 l 12900 9396 l 12908 9435 l 12915 9476 l 12922 9519 l 12928 9564 l 12933 9612 l 12938 9662 l 12941 9715 l 12944 9770 l 12945 9826 l 12945 9886 l 12943 9944 l 12940 9999 l 12935 10051 l 12930 10100 l 12924 10145 l 12917 10188 l 12910 10228 l 12902 10266 l 12894 10302 l 12885 10337 l 12876 10370 l 12867 10401 l 12858 10430 l 12849 10458 l 12841 10484 l 12833 10507 l 12826 10527 l 12820 10544 l 12814 10558 l 12810 10569 l 12804 10586 l gs col0 s gr gr % arrowhead 0 slj n 12844 10241 m 12815 10555 l 12988 10292 l col0 s % Polyline 2 slj 75.000 slw gs clippath 4694 9058 m 4437 8893 l 4202 9260 l 4516 9054 l 4458 9425 l cp eoclip n 4520 10599 m 4519 10598 l 4518 10595 l 4516 10590 l 4512 10583 l 4506 10572 l 4500 10559 l 4491 10542 l 4482 10522 l 4471 10499 l 4459 10473 l 4447 10445 l 4434 10415 l 4421 10383 l 4407 10350 l 4394 10316 l 4382 10280 l 4369 10242 l 4358 10204 l 4347 10163 l 4337 10121 l 4327 10077 l 4319 10030 l 4312 9981 l 4307 9929 l 4303 9875 l 4301 9818 l 4301 9761 l 4304 9704 l 4308 9649 l 4315 9596 l 4323 9546 l 4332 9499 l 4342 9455 l 4353 9413 l 4365 9374 l 4378 9337 l 4392 9302 l 4406 9268 l 4420 9236 l 4434 9205 l 4449 9176 l 4464 9148 l 4478 9122 l 4492 9097 l 4505 9075 l 4516 9055 l 4527 9038 l 4536 9024 l 4543 9012 l 4549 9003 l 4558 8989 l gs col0 s gr gr % arrowhead 0 slj 60.000 slw n 4458 9425 m 4516 9054 l 4202 9260 l 4458 9425 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj 75.000 slw gs clippath 7309 9058 m 7052 8893 l 6817 9260 l 7131 9054 l 7073 9425 l cp eoclip n 7135 10599 m 7134 10598 l 7133 10595 l 7131 10590 l 7127 10583 l 7121 10572 l 7115 10559 l 7106 10542 l 7097 10522 l 7086 10499 l 7074 10473 l 7062 10445 l 7049 10415 l 7036 10383 l 7022 10350 l 7009 10316 l 6997 10280 l 6984 10242 l 6973 10204 l 6962 10163 l 6952 10121 l 6942 10077 l 6934 10030 l 6927 9981 l 6922 9929 l 6918 9875 l 6916 9818 l 6916 9761 l 6919 9704 l 6923 9649 l 6930 9596 l 6938 9546 l 6947 9499 l 6957 9455 l 6968 9413 l 6980 9374 l 6993 9337 l 7007 9302 l 7021 9268 l 7035 9236 l 7049 9205 l 7064 9176 l 7079 9148 l 7093 9122 l 7107 9097 l 7120 9075 l 7131 9055 l 7142 9038 l 7151 9024 l 7158 9012 l 7164 9003 l 7173 8989 l gs col0 s gr gr % arrowhead 0 slj 60.000 slw n 7073 9425 m 7131 9054 l 6817 9260 l 7073 9425 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj 75.000 slw gs clippath 10040 9070 m 9783 8905 l 9548 9272 l 9862 9066 l 9804 9437 l cp eoclip n 9866 10612 m 9865 10611 l 9864 10608 l 9862 10603 l 9858 10596 l 9852 10585 l 9846 10572 l 9837 10555 l 9828 10535 l 9817 10512 l 9805 10486 l 9793 10458 l 9780 10428 l 9767 10396 l 9753 10363 l 9740 10329 l 9728 10293 l 9715 10255 l 9704 10217 l 9693 10176 l 9683 10134 l 9673 10090 l 9665 10043 l 9658 9994 l 9653 9942 l 9649 9888 l 9647 9831 l 9647 9774 l 9650 9717 l 9654 9661 l 9661 9609 l 9669 9559 l 9678 9512 l 9688 9467 l 9699 9426 l 9711 9387 l 9724 9350 l 9738 9314 l 9752 9281 l 9766 9248 l 9780 9218 l 9795 9188 l 9810 9160 l 9824 9134 l 9838 9110 l 9851 9087 l 9862 9068 l 9873 9050 l 9882 9036 l 9889 9024 l 9895 9015 l 9904 9001 l gs col0 s gr gr % arrowhead 0 slj 60.000 slw n 9804 9437 m 9862 9066 l 9548 9272 l 9804 9437 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj 75.000 slw gs clippath 12668 9110 m 12411 8945 l 12176 9312 l 12490 9106 l 12432 9477 l cp eoclip n 12493 10651 m 12492 10650 l 12491 10647 l 12489 10642 l 12485 10635 l 12480 10624 l 12473 10611 l 12465 10594 l 12455 10574 l 12444 10551 l 12432 10525 l 12420 10497 l 12407 10467 l 12394 10436 l 12381 10403 l 12368 10368 l 12355 10332 l 12343 10295 l 12331 10256 l 12320 10216 l 12310 10174 l 12301 10130 l 12293 10083 l 12286 10034 l 12281 9982 l 12277 9928 l 12275 9871 l 12275 9814 l 12278 9757 l 12282 9702 l 12289 9649 l 12297 9599 l 12306 9552 l 12316 9508 l 12327 9466 l 12340 9427 l 12352 9390 l 12366 9354 l 12380 9321 l 12394 9288 l 12409 9258 l 12423 9228 l 12438 9200 l 12452 9174 l 12466 9150 l 12479 9127 l 12490 9108 l 12501 9090 l 12510 9076 l 12517 9064 l 12523 9055 l 12532 9041 l gs col0 s gr gr % arrowhead 0 slj 60.000 slw n 12432 9477 m 12490 9106 l 12176 9312 l 12432 9477 l cp gs 0.00 setgray ef gr col0 s % Polyline 2 slj 15.000 slw gs clippath 6727 10887 m 6806 10756 l 6503 10574 l 6726 10797 l 6425 10705 l cp eoclip n 5119 10749 m 5120 10748 l 5123 10747 l 5127 10745 l 5134 10741 l 5145 10736 l 5158 10729 l 5174 10721 l 5193 10712 l 5215 10701 l 5240 10690 l 5267 10678 l 5296 10665 l 5327 10653 l 5359 10640 l 5392 10628 l 5427 10615 l 5464 10604 l 5502 10593 l 5542 10582 l 5583 10573 l 5627 10564 l 5673 10557 l 5723 10551 l 5774 10546 l 5829 10543 l 5886 10542 l 5944 10543 l 6002 10546 l 6059 10552 l 6113 10559 l 6164 10568 l 6213 10578 l 6259 10589 l 6302 10601 l 6343 10614 l 6382 10628 l 6419 10642 l 6455 10656 l 6489 10671 l 6522 10686 l 6553 10702 l 6583 10717 l 6611 10731 l 6637 10746 l 6661 10759 l 6682 10771 l 6701 10782 l 6717 10791 l 6729 10799 l 6739 10805 l 6754 10814 l gs col0 s gr gr % arrowhead 0 slj n 6425 10705 m 6726 10797 l 6503 10574 l col0 s % Polyline 2 slj gs clippath 9394 10887 m 9473 10756 l 9170 10574 l 9393 10797 l 9092 10705 l cp eoclip n 7785 10749 m 7786 10748 l 7789 10747 l 7793 10745 l 7800 10741 l 7811 10736 l 7824 10729 l 7840 10721 l 7859 10712 l 7881 10701 l 7906 10690 l 7933 10678 l 7962 10665 l 7993 10653 l 8025 10640 l 8058 10628 l 8093 10615 l 8130 10604 l 8168 10593 l 8207 10582 l 8249 10573 l 8293 10564 l 8339 10557 l 8388 10551 l 8440 10546 l 8495 10543 l 8552 10542 l 8610 10543 l 8668 10546 l 8725 10552 l 8779 10559 l 8831 10568 l 8879 10578 l 8925 10589 l 8968 10601 l 9009 10614 l 9048 10628 l 9086 10642 l 9121 10656 l 9155 10671 l 9188 10686 l 9220 10702 l 9249 10717 l 9278 10731 l 9304 10746 l 9328 10759 l 9349 10771 l 9368 10782 l 9384 10791 l 9396 10799 l 9406 10805 l 9421 10814 l gs col0 s gr gr % arrowhead 0 slj n 9092 10705 m 9393 10797 l 9170 10574 l col0 s % Polyline 2 slj gs clippath 12074 10900 m 12153 10769 l 11850 10587 l 12073 10810 l 11772 10718 l cp eoclip n 10465 10762 m 10466 10761 l 10469 10760 l 10473 10758 l 10480 10754 l 10491 10749 l 10504 10742 l 10520 10734 l 10539 10725 l 10561 10714 l 10586 10703 l 10613 10691 l 10642 10678 l 10673 10666 l 10705 10653 l 10738 10641 l 10773 10628 l 10810 10617 l 10848 10606 l 10887 10595 l 10929 10586 l 10973 10577 l 11019 10570 l 11068 10564 l 11120 10559 l 11175 10556 l 11232 10555 l 11290 10556 l 11348 10559 l 11405 10565 l 11459 10572 l 11511 10581 l 11559 10591 l 11605 10602 l 11648 10614 l 11689 10627 l 11728 10641 l 11766 10655 l 11801 10669 l 11835 10684 l 11868 10699 l 11900 10715 l 11929 10730 l 11958 10744 l 11984 10759 l 12008 10772 l 12029 10784 l 12048 10795 l 12064 10804 l 12076 10812 l 12086 10818 l 12101 10827 l gs col0 s gr gr % arrowhead 0 slj n 11772 10718 m 12073 10810 l 11850 10587 l col0 s % Polyline 2 slj gs clippath 6727 8671 m 6806 8540 l 6503 8358 l 6726 8581 l 6425 8489 l cp eoclip n 5119 8533 m 5120 8532 l 5123 8531 l 5127 8529 l 5134 8525 l 5145 8520 l 5158 8513 l 5174 8505 l 5193 8496 l 5215 8486 l 5240 8474 l 5267 8462 l 5296 8450 l 5327 8437 l 5359 8425 l 5392 8412 l 5427 8400 l 5464 8388 l 5502 8377 l 5542 8367 l 5583 8358 l 5627 8349 l 5673 8342 l 5723 8336 l 5774 8331 l 5829 8328 l 5886 8327 l 5944 8328 l 6002 8331 l 6059 8337 l 6113 8344 l 6164 8353 l 6213 8363 l 6259 8374 l 6302 8386 l 6343 8399 l 6382 8412 l 6419 8426 l 6455 8441 l 6489 8456 l 6522 8471 l 6553 8486 l 6583 8501 l 6611 8516 l 6637 8530 l 6661 8543 l 6682 8555 l 6701 8566 l 6717 8575 l 6729 8583 l 6739 8589 l 6754 8598 l gs col0 s gr gr % arrowhead 0 slj n 6425 8489 m 6726 8581 l 6503 8358 l col0 s % Polyline 2 slj gs clippath 5217 8696 m 5124 8817 l 5404 9032 l 5209 8786 l 5497 8911 l cp eoclip n 6729 8752 m 6728 8753 l 6725 8754 l 6721 8757 l 6714 8762 l 6704 8769 l 6691 8777 l 6675 8787 l 6656 8799 l 6634 8812 l 6610 8827 l 6583 8842 l 6555 8859 l 6525 8875 l 6493 8891 l 6460 8908 l 6426 8924 l 6391 8939 l 6354 8954 l 6316 8968 l 6275 8982 l 6233 8994 l 6189 9005 l 6142 9015 l 6092 9023 l 6040 9030 l 5986 9034 l 5931 9036 l 5876 9035 l 5823 9032 l 5772 9026 l 5724 9019 l 5679 9010 l 5636 8999 l 5596 8988 l 5558 8975 l 5522 8962 l 5488 8948 l 5455 8933 l 5424 8917 l 5394 8901 l 5365 8885 l 5338 8870 l 5313 8854 l 5289 8839 l 5267 8825 l 5248 8812 l 5231 8800 l 5217 8790 l 5205 8782 l 5196 8776 l 5183 8766 l gs col0 s gr gr % arrowhead 0 slj n 5497 8911 m 5209 8786 l 5404 9032 l col0 s % Polyline 2 slj gs clippath 9394 8671 m 9473 8540 l 9170 8358 l 9393 8581 l 9092 8489 l cp eoclip n 7785 8533 m 7786 8532 l 7789 8531 l 7793 8529 l 7800 8525 l 7811 8520 l 7824 8513 l 7840 8505 l 7859 8496 l 7881 8486 l 7906 8474 l 7933 8462 l 7962 8450 l 7993 8437 l 8025 8425 l 8058 8412 l 8093 8400 l 8130 8388 l 8168 8377 l 8207 8367 l 8249 8358 l 8293 8349 l 8339 8342 l 8388 8336 l 8440 8331 l 8495 8328 l 8552 8327 l 8610 8328 l 8668 8331 l 8725 8337 l 8779 8344 l 8831 8353 l 8879 8363 l 8925 8374 l 8968 8386 l 9009 8399 l 9048 8412 l 9086 8426 l 9121 8441 l 9155 8456 l 9188 8471 l 9220 8486 l 9249 8501 l 9278 8516 l 9304 8530 l 9328 8543 l 9349 8555 l 9368 8566 l 9384 8575 l 9396 8583 l 9406 8589 l 9421 8598 l gs col0 s gr gr % arrowhead 0 slj n 9092 8489 m 9393 8581 l 9170 8358 l col0 s % Polyline 2 slj gs clippath 12074 8684 m 12153 8553 l 11850 8371 l 12073 8594 l 11772 8502 l cp eoclip n 10465 8546 m 10466 8545 l 10469 8544 l 10473 8542 l 10480 8538 l 10491 8533 l 10504 8526 l 10520 8518 l 10539 8509 l 10561 8498 l 10586 8487 l 10613 8475 l 10642 8462 l 10673 8450 l 10705 8437 l 10738 8425 l 10773 8412 l 10810 8401 l 10848 8390 l 10887 8379 l 10929 8370 l 10973 8361 l 11019 8354 l 11068 8348 l 11120 8343 l 11175 8340 l 11232 8339 l 11290 8340 l 11348 8343 l 11405 8349 l 11459 8356 l 11511 8365 l 11559 8375 l 11605 8386 l 11648 8398 l 11689 8411 l 11728 8425 l 11766 8439 l 11801 8453 l 11835 8468 l 11868 8483 l 11900 8499 l 11929 8514 l 11958 8528 l 11984 8543 l 12008 8556 l 12029 8568 l 12048 8579 l 12064 8588 l 12076 8596 l 12086 8602 l 12101 8611 l gs col0 s gr gr % arrowhead 0 slj n 11772 8502 m 12073 8594 l 11850 8371 l col0 s % Polyline 2 slj gs clippath 7910 8696 m 7817 8817 l 8097 9032 l 7902 8786 l 8190 8911 l cp eoclip n 9421 8752 m 9420 8753 l 9417 8754 l 9413 8757 l 9406 8762 l 9396 8769 l 9383 8777 l 9367 8787 l 9348 8799 l 9326 8812 l 9302 8827 l 9275 8842 l 9247 8859 l 9217 8875 l 9185 8891 l 9152 8908 l 9118 8924 l 9083 8939 l 9046 8954 l 9008 8968 l 8967 8982 l 8925 8994 l 8881 9005 l 8834 9015 l 8784 9023 l 8732 9030 l 8678 9034 l 8623 9036 l 8568 9035 l 8515 9032 l 8464 9026 l 8416 9019 l 8371 9010 l 8328 8999 l 8288 8988 l 8250 8975 l 8214 8962 l 8180 8948 l 8148 8933 l 8116 8917 l 8086 8901 l 8058 8885 l 8031 8870 l 8005 8854 l 7982 8839 l 7960 8825 l 7941 8812 l 7924 8800 l 7910 8790 l 7898 8782 l 7889 8776 l 7876 8766 l gs col0 s gr gr % arrowhead 0 slj n 8190 8911 m 7902 8786 l 8097 9032 l col0 s % Polyline 2 slj gs clippath 10564 8671 m 10471 8792 l 10751 9007 l 10556 8761 l 10844 8886 l cp eoclip n 12075 8727 m 12074 8728 l 12071 8729 l 12067 8732 l 12060 8737 l 12050 8744 l 12037 8752 l 12021 8762 l 12002 8774 l 11980 8787 l 11956 8802 l 11929 8817 l 11901 8833 l 11871 8850 l 11839 8866 l 11806 8882 l 11772 8898 l 11737 8914 l 11700 8929 l 11662 8943 l 11621 8956 l 11579 8968 l 11535 8979 l 11488 8989 l 11438 8997 l 11386 9004 l 11332 9008 l 11277 9010 l 11222 9009 l 11169 9006 l 11118 9000 l 11070 8993 l 11025 8984 l 10982 8974 l 10942 8962 l 10904 8950 l 10868 8936 l 10834 8922 l 10802 8907 l 10770 8892 l 10740 8876 l 10712 8860 l 10685 8844 l 10659 8829 l 10636 8814 l 10614 8800 l 10595 8787 l 10578 8775 l 10564 8765 l 10552 8757 l 10543 8751 l 10530 8741 l gs col0 s gr gr % arrowhead 0 slj n 10844 8886 m 10556 8761 l 10751 9007 l col0 s % Polyline 2 slj gs clippath 6735 6546 m 6814 6415 l 6511 6233 l 6734 6456 l 6433 6364 l cp eoclip n 5126 6408 m 5127 6407 l 5130 6406 l 5134 6404 l 5141 6400 l 5152 6395 l 5165 6388 l 5181 6380 l 5200 6371 l 5222 6360 l 5247 6349 l 5274 6337 l 5303 6324 l 5334 6312 l 5366 6299 l 5399 6287 l 5434 6274 l 5471 6263 l 5509 6252 l 5548 6241 l 5590 6232 l 5634 6223 l 5680 6216 l 5729 6210 l 5781 6205 l 5836 6202 l 5893 6201 l 5951 6202 l 6009 6205 l 6066 6211 l 6120 6218 l 6172 6227 l 6220 6237 l 6266 6248 l 6309 6260 l 6350 6273 l 6389 6287 l 6427 6301 l 6462 6315 l 6496 6330 l 6529 6345 l 6561 6361 l 6590 6376 l 6619 6390 l 6645 6405 l 6669 6418 l 6690 6430 l 6709 6441 l 6725 6450 l 6737 6458 l 6747 6464 l 6762 6473 l gs col0 s gr gr % arrowhead 0 slj n 6433 6364 m 6734 6456 l 6511 6233 l col0 s % Polyline 2 slj gs clippath 5225 6571 m 5132 6692 l 5412 6907 l 5217 6661 l 5505 6786 l cp eoclip n 6737 6627 m 6736 6628 l 6733 6629 l 6729 6632 l 6722 6637 l 6712 6644 l 6699 6652 l 6683 6662 l 6664 6674 l 6642 6687 l 6617 6702 l 6591 6717 l 6562 6733 l 6532 6750 l 6501 6766 l 6468 6782 l 6434 6798 l 6398 6814 l 6361 6829 l 6323 6843 l 6283 6856 l 6240 6868 l 6196 6879 l 6149 6889 l 6099 6897 l 6047 6904 l 5993 6908 l 5938 6910 l 5883 6909 l 5830 6906 l 5779 6900 l 5731 6893 l 5686 6884 l 5643 6874 l 5603 6862 l 5565 6850 l 5529 6836 l 5495 6822 l 5462 6807 l 5431 6792 l 5401 6776 l 5373 6760 l 5346 6744 l 5320 6729 l 5297 6714 l 5275 6700 l 5256 6687 l 5239 6675 l 5225 6665 l 5213 6657 l 5204 6651 l 5191 6641 l gs col0 s gr gr % arrowhead 0 slj n 5505 6786 m 5217 6661 l 5412 6907 l col0 s % Polyline 2 slj gs clippath 9402 6546 m 9481 6415 l 9178 6233 l 9401 6456 l 9100 6364 l cp eoclip n 7793 6408 m 7794 6407 l 7797 6406 l 7801 6404 l 7808 6400 l 7819 6395 l 7832 6388 l 7848 6380 l 7867 6371 l 7889 6360 l 7914 6349 l 7941 6337 l 7970 6324 l 8001 6312 l 8033 6299 l 8066 6287 l 8101 6274 l 8138 6263 l 8176 6252 l 8215 6241 l 8257 6232 l 8301 6223 l 8347 6216 l 8396 6210 l 8448 6205 l 8503 6202 l 8560 6201 l 8618 6202 l 8676 6205 l 8733 6211 l 8787 6218 l 8839 6227 l 8887 6237 l 8933 6248 l 8976 6260 l 9017 6273 l 9056 6287 l 9094 6301 l 9129 6315 l 9163 6330 l 9196 6345 l 9228 6361 l 9257 6376 l 9286 6390 l 9312 6405 l 9336 6418 l 9357 6430 l 9376 6441 l 9392 6450 l 9404 6458 l 9414 6464 l 9429 6473 l gs col0 s gr gr % arrowhead 0 slj n 9100 6364 m 9401 6456 l 9178 6233 l col0 s % Polyline 2 slj gs clippath 12081 6559 m 12160 6428 l 11857 6246 l 12080 6469 l 11779 6377 l cp eoclip n 10472 6421 m 10473 6420 l 10476 6419 l 10480 6417 l 10487 6413 l 10498 6408 l 10511 6401 l 10527 6393 l 10546 6384 l 10568 6373 l 10593 6362 l 10620 6350 l 10649 6337 l 10680 6325 l 10712 6312 l 10745 6300 l 10780 6287 l 10817 6276 l 10855 6265 l 10894 6254 l 10936 6245 l 10980 6236 l 11026 6229 l 11075 6223 l 11127 6218 l 11182 6215 l 11239 6214 l 11297 6215 l 11355 6218 l 11412 6224 l 11466 6231 l 11518 6240 l 11566 6250 l 11612 6261 l 11655 6273 l 11696 6286 l 11735 6300 l 11773 6314 l 11808 6328 l 11842 6343 l 11875 6358 l 11907 6374 l 11936 6389 l 11965 6403 l 11991 6418 l 12015 6431 l 12036 6443 l 12055 6454 l 12071 6463 l 12083 6471 l 12093 6477 l 12108 6486 l gs col0 s gr gr % arrowhead 0 slj n 11779 6377 m 12080 6469 l 11857 6246 l col0 s % Polyline 2 slj gs clippath 7917 6571 m 7824 6692 l 8104 6907 l 7909 6661 l 8197 6786 l cp eoclip n 9429 6627 m 9428 6628 l 9425 6629 l 9421 6632 l 9414 6637 l 9404 6644 l 9391 6652 l 9375 6662 l 9356 6674 l 9334 6687 l 9310 6702 l 9283 6717 l 9255 6733 l 9225 6750 l 9193 6766 l 9160 6782 l 9126 6798 l 9091 6814 l 9054 6829 l 9016 6843 l 8975 6856 l 8933 6868 l 8889 6879 l 8842 6889 l 8792 6897 l 8740 6904 l 8686 6908 l 8631 6910 l 8576 6909 l 8523 6906 l 8472 6900 l 8424 6893 l 8379 6884 l 8336 6874 l 8296 6862 l 8258 6850 l 8222 6836 l 8188 6822 l 8155 6807 l 8124 6792 l 8094 6776 l 8065 6760 l 8038 6744 l 8013 6729 l 7989 6714 l 7967 6700 l 7948 6687 l 7931 6675 l 7917 6665 l 7905 6657 l 7896 6651 l 7883 6641 l gs col0 s gr gr % arrowhead 0 slj n 8197 6786 m 7909 6661 l 8104 6907 l col0 s % Polyline 2 slj gs clippath 10571 6545 m 10478 6666 l 10758 6881 l 10563 6635 l 10851 6760 l cp eoclip n 12083 6601 m 12082 6602 l 12079 6603 l 12075 6606 l 12068 6611 l 12058 6618 l 12045 6626 l 12029 6636 l 12010 6648 l 11988 6661 l 11964 6676 l 11937 6691 l 11909 6708 l 11879 6724 l 11847 6740 l 11814 6757 l 11780 6773 l 11745 6788 l 11708 6803 l 11670 6817 l 11629 6831 l 11587 6843 l 11543 6854 l 11496 6864 l 11446 6872 l 11394 6879 l 11340 6883 l 11285 6885 l 11230 6884 l 11177 6881 l 11126 6875 l 11078 6868 l 11033 6859 l 10990 6848 l 10950 6837 l 10912 6824 l 10876 6811 l 10842 6797 l 10809 6782 l 10778 6766 l 10748 6750 l 10719 6734 l 10692 6719 l 10667 6703 l 10643 6688 l 10621 6674 l 10602 6661 l 10585 6649 l 10571 6639 l 10559 6631 l 10550 6625 l 10537 6615 l gs col0 s gr gr % arrowhead 0 slj n 10851 6760 m 10563 6635 l 10758 6881 l col0 s /Times-Roman-iso ff 345.00 scf sf 4238 6679 m gs 1 -1 sc (0H,0M) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 6854 6679 m gs 1 -1 sc (0H,1M) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 9584 6679 m gs 1 -1 sc (0H,2M) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 12238 6704 m gs 1 -1 sc (0H,3M) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 4230 8804 m gs 1 -1 sc (1H,0M) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 6846 8804 m gs 1 -1 sc (1H,1M) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 9576 8804 m gs 1 -1 sc (1H,2M) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 12230 8830 m gs 1 -1 sc (1H,3M) col0 sh gr % here ends figure; F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psEnd rs showpage %%EndDocument endTexFig 0 2243 a FB(Figure)28 b(3:)35 b Fs(\(Left\))27 b(P)-7 b(ortion)28 b(of)f(the)g(1D-in\002nite)i(c)o(hain)f(used)g(to)f (compute)h(mean)f(r)m(esponse)i(time)e(for)g(low-priority)i(jobs)0 2356 y(in)d(the)g(case)h(of)f(thr)m(ee)h(priority)h(classes)g(and)f (two)f(server)o(s,)i(and)f(all)f(e)n(xponential)k(service)d(times.)37 b(\(Right\))27 b(Chain)f(used)0 2469 y(to)d(compute)i(moments)f(of)g (the)f(dur)o(ations)j(of)e(the)g(six)f(b)n(usy)i(period)g(tr)o (ansitions.)0 2745 y FB(that)h(the)f(b)n(usy)h(period)h(started)g(by)e (tw)o(o)g(class)h(M)e(jobs)i(ends)g(lea)n(ving)h(one)e(class)h(H)e (job,)i(whereas)g Fv(p)3230 2759 y Fp(H)5 b(M)s(;M)3487 2745 y FB(denotes)27 b(the)0 2892 y(probability)j(that)e(the)g(b)n(usy) g(period)h(started)f(by)g(one)f(class)i(H)d(and)h(one)h(class)g(M)e (job,)i(ends)g(lea)n(ving)i(one)d(class)i(M)d(job)l(.)0 3039 y(The)d(remaining)i(probabilities)j(are)23 b(de\002ned)i (similarly)-6 b(.)141 3185 y(It)34 b(remains)h(to)f(deri)n(v)o(e)h(the) g(moments)g(of)f(the)g(duration)j(of)d(b)n(usy)h(periods,)j Fv(B)2721 3199 y Fn(1)2761 3185 y FB(,)e Fv(B)2889 3199 y Fn(2)2928 3185 y FB(,)g(...,)f Fv(B)3183 3199 y Fn(6)3222 3185 y FB(,)h(and)e(probabilities)0 3332 y Fv(p)46 3346 y Fn(2)p Fp(M)s(;M)251 3332 y FB(,)22 b Fv(p)342 3346 y Fn(2)p Fp(M)s(;H)535 3332 y FB(,)g Fv(p)626 3346 y Fp(H)5 b(M)s(;M)858 3332 y FB(,)23 b Fv(p)950 3346 y Fp(H)5 b(M)s(;H)1170 3332 y FB(,)23 b Fv(p)1262 3346 y Fn(2)p Fp(H)q(;M)1454 3332 y FB(,)g(and)h Fv(p)1700 3346 y Fn(2)p Fp(H)q(;H)1903 3332 y FB(in)g(Figure)g(3\(left\).)30 b(The)23 b(trick)h(to)f(deducing)j(these)e(quantities)0 3479 y(is)h(to)g(observ)o(e)i(that)e(the)g(six)h(b)n(usy)g(periods)h (correspond)h(to)d(passage)i(times)e(between)h(tw)o(o)f (\223diagonal\224)j(\(shaded\))g(le)n(v)o(els)0 3626 y(in)i(the)h(chain)g(sho)n(wn)g(in)f(Figure)h(3\(right\),)i(which)e(is) f(the)h(1D-in\002nite)g(chain)h(that)e(we)g(used)h(to)f(analyze)i(the)f (class)g(M)0 3773 y(performance.)55 b(W)-7 b(e)30 b(refer)i(to)f(the)h (right)g(shaded)h(diagonal)h(le)n(v)o(el)e(as)f(le)n(v)o(el)g Fv(`)g FB(and)h(the)f(left)h(shaded)h(diagonal)h(le)n(v)o(el)d(as)0 3919 y(le)n(v)o(el)f Fv(`)24 b Fo(\000)h Fu(1)k FB(\(where)h Fv(`)36 b Fu(=)g(3)p FB(\).)46 b(Note)30 b(that)g(the)g(3)f(states)h (in)g(le)n(v)o(el)g Fv(`)e FB(correspond)33 b(to)c(the)h(three)g (possible)i(\223start\224)f(states)0 4066 y(for)c(b)n(usy)h(periods,)g (and)g(the)e(tw)o(o)h(states)g(in)g(le)n(v)o(el)g Fv(`)22 b Fo(\000)g Fu(1)27 b FB(correspond)i(to)e(the)g(tw)o(o)f(possible)j (\223end\224)f(states)f(for)g(the)g(b)n(usy)0 4213 y(periods.)j(Thus,) 23 b(for)f(e)o(xample,)h(b)n(usy)h(period)g Fv(B)1538 4227 y Fn(1)1599 4213 y FB(in)e(Figure)h(3\(left\))h(corresponds)h(to)e (the)f(\002rst)h(passage)h(time)e(from)g(state)0 4360 y Fu(\(0)p Fv(H)r(;)15 b Fu(2)p Fv(M)10 b Fu(\))28 b FB(to)f(state)h Fu(\(0)p Fv(H)r(;)15 b Fu(1)p Fv(M)10 b Fu(\))28 b FB(in)f(the)g(chain)h(in)e(Figure)i(3\(right\),)h(gi)n(v)o (en)f(that)f Fu(\(0)p Fv(H)r(;)15 b Fu(1)p Fv(M)10 b Fu(\))28 b FB(is)f(the)g(\002rst)g(state)g(reached)0 4506 y(in)f(le)n(v)o(el)g Fv(`)c Fo(\000)g Fu(1)p FB(,)k(when)h (starting)h(in)e(state)h Fu(\(0)p Fv(H)r(;)15 b Fu(2)p Fv(M)10 b Fu(\))27 b FB(of)f(le)n(v)o(el)h Fv(`)p FB(.)35 b(Lik)o(e)n(wise,)27 b(probability)i Fv(p)2998 4520 y Fn(2)p Fp(M)s(;M)3228 4506 y FB(corresponds)h(to)c(the)0 4653 y(probability)34 b(that,)e(in)e(Figure)h(3\(right\),)j(state)d (\(0H,1M\))f(is)g(the)h(\002rst)f(state)h(of)f(the)h(tw)o(o)f(possible) i(\223end\224)g(states)f(that)g(is)0 4800 y(reached)c(in)d(le)n(v)o(el) i Fv(`)21 b Fo(\000)g Fu(1)p FB(,)j(gi)n(v)o(en)i(that)f(the)g (\223start\224)h(state)g(is)f Fu(\(0)p Fv(H)r(;)15 b Fu(2)p Fv(M)10 b Fu(\))p FB(.)34 b(These)25 b(conditional)j(inter)n (-le)n(v)o(el)f(passage)g(times)0 4947 y(and)22 b(ending)h (probabilities)j(within)c(the)g(chain)h(in)f(Figure)g(3\(right\))h(can) f(be)g(calculated)j(using)e(techniques)h(de)n(v)o(eloped)g(by)0 5094 y(Neuts)g(in)f([21)q(].)28 b(W)-7 b(e)23 b(pro)o(vide)i(a)e (precise)i(description)i(of)c(this)h(in)f(Appendix)i(A.)j(Observ)o(e)c (that)g(these)g(computations)j(are)0 5240 y(greatly)e(f)o(acilitated)i (by)c(the)h(f)o(act)g(that)g(our)g(chains)h(are)f(in\002nite)g(in)g (only)g(one)g(dimension.)1905 5596 y(10)p eop end %%Page: 11 11 TeXDict begin 11 10 bop 141 159 a FB(More)21 b(formally)-6 b(,)22 b(the)f(1D-in\002nite)h(Mark)o(o)o(v)f(chain)h(sho)n(wn)f(in)f (Figure)h(3\(left\))h(is)f(modeled)g(as)g(a)f(\(nonhomogeneous\))0 305 y(QBD)g(process,)k(as)e(in)g(Section)h(2.1.)28 b(Here,)22 b(le)n(v)o(el)h Fv(`)e FB(of)h(the)g(QBD)e(process)k(denotes)g(the)f Fv(`)p FB(-th)f(column,)h(namely)g(all)f(states)0 452 y(of)30 b(the)h(form)f(\()p Fv(i)p FB(H,)p Fv(j)5 b FB(M,)p Fv(`)p FB(L\))30 b(for)g(each)h Fv(`)p FB(.)48 b(The)30 b(submatrices)j(of)e(the)f(QBD)f(process,)k Fj(L)2834 419 y Fn(\()p Fp(`)p Fn(\))2922 452 y FB(,)e Fj(F)3042 419 y Fn(\()p Fp(`)p Fn(\))3130 452 y FB(,)g(and)f Fj(B)3418 419 y Fn(\()p Fp(`)p Fn(\))3507 452 y FB(,)h(ha)n(v)o(e)g(size)0 599 y Fu(15)12 b Fo(\002)g Fu(15)p FB(.)28 b(Speci\002cally)-6 b(,)23 b(the)f(forw)o(ard)g(transitions)i(are)e Fj(F)1829 566 y Fn(\()p Fp(`)p Fn(\))1942 599 y Fu(=)j Fv(\025)2091 613 y Fp(L)2143 599 y Fj(I)p FB(,)20 b(for)h Fv(`)26 b Fo(\025)f Fu(0)p FB(,)c(where)g Fj(I)f FB(is)h(a)g Fu(15)12 b Fo(\002)g Fu(15)22 b FB(identity)h(matrix.)0 746 y(The)g(backw)o(ard)i(transitions)i(are)1328 1002 y Fj(B)1402 965 y Fn(\()p Fp(`)p Fn(\))1516 1002 y Fu(=)e Fv(\026)1667 1016 y Fp(L)1734 759 y Fi(0)1734 905 y(B)1734 954 y(B)1734 1004 y(B)1734 1057 y(@)1848 862 y Fu(min)o(\(2)p Fv(;)15 b(`)p Fu(\))2277 1009 y(1)2405 1156 y Fj(0)2499 759 y Fi(1)2499 905 y(C)2499 954 y(C)2499 1004 y(C)2499 1057 y(A)0 1350 y FB(for)22 b Fv(`)j Fo(\025)g Fu(1)p FB(,)c(where)h Fj(0)f FB(is)g(a)h(zero)g(matrix)g(of)f(size)i Fu(13)13 b Fo(\002)g Fu(13)p FB(.)28 b(W)-7 b(e)21 b(again)h(order)h (the)f(15)f(states)i(in)e(le)n(v)o(el)h Fv(`)f FB(as:)28 b Fu(\(0)p Fv(H)r(;)15 b Fu(0)p Fv(M)5 b(;)15 b(`L)p Fu(\))p FB(,)0 1480 y Fu(\(0)p Fv(H)r(;)g Fu(1)p Fv(M)5 b(;)15 b(`L)p Fu(\))p FB(,)26 b Fu(\(1)p Fv(H)r(;)15 b Fu(0)p Fv(M)5 b(;)15 b(`L)p Fu(\))p FB(,)27 b(follo)n(wed)f(by)f(the) g(tw)o(o)g(states)h(associated)i(by)d(b)n(usy)h(period)h Fv(B)3135 1494 y Fp(i)3163 1480 y FB(,)d(for)h Fv(i)k Fu(=)e(1)p Fv(;)15 b Fu(2)p Fv(;)g(:)g(:)g(:)j(;)d Fu(6)p FB(,)0 1609 y(where,)33 b(as)e(before,)j(the)e(tw)o(o)f(states)h (associated)i(with)d(each)h(b)n(usy)h(period)f(are)g(ordered)h(by)e (start)h(state,)i(intermediate)0 1739 y(state.)c(The)23 b(local)h(transitions)j(are)c(then)i(gi)n(v)o(en)f(by:)0 2488 y Fh(L)57 2454 y Fg(\()p Ff(`)p Fg(\))164 2488 y FD(=)252 1898 y Fi(0)252 2044 y(B)252 2094 y(B)252 2144 y(B)252 2193 y(B)252 2243 y(B)252 2293 y(B)252 2343 y(B)252 2393 y(B)252 2443 y(B)252 2492 y(B)252 2542 y(B)252 2592 y(B)252 2642 y(B)252 2692 y(B)252 2741 y(B)252 2791 y(B)252 2841 y(B)252 2894 y(@)366 1965 y Fe(\000)p FE(\033)478 1977 y Fg(1)612 1965 y FE(\025)660 1977 y Ff(M)850 1965 y FE(\025)898 1977 y Ff(H)p 1020 2004 4 130 v 1511 2004 V 1992 2004 V 2509 2004 V 3015 2004 V 3485 2004 V 379 2095 a FE(\026)429 2107 y Ff(M)598 2095 y Fe(\000)p FE(\033)710 2107 y Fg(2)p 1020 2134 V 1063 2095 a FE(\025)1111 2107 y Ff(M)1186 2095 y FE(~)-43 b(p)1227 2065 y Fg(\(2)p Ff(M)s(;M)6 b Fg(\))p 1511 2134 V 1554 2095 a FE(\025)1602 2107 y Ff(M)1677 2095 y FE(~)-43 b(p)1718 2065 y Fg(\(2)p Ff(M)s(;H)t Fg(\))p 1992 2134 V 2035 2095 a FE(\025)2083 2107 y Ff(M)2158 2095 y FE(~)g(p)2199 2065 y Fg(\()p Ff(M)6 b(H)q(;M)g Fg(\))p 2509 2134 V 2552 2095 a FE(\025)2600 2107 y Ff(M)2675 2095 y FE(~)-43 b(p)2716 2065 y Fg(\()p Ff(M)6 b(H)q(;H)t Fg(\))p 3015 2134 V 3485 2134 V 384 2224 a FE(\026)434 2236 y Ff(H)831 2224 y Fe(\000)p FE(\033)943 2236 y Fg(3)p 1020 2263 V 1511 2263 V 1992 2263 V 2040 2224 a FE(\025)2088 2236 y Ff(H)2152 2224 y FE(~)-42 b(p)2194 2194 y Fg(\()p Ff(M)6 b(H)q(;M)g Fg(\))p 2509 2263 V 2557 2224 a FE(\025)2605 2236 y Ff(H)2669 2224 y FE(~)-42 b(p)2711 2194 y Fg(\()p Ff(M)6 b(H)q(;H)t Fg(\))p 3015 2263 V 3058 2224 a FE(\025)3106 2236 y Ff(H)3170 2224 y FE(~)-43 b(p)3211 2194 y Fg(\(2)p Ff(H)q(;M)6 b Fg(\))p 3485 2263 V 3528 2224 a FE(\025)3576 2236 y Ff(H)3640 2224 y FE(~)-43 b(p)3681 2194 y Fg(\(2)p Ff(H)q(;H)t Fg(\))p 325 2266 3621 4 v 608 2342 a FE(~)613 2357 y(t)643 2327 y Fg(\(1\))p 1020 2396 4 130 v 1189 2357 a Fh(T)1255 2327 y Fg(\(1\))p 1511 2396 V 1992 2396 V 2509 2396 V 3015 2396 V 3485 2396 V 325 2399 3621 4 v 841 2475 a FE(~)846 2490 y(t)876 2460 y Fg(\(2\))p 1020 2529 4 130 v 1511 2529 V 1675 2490 a Fh(T)1741 2460 y Fg(\(2\))p 1992 2529 V 2509 2529 V 3015 2529 V 3485 2529 V 325 2532 3621 4 v 608 2608 a FE(~)613 2623 y(t)643 2593 y Fg(\(3\))p 1020 2662 4 130 v 1511 2662 V 1992 2662 V 2174 2623 a Fh(T)2240 2593 y Fg(\(3\))p 2509 2662 V 3015 2662 V 3485 2662 V 325 2665 3621 4 v 841 2740 a FE(~)846 2756 y(t)876 2726 y Fg(\(4\))p 1020 2795 4 130 v 1511 2795 V 1992 2795 V 2509 2795 V 2686 2756 a Fh(T)2752 2726 y Fg(\(4\))p 3015 2795 V 3485 2795 V 325 2798 3621 4 v 608 2873 a FE(~)613 2888 y(t)643 2858 y Fg(\(5\))p 1020 2927 4 130 v 1511 2927 V 1992 2927 V 2509 2927 V 3015 2927 V 3174 2888 a Fh(T)3240 2858 y Fg(\(5\))p 3485 2927 V 325 2931 3621 4 v 841 3006 a FE(~)846 3021 y(t)876 2991 y Fg(\(6\))p 1020 3060 4 130 v 1511 3060 V 1992 3060 V 2509 3060 V 3015 3060 V 3485 3060 V 3638 3021 a Fh(T)3704 2991 y Fg(\(6\))3945 1898 y Fi(1)3945 2044 y(C)3945 2094 y(C)3945 2144 y(C)3945 2193 y(C)3945 2243 y(C)3945 2293 y(C)3945 2343 y(C)3945 2393 y(C)3945 2443 y(C)3945 2492 y(C)3945 2542 y(C)3945 2592 y(C)3945 2642 y(C)3945 2692 y(C)3945 2741 y(C)3945 2791 y(C)3945 2841 y(C)3945 2894 y(A)23 3240 y FB(for)23 b Fv(`)j Fo(\025)f Fu(0)p FB(,)d(where)i(the)g(lines)h (delineate)g(the)f(six)g(b)n(usy)h(periods)g(ordered)g(as)f Fv(B)2539 3254 y Fn(1)2578 3240 y Fv(;)15 b(B)2687 3254 y Fn(2)2727 3240 y Fv(;)g(:)g(:)g(:)i(;)e(B)2998 3254 y Fn(6)3037 3240 y FB(,)23 b(and)h(where)614 3542 y Fv(~)620 3558 y(t)653 3521 y Fn(\()p Fp(i)p Fn(\))761 3558 y Fu(=)857 3390 y Fi(0)857 3539 y(@)971 3492 y Fv(t)1004 3444 y Fn(\()p Fp(i)p Fn(\))1004 3516 y(1)971 3638 y Fv(t)1004 3591 y Fn(\()p Fp(i)p Fn(\))1004 3663 y(2)1128 3390 y Fi(1)1128 3539 y(A)1216 3558 y Fv(;)106 b Fj(T)1420 3521 y Fn(\()p Fp(i)p Fn(\))1528 3558 y Fu(=)1624 3390 y Fi(0)1624 3539 y(@)1739 3492 y Fo(\000)p Fv(\033)1862 3506 y Fn(2)p Fp(i)p Fn(+2)2178 3492 y Fv(t)2211 3444 y Fn(\()p Fp(i)p Fn(\))2211 3516 y(12)1854 3638 y Fu(0)199 b Fo(\000)p Fv(\033)2221 3652 y Fn(2)p Fp(i)p Fn(+3)2416 3390 y Fi(1)2416 3539 y(A)2503 3558 y Fv(;)130 b FB(and)24 b Fv(\033)2864 3572 y Fp(i)2917 3558 y Fu(=)3013 3478 y Fi(X)3017 3662 y Fp(j)t FH(6)p Fn(=)p Fp(i)3148 3558 y Fv(Q)3220 3572 y Fp(ij)749 3900 y Fv(~)-46 b(p)794 3862 y Fn(\()p Fp(X)q(;Y)15 b Fn(\))1013 3900 y Fu(=)25 b(\()p Fv(p)1190 3914 y Fp(X)q(;Y)1330 3900 y Fv(;)15 b Fu(0\))92 b FB(where)24 b Fv(X)33 b Fo(2)24 b(f)p Fu(2)p Fv(H)r(;)15 b(H)7 b(M)e(;)15 b Fu(2)p Fv(M)10 b Fo(g)p Fv(;)15 b(Y)49 b Fo(2)25 b(f)p Fv(H)r(;)15 b(M)10 b Fo(g)p Fv(;)0 4116 y FB(for)31 b Fu(1)38 b Fo(\024)g Fv(i)g Fo(\024)g Fu(6)p FB(,)31 b(corresponding)k(to)30 b(b)n(usy)i(periods)g Fv(B)1821 4130 y Fn(1)1860 4116 y Fv(;)15 b(B)1969 4130 y Fn(2)2009 4116 y Fv(;)g(:)g(:)g(:)i(;)e(B) 2280 4130 y Fn(6)2319 4116 y FB(.)49 b(Here)30 b Fv(t)2630 4069 y Fn(\()p Fp(i)p Fn(\))2630 4141 y(1)2713 4116 y Fv(;)15 b(t)2786 4069 y Fn(\()p Fp(i)p Fn(\))2786 4141 y(2)2869 4116 y Fv(;)g(t)2942 4069 y Fn(\()p Fp(i)p Fn(\))2942 4141 y(12)3055 4116 y FB(are)31 b(the)g(rates)g(of)f(the)h(PH)0 4263 y(distrib)n(ution)c(used)e(to)e(represent)j(b)n(usy)f(period)g Fv(B)1596 4277 y Fp(i)1624 4263 y FB(.)141 4410 y(No)n(w)-6 b(,)27 b(the)h(stationary)i(probability)h(of)d(this)g(QBD)e(process)j (can)f(be)g(calculated)i(via)e(matrix)g(analytic)i(methods,)f(as)0 4557 y(in)g(Section)h(2.1.)46 b(The)29 b(mean)h(response)h(time)e(in)g (the)h(priority)h(system)f(can)g(then)g(be)f(computed)i(using)g(the)e (stationary)0 4704 y(distrib)n(utions)f(via)23 b(Little')-5 b(s)25 b(la)o(w)-6 b(.)141 4850 y(The)21 b(e)o(xtension)j(of)d(RDR)e (to)i Fv(m)26 b(>)e Fu(3)d FB(classes)i(is)f(straightforw)o(ard)j(b)n (ut)c(increases)j(in)d(comple)o(xity)-6 b(.)30 b(F)o(or)21 b(e)o(xample,)h(for)0 4997 y(the)27 b(case)h(of)f Fv(m)32 b Fu(=)f(4)c FB(classes,)i(we)d(proceed)j(as)e(in)g(Figure)h(3,)f (where)h(we)e(\002rst)h(create)h(a)e(chain)j(that)e(tracks)h(e)o (xactly)h(the)0 5144 y(number)f(of)e(jobs)h(in)g(class)g(4,)g(and)g (creates)h(b)n(usy)g(periods)g(for)f(the)g(aggre)o(gation)i(of)e(the)g (three)g(higher)h(priority)h(classes.)0 5291 y(Then,)34 b(to)f(deri)n(v)o(e)g(the)g(b)n(usy)h(periods)g(for)f(the)f(three)i (higher)g(priority)g(classes,)i(we)c(mak)o(e)h(use)g(of)f(the)h(e)o (xisting)h(chain)1905 5596 y(11)p eop end %%Page: 12 12 TeXDict begin 12 11 bop 0 159 a FB(for)26 b(three)i(classes)g(sho)n(wn) e(in)g(Figure)h(3\(left\),)h(and)f(compute)h(the)e(appropriate)k (passage)e(times)e(for)h(that)g(chain.)38 b(F)o(or)25 b(an)0 305 y(M/M/)p Fv(k)f FB(with)d Fv(m)g FB(priority)i(classes,)g (there)f(are)1489 236 y Fi(\000)1527 265 y Fp(m)p Fn(+)p Fp(k)r FH(\000)p Fn(2)1631 337 y Fp(k)1773 236 y Fi(\001\000)1849 265 y Fp(m)p Fn(+)p Fp(k)r FH(\000)p Fn(3)1908 337 y Fp(k)r FH(\000)p Fn(1)2095 236 y Fi(\001)2154 305 y FB(possible)h(b)n (usy)g(periods,)g(where)f(the)f(\002rst)g(term)h(in)f(the)0 452 y(product)k(represents)i(the)d(number)g(of)g(possible)h(start)g (states)f(\(all)g(combinations)j(of)c(up)h(to)f Fv(m)d Fo(\000)g Fu(1)k FB(priority)h(classes)g(o)o(v)o(er)0 599 y Fv(k)f FB(serv)o(ers\))f(and)e(the)h(second)h(term)e(represents)j (the)e(number)g(of)f(possible)j(end)e(states)g(\(all)g(combinations)i (of)d(up)h(to)f Fv(m)12 b Fo(\000)g Fu(1)0 746 y FB(priority)27 b(classes)g(o)o(v)o(er)e Fv(k)f Fo(\000)d Fu(1)k FB(serv)o(ers\).)35 b(That)25 b(is,)g(the)h(number)g(of)f(dif)n(ferent)i(types)f(of)f(b)n (usy)h(periods)h(is)e(polynomial)i(in)0 892 y Fv(k)i FB(if)e Fv(m)f FB(is)g(constant)j(\()p Fu(\002\()p Fv(k)865 859 y Fp(m)932 892 y Fu(\))p FB(\),)e(and)h(it)e(is)h(polynomial)i(in)e Fv(m)e FB(if)i Fv(k)i FB(is)e(constant)i(\()p Fu(\002\()p Fv(m)2800 859 y Fp(k)2843 892 y Fu(\))p FB(\);)f(ho)n(we)n(v)o(er)l(,)g (it)f(is)f(e)o(xponential)0 1039 y(in)d Fv(k)j FB(and)d Fv(m)g FB(if)g(neither)i Fv(k)g FB(nor)f Fv(m)e FB(is)h(constant.)1499 1006 y Fw(3)1567 1039 y FB(Help)g(with)g(implementing)j(the)d (procedure)j(described)g(in)d(this)h(paper)g(is)0 1186 y(pro)o(vided)i(at)d([24)q(].)141 1333 y(Practically)34 b(speaking,)i(the)c(RDR)d(approach)34 b(is)e(f)o(ast)g(for)g(a)f(small) h(number)h(of)e(serv)o(ers)i(and)g(a)e(small)h(number)g(of)0 1480 y(priority)i(classes.)54 b(In)32 b(e)o(xamples)h(we)e(ran)h(with)f (an)h(M/M/2)g(and)g(10)f(priority)j(classes,)h(the)d(RDR)e(algorithm)j (yielded)0 1626 y(mean)24 b(response)h(times)f(within)g(tens)g(of)g (seconds.)0 1910 y Ft(2.3)99 b(General)25 b(case:)31 b(Analysis)24 b(of)h(M/PH/)p Fd(k)i Ft(with)e(m)g(priority)g(classes)0 2119 y FB(In)g(this)h(section,)i(we)d(e)o(xplicitly)i(describe)h(ho)n (w)d(RDR)e(can)j(be)g(applied)h(to)e(analyze)j(the)d(case)i(of)e(PH)f (job)i(size)g(distrib)n(u-)0 2265 y(tions.)32 b(W)-7 b(e)23 b(describe)j(RDR)d(for)h(the)g(case)h(of)f(tw)o(o)g(serv)o(ers)i (\()p Fv(k)k Fu(=)c(2)p FB(\))e(and)h(tw)o(o)e(priority)k(classes)e(\() p Fv(m)i Fu(=)f(2)p FB(\),)e(high)h(\(H\))f(and)0 2412 y(lo)n(w)h(\(L\))f(,)g(where)i(the)g(class)g(H)e(jobs)i(ha)n(v)o(e)g(a) f(particular)j(2-phase)f(PH)c(job)j(size)g(distrib)n(ution)j(with)c (Coxian)h(representa-)0 2559 y(tion,)g(sho)n(wn)f(in)f(Figure)i (4\(a\).)972 2526 y Fw(4)1042 2559 y FB(Generalization)j(to)24 b(higher)j Fv(k)s FB(')-5 b(s)24 b(and)i(higher)g Fv(m)p FB(')-5 b(s)25 b(is)f(straightforw)o(ard)29 b(by)c(applying)i(the)0 2706 y(recursi)n(v)o(e)e(algorithm)h(introduced)g(in)e(Section)g(2.2.) 141 2852 y(Analyzing)30 b(the)d(performance)j(of)e(class)g(H)e(is)i (tri)n(vial,)h(since)f(high-priority)k(jobs)c(simply)g(see)g(the)f (mean)h(response)0 2999 y(time)k(in)h(an)g(M/PH/2)e(queue,)36 b(which)d(can)g(be)g(analyzed)h(via)f(standard)i(matrix)e(analytic)i (methods.)57 b(T)-7 b(o)32 b(analyze)i(the)0 3146 y(class)25 b(L)e(jobs,)i(as)g(before,)g(we)f(create)h(a)f(1D-in\002nite)i(Mark)o (o)o(v)f(chain)g(tracking)i(the)d(class)i(L)d(jobs,)i(and)g(use)f(b)n (usy)i(period)0 3293 y(transitions)h(to)c(represent)j(needed)f (information)h(re)o(garding)f(the)f(class)h(H)d(jobs.)141 3440 y(Observ)o(e)27 b(that)g(under)g(the)f(2-phase)i(Coxian)f(job)g (sizes)g(distrib)n(ution,)j(we)25 b(will)h(need)h Fs(four)g FB(dif)n(ferent)h(types)f(of)f(b)n(usy)0 3586 y(periods)g(for)f(high)g (priority)i(jobs,)e(depending)j(on)c(the)h(phases)h(of)f(the)g(tw)o(o)f (jobs)h(starting)h(the)f(b)n(usy)h(period)g(\(1)e(&)g(1,)g(or)h(1)0 3733 y(&)c(2\))h(and)g(the)g(phase)h(of)f(the)g(job)h(left)f(at)g(the)g (end)g(of)g(the)g(b)n(usy)h(period)h(\(1)d(or)h(2\).)28 b(T)-7 b(o)21 b(deri)n(v)o(e)i(the)f(durations)i(of)e(these)h(b)n(usy)0 3880 y(periods,)h(we)e(observ)o(e)i(that)g(the)f(b)n(usy)g(periods)i (correspond)h(to)c(passage)j(times)e(from)f(shaded)i(le)n(v)o(el)f Fu(3)g FB(to)f(shaded)j(le)n(v)o(el)e Fu(2)0 4027 y FB(in)i(the)h(Mark) o(o)o(v)f(chain)i(sho)n(wn)e(in)g(Figure)h(4\(b\).)34 b(Figure)26 b(4\(b\))g(describes)h(the)f(beha)n(vior)h(of)e(class)i(H)d (jobs,)i(where)f(states)0 4174 y(track)30 b(the)f(number)h(of)f(high)h (priority)g(jobs)g(in)f(the)g(system)h(and)f(the)g(phases)i(of)e(the)g (jobs)h(being)g(processed.)47 b(Namely)-6 b(,)p 0 4338 1560 4 v 105 4393 a Fr(3)134 4425 y Fy(Remark)p 134 4439 237 4 v 1 w(:)23 b(W)-6 b(e)18 b(note)h(that)f(in)g(practice)h(the)g (number)g(of)g(b)o(usy)g(periods)g(can)g(be)f(reduced)i(further)m(,)f (so)f(that)h(an)f(M/M/)p Fl(k)j Fy(with)d Fl(m)g Fy(priority)h(classes) 0 4531 y(has)121 4466 y Fi(\000)159 4497 y Fm(m)p Fc(+)p Fm(k)q Fz(\000)p Fc(3)210 4556 y Fm(k)q Fz(\000)p Fc(1)373 4466 y Fi(\001)411 4483 y Fc(2)467 4531 y Fy(b)o(usy)k(periods)f(of)g (class)g(1)g(to)g(class)g Fl(m)d Fx(\000)g Fk(1)j Fy(jobs.)33 b(An)22 b(adv)n(antage)i(of)e(this)f(reduction)i(is)f(that)g(the)g (number)h(of)f(b)o(usy)g(periods)h(of)0 4622 y(class)18 b(1)f(to)h(class)g Fl(m)12 b Fx(\000)g Fk(1)17 b Fy(jobs)h(becomes)h (independent)h(of)d(the)h(type)g(of)g(PH)f(distrib)o(utions)g(that)h (is)f(used)i(to)e(approximate)i(the)f(b)o(usy)g(period)g(of)g(class)0 4713 y(1)g(to)f(class)g Fl(m)11 b Fx(\000)g Fk(2)18 b Fy(jobs.)23 b(The)17 b(trick)g(to)g(reducing)i(the)e(number)i(of)e(b)o (usy)h(periods)g(is)f(illustrated)g(by)h(considering)h(the)e(e)o (xample)h(of)g(the)f(M/M/2)h(with)0 4805 y(three)h(classes,)f(sho)n(wn) i(in)e(Figure)g(3.)24 b(Here,)18 b(by)h(taking)g(the)f(mixture)h(of)g (the)f(six)h(b)o(usy)g(periods,)g Fl(B)2602 4813 y Fc(1)2636 4805 y Fy(,)f Fl(B)2731 4813 y Fc(2)2766 4805 y Fy(,)g(...,)f Fl(B)2954 4813 y Fc(6)2989 4805 y Fy(,)h(we)g(can)h(approximate)h(the)f (H-M)0 4896 y(b)o(usy)f(period)g(by)g Fq(four)g Fy(PH)f(distrib)o (utions.)23 b(These)17 b(four)h(distrib)o(utions)g(of)f(the)h(H-M)g(b)o (usy)g(period)g(are)f(dif)n(ferentiated)h(by)g(the)g(state)f(from)h (which)g(we)0 4987 y Fq(enter)g Fy(the)h(H-M)f(b)o(usy)g(period)h (\(either)f(\(1H,0M\))g(or)g(\(0H,1M\)\))h(and)f(by)h(the)f(state)g(we) g(return)g(to)g(after)g(the)g(H-M)g(b)o(usy)h(period)f(\(either)g (\(1H,0M\))h(or)0 5079 y(\(0H,1M\)\).)g(More)g(details)g(are)g(pro)o (vided)h(in)f([24)q(].)105 5140 y Fr(4)134 5172 y Fy(Under)h(the)f (Coxian)h(job)g(size)f(distrib)o(ution,)f(a)h(job)h(starts)f(in)g (phase)h(one)f(where)h(it)e(is)h(processed)i(for)e(a)g(time)g(e)o (xponentially)h(distrib)o(uted)f(with)0 5272 y(rate)g Fl(\026)177 5234 y Fc(\(1\))177 5293 y Fm(H)260 5272 y Fy(,)f(and)h(then)h(either)f(completes)g(\(with)g(probability)g Fl(q)1638 5280 y Fm(H)1718 5272 y Fk(=)i(1)c Fx(\000)g Fl(p)1970 5280 y Fm(H)2027 5272 y Fy(\))i(or)g(mo)o(v)o(es)g(to)g (phase)h(tw)o(o)f(\(with)f(probability)i Fl(p)3321 5280 y Fm(H)3378 5272 y Fy(\).)1905 5596 y FB(12)p eop end %%Page: 13 13 TeXDict begin 13 12 bop 721 167 a 4262700 1420900 0 0 19537182 6512394 startTexFig 721 167 a %%BeginDocument: ../../figures/hpcoxian.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: hpcoxian.eps %%Creator: fig2dev Version 3.2 Patchlevel 3d %%CreationDate: Tue Nov 4 16:49:51 2003 %%For: osogami@gs57.sp.cs.cmu.edu (Takayuki Osogami) %%BoundingBox: 0 0 297 99 %%Magnification: 1.0000 %%EndComments /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 99 moveto 0 0 lineto 297 0 lineto 297 99 lineto closepath clip newpath -128.2 310.9 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /reencdict 12 dict def /ReEncode { reencdict begin /newcodesandnames exch def /newfontname exch def /basefontname exch def /basefontdict basefontname findfont def /newfont basefontdict maxlength dict def basefontdict { exch dup /FID ne { dup /Encoding eq { exch dup length array copy newfont 3 1 roll put } { exch newfont 3 1 roll put } ifelse } { pop pop } ifelse } forall newfont /FontName newfontname put newcodesandnames aload pop 128 1 255 { newfont /Encoding get exch /.notdef put } for newcodesandnames length 2 idiv { newfont /Encoding get 3 1 roll put } repeat newfontname newfont definefont pop end } def /isovec [ 8#055 /minus 8#200 /grave 8#201 /acute 8#202 /circumflex 8#203 /tilde 8#204 /macron 8#205 /breve 8#206 /dotaccent 8#207 /dieresis 8#210 /ring 8#211 /cedilla 8#212 /hungarumlaut 8#213 /ogonek 8#214 /caron 8#220 /dotlessi 8#230 /oe 8#231 /OE 8#240 /space 8#241 /exclamdown 8#242 /cent 8#243 /sterling 8#244 /currency 8#245 /yen 8#246 /brokenbar 8#247 /section 8#250 /dieresis 8#251 /copyright 8#252 /ordfeminine 8#253 /guillemotleft 8#254 /logicalnot 8#255 /hyphen 8#256 /registered 8#257 /macron 8#260 /degree 8#261 /plusminus 8#262 /twosuperior 8#263 /threesuperior 8#264 /acute 8#265 /mu 8#266 /paragraph 8#267 /periodcentered 8#270 /cedilla 8#271 /onesuperior 8#272 /ordmasculine 8#273 /guillemotright 8#274 /onequarter 8#275 /onehalf 8#276 /threequarters 8#277 /questiondown 8#300 /Agrave 8#301 /Aacute 8#302 /Acircumflex 8#303 /Atilde 8#304 /Adieresis 8#305 /Aring 8#306 /AE 8#307 /Ccedilla 8#310 /Egrave 8#311 /Eacute 8#312 /Ecircumflex 8#313 /Edieresis 8#314 /Igrave 8#315 /Iacute 8#316 /Icircumflex 8#317 /Idieresis 8#320 /Eth 8#321 /Ntilde 8#322 /Ograve 8#323 /Oacute 8#324 /Ocircumflex 8#325 /Otilde 8#326 /Odieresis 8#327 /multiply 8#330 /Oslash 8#331 /Ugrave 8#332 /Uacute 8#333 /Ucircumflex 8#334 /Udieresis 8#335 /Yacute 8#336 /Thorn 8#337 /germandbls 8#340 /agrave 8#341 /aacute 8#342 /acircumflex 8#343 /atilde 8#344 /adieresis 8#345 /aring 8#346 /ae 8#347 /ccedilla 8#350 /egrave 8#351 /eacute 8#352 /ecircumflex 8#353 /edieresis 8#354 /igrave 8#355 /iacute 8#356 /icircumflex 8#357 /idieresis 8#360 /eth 8#361 /ntilde 8#362 /ograve 8#363 /oacute 8#364 /ocircumflex 8#365 /otilde 8#366 /odieresis 8#367 /divide 8#370 /oslash 8#371 /ugrave 8#372 /uacute 8#373 /ucircumflex 8#374 /udieresis 8#375 /yacute 8#376 /thorn 8#377 /ydieresis] def /Times-Roman /Times-Roman-iso isovec ReEncode /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimit0.060000.06000scF2psBegin 10 setmiterlimit 0.06000 0.06000 sc % % Fig objects follow % /Times-Roman-iso ff 345.00 scf sf 2679 4358 m gs 1 -1 sc (H) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 2595 4020 m gs 1 -1 sc (\(1\)) col0 sh gr /Symbol ff 435.00 scf sf 2376 4223 m gs 1 -1 sc (m) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 5154 4374 m gs 1 -1 sc (H) col0 sh gr /Times-Roman-iso ff 345.00 scf sf 5070 4037 m gs 1 -1 sc (\(2\)) col0 sh gr /Symbol ff 435.00 scf sf 4851 4239 m gs 1 -1 sc (m) col0 sh gr 15.000 slw % Ellipse n 5165 4051 525 375 0 360 DrawEllipse gs col0 s gr % Ellipse n 2676 4044 525 375 0 360 DrawEllipse gs col0 s gr % Ellipse n 2676 4044 525 375 0 360 DrawEllipse gs col0 s gr % Polyline gs clippath 4665 4185 m 4665 4065 l 4377 4065 l 4617 4125 l 4377 4185 l cp eoclip n 3150 4125 m 4650 4125 l gs col0 s gr gr % arrowhead n 4377 4185 m 4617 4125 l 4377 4065 l col0 s % Polyline gs clippath 7065 4185 m 7065 4065 l 6777 4065 l 7017 4125 l 6777 4185 l cp eoclip n 5700 4125 m 7050 4125 l gs col0 s gr gr % arrowhead n 6777 4185 m 7017 4125 l 6777 4065 l col0 s % Polyline gs clippath 6840 5160 m 6840 5040 l 6552 5040 l 6792 5100 l 6552 5160 l cp eoclip n 3000 4350 m 4050 5100 l 6825 5100 l gs col0 s gr gr % arrowhead n 6552 5160 m 6792 5100 l 6552 5040 l col0 s /Times-Roman-iso ff 390.00 scf sf 3960 4050 m gs 1 -1 sc (H) col0 sh gr /Times-Roman-iso ff 450.00 scf sf 3750 3788 m gs 1 -1 sc (p) col0 sh gr /Times-Roman-iso ff 390.00 scf sf 4050 5025 m gs 1 -1 sc (H) col0 sh gr /Times-Roman-iso ff 450.00 scf sf 3866 4783 m gs 1 -1 sc (q) col0 sh gr /Times-Roman-iso ff 390.00 scf sf 5700 5025 m gs 1 -1 sc (H) col0 sh gr /Times-Roman-iso ff 450.00 scf sf 4725 4875 m gs 1 -1 sc (1 - p) col0 sh gr /Times-Roman-iso ff 435.00 scf sf 4425 4875 m gs 1 -1 sc (=) col0 sh gr F2psBegin10setmiterlimit0.060000.06000scF2psEnd rs %%EndDocument endTexFig 941 460 a FB(\(a\))36 694 y 14330932 9888339 0 0 46902394 32561971 startTexFig 36 694 a %%BeginDocument: ../../figures/neutschain.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: neutschain.fig %%Creator: fig2dev Version 3.2 Patchlevel 4 %%CreationDate: Tue Sep 28 20:59:20 2004 %%For: harchol@mor.sync.cs.cmu.edu (Mor Harchol-Balter) %%BoundingBox: 0 0 713 495 %%Magnification: 1.0000 %%EndComments /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 495 moveto 0 0 lineto 713 0 lineto 713 495 lineto closepath clip newpath -166.2 1145.9 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psBegin 10 setmiterlimit 0 slj 0 slc 0.06000 0.06000 sc % % Fig objects follow % % % here starts figure with depth 60 % Polyline 2 slj 7.500 slw n 5810 14025 m 5804 14064 l 5798 14105 l 5793 14146 l 5788 14188 l 5784 14231 l 5780 14275 l 5776 14320 l 5773 14366 l 5770 14413 l 5767 14461 l 5765 14510 l 5764 14560 l 5763 14611 l 5762 14662 l 5761 14715 l 5761 14767 l 5762 14821 l 5763 14875 l 5764 14929 l 5766 14984 l 5769 15038 l 5771 15093 l 5775 15148 l 5778 15202 l 5782 15256 l 5787 15310 l 5791 15363 l 5797 15416 l 5802 15468 l 5808 15519 l 5814 15569 l 5821 15618 l 5828 15666 l 5835 15714 l 5842 15760 l 5850 15805 l 5858 15849 l 5867 15891 l 5875 15933 l 5884 15973 l 5893 16013 l 5903 16051 l 5912 16089 l 5923 16125 l 5936 16171 l 5950 16215 l 5964 16258 l 5980 16301 l 5996 16342 l 6012 16382 l 6030 16421 l 6048 16459 l 6066 16496 l 6086 16532 l 6106 16566 l 6126 16600 l 6148 16633 l 6170 16664 l 6192 16693 l 6215 16722 l 6238 16749 l 6262 16774 l 6285 16798 l 6309 16820 l 6333 16841 l 6357 16860 l 6381 16878 l 6405 16894 l 6429 16908 l 6453 16921 l 6476 16932 l 6499 16942 l 6523 16951 l 6545 16958 l 6568 16964 l 6590 16969 l 6613 16972 l 6635 16975 l 6656 16976 l 6677 16977 l 6698 16976 l 6720 16975 l 6741 16972 l 6763 16968 l 6784 16963 l 6806 16957 l 6828 16949 l 6851 16940 l 6873 16929 l 6895 16917 l 6917 16903 l 6940 16888 l 6962 16871 l 6984 16853 l 7005 16833 l 7027 16812 l 7048 16789 l 7068 16764 l 7088 16738 l 7108 16710 l 7127 16681 l 7145 16651 l 7163 16619 l 7180 16586 l 7196 16552 l 7212 16517 l 7227 16480 l 7241 16442 l 7254 16403 l 7267 16363 l 7278 16321 l 7290 16278 l 7300 16233 l 7310 16188 l 7317 16150 l 7324 16112 l 7331 16073 l 7337 16032 l 7343 15990 l 7348 15947 l 7353 15903 l 7358 15858 l 7363 15811 l 7367 15763 l 7370 15714 l 7373 15664 l 7376 15613 l 7379 15561 l 7381 15507 l 7382 15453 l 7383 15398 l 7384 15343 l 7384 15286 l 7384 15230 l 7384 15172 l 7382 15115 l 7381 15057 l 7379 15000 l 7377 14942 l 7374 14884 l 7370 14827 l 7367 14771 l 7362 14714 l 7358 14659 l 7353 14604 l 7348 14549 l 7342 14496 l 7336 14444 l 7329 14392 l 7322 14342 l 7315 14293 l 7308 14245 l 7300 14198 l 7291 14152 l 7283 14107 l 7274 14064 l 7265 14021 l 7255 13980 l 7245 13939 l 7235 13900 l 7220 13848 l 7205 13798 l 7189 13749 l 7173 13702 l 7155 13655 l 7137 13610 l 7118 13565 l 7098 13522 l 7078 13480 l 7057 13439 l 7036 13399 l 7014 13360 l 6991 13322 l 6969 13285 l 6946 13250 l 6922 13216 l 6899 13184 l 6876 13152 l 6853 13123 l 6830 13094 l 6808 13067 l 6786 13042 l 6764 13018 l 6743 12996 l 6723 12974 l 6703 12955 l 6684 12936 l 6665 12919 l 6648 12903 l 6631 12888 l 6615 12874 l 6600 12861 l 6586 12849 l 6573 12838 l 6558 12825 l 6544 12814 l 6532 12803 l 6520 12793 l 6508 12784 l 6497 12776 l 6486 12769 l 6476 12762 l 6467 12756 l 6457 12752 l 6449 12748 l 6440 12745 l 6431 12743 l 6423 12743 l 6415 12743 l 6407 12745 l 6399 12748 l 6392 12751 l 6384 12756 l 6376 12762 l 6368 12769 l 6360 12777 l 6352 12786 l 6344 12796 l 6335 12807 l 6326 12819 l 6316 12831 l 6307 12845 l 6296 12859 l 6285 12875 l 6275 12890 l 6264 12905 l 6252 12922 l 6240 12939 l 6227 12958 l 6214 12978 l 6200 12999 l 6185 13021 l 6170 13045 l 6155 13071 l 6139 13097 l 6123 13125 l 6106 13155 l 6089 13186 l 6073 13219 l 6055 13252 l 6038 13287 l 6022 13324 l 6005 13361 l 5988 13400 l 5972 13439 l 5956 13480 l 5940 13521 l 5925 13563 l 5911 13606 l 5897 13650 l 5884 13694 l 5871 13739 l 5859 13785 l 5848 13831 l 5837 13878 l 5828 13926 l 5818 13975 l cp gs col29 1.00 shd ef gr gs col0 s gr % Polyline n 8989 13895 m 8983 13934 l 8977 13975 l 8972 14016 l 8967 14058 l 8963 14101 l 8959 14145 l 8955 14190 l 8952 14236 l 8949 14283 l 8946 14331 l 8944 14380 l 8943 14430 l 8942 14481 l 8941 14532 l 8940 14585 l 8940 14637 l 8941 14691 l 8942 14745 l 8943 14799 l 8945 14854 l 8948 14908 l 8950 14963 l 8954 15018 l 8957 15072 l 8961 15126 l 8966 15180 l 8970 15233 l 8976 15286 l 8981 15338 l 8987 15389 l 8993 15439 l 9000 15488 l 9007 15536 l 9014 15584 l 9021 15630 l 9029 15675 l 9037 15719 l 9046 15761 l 9054 15803 l 9063 15843 l 9072 15883 l 9082 15921 l 9091 15959 l 9102 15995 l 9115 16041 l 9129 16085 l 9143 16128 l 9159 16171 l 9175 16212 l 9191 16252 l 9209 16291 l 9227 16329 l 9245 16366 l 9265 16402 l 9285 16436 l 9305 16470 l 9327 16503 l 9349 16534 l 9371 16563 l 9394 16592 l 9417 16619 l 9441 16644 l 9464 16668 l 9488 16690 l 9512 16711 l 9536 16730 l 9560 16748 l 9584 16764 l 9608 16778 l 9632 16791 l 9655 16802 l 9678 16812 l 9702 16821 l 9724 16828 l 9747 16834 l 9769 16839 l 9792 16842 l 9814 16845 l 9835 16846 l 9856 16847 l 9877 16846 l 9899 16845 l 9920 16842 l 9942 16838 l 9963 16833 l 9985 16827 l 10007 16819 l 10030 16810 l 10052 16799 l 10074 16787 l 10096 16773 l 10119 16758 l 10141 16741 l 10163 16723 l 10184 16703 l 10206 16682 l 10227 16659 l 10247 16634 l 10267 16608 l 10287 16580 l 10306 16551 l 10324 16521 l 10342 16489 l 10359 16456 l 10375 16422 l 10391 16387 l 10406 16350 l 10420 16312 l 10433 16273 l 10446 16233 l 10457 16191 l 10469 16148 l 10479 16103 l 10489 16058 l 10496 16020 l 10503 15982 l 10510 15943 l 10516 15902 l 10522 15860 l 10527 15817 l 10532 15773 l 10537 15728 l 10542 15681 l 10546 15633 l 10549 15584 l 10552 15534 l 10555 15483 l 10558 15431 l 10560 15377 l 10561 15323 l 10562 15268 l 10563 15213 l 10563 15156 l 10563 15100 l 10563 15042 l 10561 14985 l 10560 14927 l 10558 14870 l 10556 14812 l 10553 14754 l 10549 14697 l 10546 14641 l 10541 14584 l 10537 14529 l 10532 14474 l 10527 14419 l 10521 14366 l 10515 14314 l 10508 14262 l 10501 14212 l 10494 14163 l 10487 14115 l 10479 14068 l 10470 14022 l 10462 13977 l 10453 13934 l 10444 13891 l 10434 13850 l 10424 13809 l 10414 13770 l 10399 13718 l 10384 13668 l 10368 13619 l 10352 13572 l 10334 13525 l 10316 13480 l 10297 13435 l 10277 13392 l 10257 13350 l 10236 13309 l 10215 13269 l 10193 13230 l 10170 13192 l 10148 13155 l 10125 13120 l 10101 13086 l 10078 13054 l 10055 13022 l 10032 12993 l 10009 12964 l 9987 12937 l 9965 12912 l 9943 12888 l 9922 12866 l 9902 12844 l 9882 12825 l 9863 12806 l 9844 12789 l 9827 12773 l 9810 12758 l 9794 12744 l 9779 12731 l 9765 12719 l 9752 12708 l 9737 12695 l 9723 12684 l 9711 12673 l 9699 12663 l 9687 12654 l 9676 12646 l 9665 12639 l 9655 12632 l 9646 12626 l 9636 12622 l 9628 12618 l 9619 12615 l 9610 12613 l 9602 12613 l 9594 12613 l 9586 12615 l 9578 12618 l 9571 12621 l 9563 12626 l 9555 12632 l 9547 12639 l 9539 12647 l 9531 12656 l 9523 12666 l 9514 12677 l 9505 12689 l 9495 12701 l 9486 12715 l 9475 12729 l 9464 12745 l 9454 12760 l 9443 12775 l 9431 12792 l 9419 12809 l 9406 12828 l 9393 12848 l 9379 12869 l 9364 12891 l 9349 12915 l 9334 12941 l 9318 12967 l 9302 12995 l 9285 13025 l 9268 13056 l 9252 13089 l 9234 13122 l 9217 13157 l 9201 13194 l 9184 13231 l 9167 13270 l 9151 13309 l 9135 13350 l 9119 13391 l 9104 13433 l 9090 13476 l 9076 13520 l 9063 13564 l 9050 13609 l 9038 13655 l 9027 13701 l 9016 13748 l 9007 13796 l 8997 13845 l cp gs col29 1.00 shd ef gr gs col0 s gr % here ends figure; % % here starts figure with depth 50 % Ellipse 15.000 slw n 13870 18796 62 62 0 360 DrawEllipse gs col0 s gr % Ellipse n 14179 18796 62 62 0 360 DrawEllipse gs col0 s gr % Ellipse n 14527 18796 62 62 0 360 DrawEllipse gs col0 s gr /Symbol ff 390.00 scf sf 11025 16854 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 300.00 scf sf 11269 17025 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 11188 16682 m gs 1 -1 sc (\(1\)) col0 sh gr /Times-Roman ff 390.00 scf sf 11594 16854 m gs 1 -1 sc (q) col0 sh gr /Times-Roman ff 300.00 scf sf 11756 17025 m gs 1 -1 sc (H) col0 sh gr % Ellipse n 3376 13912 591 262 0 360 DrawEllipse gs col0 s gr % Ellipse n 9976 18788 591 295 0 360 DrawEllipse gs col0 s gr % Ellipse n 13126 18788 591 295 0 360 DrawEllipse gs col0 s gr /Times-Roman ff 315.00 scf sf 10970 18602 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 420.00 scf sf 10725 18500 m gs 1 -1 sc (l) col0 sh gr /Symbol ff 390.00 scf sf 7875 16929 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 300.00 scf sf 8119 17100 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 8038 16757 m gs 1 -1 sc (\(1\)) col0 sh gr /Times-Roman ff 390.00 scf sf 8444 16929 m gs 1 -1 sc (q) col0 sh gr /Times-Roman ff 300.00 scf sf 8606 17100 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 390.00 scf sf 12375 17604 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 300.00 scf sf 12619 17775 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 12538 17432 m gs 1 -1 sc (\(1\)) col0 sh gr /Times-Roman ff 390.00 scf sf 12944 17604 m gs 1 -1 sc (p) col0 sh gr /Times-Roman ff 300.00 scf sf 13106 17775 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 11595 18000 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 11513 17657 m gs 1 -1 sc (\(2\)) col0 sh gr /Symbol ff 390.00 scf sf 11100 17829 m gs 1 -1 sc (2m) col0 sh gr /Symbol ff 390.00 scf sf 9075 17604 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 300.00 scf sf 9319 17775 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 9238 17432 m gs 1 -1 sc (\(1\)) col0 sh gr /Times-Roman ff 390.00 scf sf 9644 17604 m gs 1 -1 sc (p) col0 sh gr /Times-Roman ff 300.00 scf sf 9806 17775 m gs 1 -1 sc (H) col0 sh gr % Ellipse n 13907 13751 62 62 0 360 DrawEllipse gs col0 s gr % Ellipse n 14216 13751 62 62 0 360 DrawEllipse gs col0 s gr % Ellipse n 14564 13751 62 62 0 360 DrawEllipse gs col0 s gr % Ellipse n 13858 16193 62 62 0 360 DrawEllipse gs col0 s gr % Ellipse n 14167 16193 62 62 0 360 DrawEllipse gs col0 s gr % Ellipse n 14515 16193 62 62 0 360 DrawEllipse gs col0 s gr /Times-Roman ff 315.00 scf sf 4820 13577 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 420.00 scf sf 4575 13475 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 315.00 scf sf 8045 13502 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 420.00 scf sf 7800 13400 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 315.00 scf sf 11345 13427 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 420.00 scf sf 11100 13325 m gs 1 -1 sc (l) col0 sh gr /Symbol ff 405.00 scf sf 7950 15354 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 315.00 scf sf 8207 15525 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 315.00 scf sf 8121 15182 m gs 1 -1 sc (\(2\)) col0 sh gr /Times-Roman ff 315.00 scf sf 10895 15827 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 420.00 scf sf 10650 15725 m gs 1 -1 sc (l) col0 sh gr % Ellipse n 6526 13838 591 295 0 360 DrawEllipse gs col0 s gr % Ellipse n 9826 13763 591 295 0 360 DrawEllipse gs col0 s gr % Ellipse n 13126 13688 591 295 0 360 DrawEllipse gs col0 s gr % Ellipse n 13201 16163 591 295 0 360 DrawEllipse gs col0 s gr % Ellipse n 9826 16163 591 295 0 360 DrawEllipse gs col0 s gr % Ellipse n 6526 16238 591 295 0 360 DrawEllipse gs col0 s gr /Times-Roman ff 315.00 scf sf 7520 15902 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 420.00 scf sf 7275 15800 m gs 1 -1 sc (l) col0 sh gr /Symbol ff 390.00 scf sf 4650 14604 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 300.00 scf sf 4894 14775 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 4813 14432 m gs 1 -1 sc (\(1\)) col0 sh gr /Times-Roman ff 390.00 scf sf 5219 14604 m gs 1 -1 sc (q) col0 sh gr /Times-Roman ff 300.00 scf sf 5381 14775 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 405.00 scf sf 4650 15579 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 315.00 scf sf 4907 15750 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 315.00 scf sf 4821 15407 m gs 1 -1 sc (\(2\)) col0 sh gr /Symbol ff 390.00 scf sf 5775 15129 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 300.00 scf sf 6019 15300 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 5938 14957 m gs 1 -1 sc (\(1\)) col0 sh gr /Times-Roman ff 390.00 scf sf 6344 15129 m gs 1 -1 sc (p) col0 sh gr /Times-Roman ff 300.00 scf sf 6506 15300 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 390.00 scf sf 8450 14529 m gs 1 -1 sc (q) col0 sh gr /Times-Roman ff 285.00 scf sf 8610 14700 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 285.00 scf sf 8130 14700 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 285.00 scf sf 8050 14357 m gs 1 -1 sc (\(1\)) col0 sh gr /Symbol ff 390.00 scf sf 7650 14529 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 390.00 scf sf 9575 15129 m gs 1 -1 sc (p) col0 sh gr /Times-Roman ff 285.00 scf sf 9735 15300 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 285.00 scf sf 9255 15300 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 285.00 scf sf 9175 14957 m gs 1 -1 sc (\(1\)) col0 sh gr /Symbol ff 390.00 scf sf 8775 15129 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 390.00 scf sf 11750 14454 m gs 1 -1 sc (q) col0 sh gr /Times-Roman ff 285.00 scf sf 11910 14625 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 285.00 scf sf 11430 14625 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 285.00 scf sf 11350 14282 m gs 1 -1 sc (\(1\)) col0 sh gr /Symbol ff 390.00 scf sf 10950 14454 m gs 1 -1 sc (2m) col0 sh gr /Times-Roman ff 390.00 scf sf 12875 15129 m gs 1 -1 sc (p) col0 sh gr /Times-Roman ff 285.00 scf sf 13035 15300 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 285.00 scf sf 12555 15300 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 285.00 scf sf 12475 14957 m gs 1 -1 sc (\(1\)) col0 sh gr /Symbol ff 390.00 scf sf 12075 15129 m gs 1 -1 sc (2m) col0 sh gr /Symbol ff 360.00 scf sf 11325 15300 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 11550 15450 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 270.00 scf sf 11475 15150 m gs 1 -1 sc (\(2\)) col0 sh gr % Polyline 2 slj gs clippath 9763 15897 m 9878 15930 l 9957 15653 l 9834 15868 l 9842 15620 l cp eoclip n 9901 14019 m 9901 14020 l 9902 14022 l 9903 14027 l 9905 14033 l 9907 14043 l 9910 14055 l 9914 14070 l 9919 14089 l 9923 14110 l 9929 14133 l 9934 14159 l 9940 14187 l 9946 14217 l 9952 14248 l 9958 14281 l 9963 14316 l 9968 14353 l 9973 14392 l 9978 14433 l 9982 14476 l 9985 14523 l 9988 14572 l 9990 14626 l 9991 14683 l 9991 14744 l 9990 14808 l 9988 14874 l 9985 14933 l 9981 14991 l 9977 15048 l 9972 15103 l 9967 15157 l 9961 15207 l 9955 15256 l 9948 15303 l 9941 15348 l 9934 15392 l 9927 15434 l 9920 15475 l 9912 15515 l 9905 15554 l 9897 15591 l 9889 15627 l 9882 15662 l 9874 15696 l 9867 15727 l 9860 15757 l 9854 15784 l 9848 15808 l 9842 15830 l 9838 15849 l 9834 15864 l 9831 15876 l 9829 15886 l 9825 15900 l gs col0 s gr gr % arrowhead 0 slj n 9842 15620 m 9834 15868 l 9957 15653 l col0 s % Polyline 2 slj gs clippath 13138 15818 m 13251 15859 l 13348 15588 l 13211 15794 l 13235 15547 l cp eoclip n 13038 14019 m 13038 14020 l 13039 14023 l 13041 14027 l 13044 14035 l 13048 14045 l 13054 14059 l 13060 14076 l 13068 14096 l 13076 14119 l 13086 14145 l 13097 14174 l 13108 14205 l 13119 14238 l 13131 14273 l 13143 14309 l 13155 14346 l 13168 14385 l 13179 14425 l 13191 14467 l 13203 14510 l 13214 14554 l 13225 14601 l 13236 14649 l 13246 14700 l 13255 14753 l 13264 14809 l 13273 14866 l 13280 14926 l 13286 14986 l 13291 15050 l 13294 15112 l 13296 15170 l 13296 15226 l 13296 15277 l 13294 15326 l 13291 15371 l 13287 15414 l 13283 15454 l 13278 15492 l 13272 15528 l 13266 15563 l 13259 15596 l 13253 15627 l 13246 15657 l 13239 15685 l 13233 15711 l 13227 15734 l 13221 15755 l 13216 15773 l 13211 15789 l 13207 15801 l 13205 15811 l 13200 15825 l gs col0 s gr gr % arrowhead 0 slj n 13235 15547 m 13211 15794 l 13348 15588 l col0 s % Polyline 2 slj gs clippath 9232 16336 m 9279 16225 l 9015 16112 l 9212 16262 l 8967 16222 l cp eoclip n 7050 16200 m 7051 16199 l 7053 16198 l 7057 16196 l 7063 16192 l 7072 16187 l 7084 16180 l 7098 16172 l 7115 16163 l 7135 16152 l 7158 16140 l 7184 16127 l 7211 16113 l 7241 16099 l 7272 16085 l 7305 16071 l 7340 16057 l 7377 16043 l 7415 16030 l 7456 16017 l 7498 16005 l 7544 15994 l 7592 15984 l 7643 15975 l 7698 15967 l 7756 15961 l 7819 15956 l 7885 15953 l 7955 15952 l 8027 15953 l 8092 15956 l 8156 15961 l 8219 15967 l 8280 15975 l 8340 15984 l 8397 15994 l 8452 16005 l 8505 16016 l 8556 16028 l 8606 16041 l 8654 16054 l 8700 16068 l 8746 16082 l 8790 16097 l 8833 16111 l 8875 16126 l 8916 16141 l 8955 16156 l 8993 16171 l 9029 16185 l 9062 16198 l 9094 16211 l 9122 16223 l 9148 16234 l 9170 16244 l 9190 16252 l 9205 16259 l 9218 16264 l 9228 16269 l 9242 16275 l gs col0 s gr gr % arrowhead 0 slj n 8967 16222 m 9212 16262 l 9015 16112 l col0 s % Polyline 2 slj gs clippath 7061 16289 m 7011 16398 l 7272 16519 l 7080 16364 l 7323 16410 l cp eoclip n 9242 16337 m 9241 16337 l 9239 16338 l 9234 16339 l 9227 16341 l 9218 16344 l 9205 16348 l 9189 16353 l 9169 16358 l 9146 16365 l 9120 16372 l 9091 16381 l 9059 16389 l 9025 16399 l 8988 16408 l 8950 16418 l 8910 16428 l 8869 16438 l 8826 16448 l 8783 16458 l 8738 16468 l 8692 16477 l 8644 16486 l 8596 16495 l 8546 16503 l 8494 16511 l 8441 16519 l 8385 16525 l 8328 16531 l 8268 16537 l 8206 16541 l 8143 16545 l 8079 16547 l 8014 16548 l 7942 16548 l 7872 16545 l 7806 16542 l 7744 16537 l 7686 16531 l 7631 16525 l 7581 16517 l 7533 16509 l 7489 16500 l 7446 16490 l 7407 16481 l 7369 16470 l 7333 16460 l 7299 16449 l 7266 16438 l 7236 16427 l 7207 16416 l 7180 16406 l 7155 16396 l 7133 16387 l 7114 16378 l 7097 16371 l 7083 16365 l 7071 16360 l 7063 16356 l 7050 16350 l gs col0 s gr gr % arrowhead 0 slj n 7323 16410 m 7080 16364 l 7272 16519 l col0 s % Polyline 2 slj gs clippath 6818 16474 m 6700 16494 l 6747 16778 l 6767 16532 l 6865 16758 l cp eoclip n 9465 18705 m 9464 18705 l 9462 18704 l 9458 18703 l 9453 18701 l 9444 18699 l 9433 18695 l 9418 18691 l 9401 18686 l 9379 18679 l 9355 18671 l 9326 18662 l 9295 18652 l 9260 18641 l 9222 18629 l 9182 18616 l 9139 18601 l 9093 18586 l 9046 18570 l 8997 18553 l 8946 18535 l 8894 18516 l 8841 18496 l 8787 18476 l 8733 18454 l 8677 18432 l 8621 18409 l 8565 18385 l 8508 18360 l 8450 18334 l 8392 18307 l 8333 18278 l 8274 18248 l 8213 18217 l 8152 18184 l 8091 18149 l 8028 18112 l 7965 18073 l 7901 18032 l 7836 17990 l 7772 17945 l 7707 17898 l 7643 17850 l 7581 17800 l 7511 17742 l 7446 17683 l 7384 17625 l 7327 17568 l 7274 17512 l 7225 17457 l 7181 17404 l 7140 17353 l 7103 17303 l 7069 17254 l 7038 17207 l 7009 17160 l 6983 17115 l 6959 17071 l 6938 17027 l 6918 16984 l 6899 16942 l 6882 16901 l 6867 16861 l 6853 16823 l 6840 16785 l 6828 16749 l 6817 16715 l 6808 16683 l 6799 16653 l 6792 16625 l 6785 16600 l 6780 16578 l 6775 16559 l 6771 16542 l 6768 16529 l 6766 16519 l 6764 16511 l 6762 16499 l gs col0 s gr gr % arrowhead 0 slj n 6865 16758 m 6767 16532 l 6747 16778 l col0 s % Polyline 2 slj gs clippath 6538 15977 m 6655 16002 l 6715 15720 l 6607 15943 l 6598 15695 l cp eoclip n 6661 14092 m 6661 14093 l 6662 14095 l 6663 14100 l 6665 14106 l 6667 14116 l 6670 14128 l 6674 14143 l 6678 14162 l 6683 14183 l 6688 14206 l 6693 14232 l 6699 14260 l 6705 14290 l 6710 14321 l 6716 14354 l 6721 14389 l 6727 14426 l 6731 14465 l 6736 14506 l 6740 14549 l 6743 14596 l 6746 14645 l 6748 14699 l 6750 14756 l 6750 14816 l 6750 14880 l 6748 14947 l 6746 15006 l 6743 15064 l 6739 15121 l 6734 15177 l 6730 15230 l 6724 15281 l 6719 15330 l 6713 15377 l 6707 15422 l 6700 15466 l 6694 15508 l 6687 15549 l 6680 15589 l 6673 15628 l 6666 15665 l 6659 15702 l 6652 15737 l 6645 15770 l 6639 15802 l 6632 15831 l 6626 15859 l 6621 15883 l 6616 15905 l 6612 15923 l 6608 15939 l 6605 15951 l 6603 15961 l 6600 15975 l gs col0 s gr gr % arrowhead 0 slj n 6598 15695 m 6607 15943 l 6715 15720 l col0 s % Polyline 2 slj gs clippath 3907 13963 m 3864 14075 l 4133 14179 l 3931 14037 l 4176 14067 l cp eoclip n 5942 13970 m 5941 13970 l 5939 13971 l 5935 13973 l 5929 13975 l 5920 13979 l 5909 13983 l 5895 13989 l 5878 13995 l 5858 14003 l 5835 14011 l 5810 14021 l 5782 14030 l 5753 14041 l 5721 14052 l 5689 14062 l 5654 14073 l 5618 14084 l 5581 14095 l 5543 14106 l 5503 14116 l 5461 14126 l 5418 14136 l 5373 14145 l 5326 14153 l 5276 14162 l 5224 14169 l 5169 14176 l 5111 14182 l 5051 14187 l 4989 14191 l 4925 14193 l 4861 14194 l 4799 14194 l 4739 14192 l 4681 14189 l 4625 14185 l 4573 14181 l 4523 14175 l 4475 14169 l 4430 14162 l 4386 14155 l 4345 14147 l 4304 14139 l 4266 14131 l 4228 14122 l 4192 14113 l 4157 14104 l 4124 14095 l 4092 14086 l 4062 14077 l 4034 14068 l 4009 14061 l 3986 14053 l 3965 14047 l 3948 14041 l 3933 14036 l 3922 14032 l 3913 14030 l 3900 14025 l gs col0 s gr gr % arrowhead 0 slj n 4176 14067 m 3931 14037 l 4133 14179 l col0 s % Polyline 2 slj gs clippath 3385 14135 m 3276 14185 l 3395 14447 l 3351 14204 l 3504 14397 l cp eoclip n 5891 16257 m 5890 16257 l 5888 16256 l 5885 16255 l 5880 16253 l 5873 16250 l 5863 16246 l 5850 16241 l 5834 16235 l 5816 16228 l 5794 16220 l 5769 16210 l 5742 16199 l 5712 16187 l 5679 16174 l 5644 16159 l 5607 16144 l 5568 16127 l 5527 16110 l 5485 16092 l 5442 16073 l 5397 16053 l 5352 16032 l 5306 16010 l 5259 15987 l 5211 15964 l 5162 15939 l 5113 15914 l 5063 15887 l 5012 15859 l 4960 15830 l 4907 15799 l 4852 15767 l 4797 15733 l 4740 15697 l 4683 15658 l 4623 15618 l 4563 15576 l 4502 15532 l 4440 15486 l 4378 15438 l 4317 15389 l 4251 15334 l 4187 15279 l 4126 15224 l 4069 15170 l 4015 15118 l 3964 15067 l 3916 15017 l 3872 14969 l 3830 14922 l 3791 14876 l 3755 14832 l 3720 14789 l 3688 14746 l 3657 14705 l 3628 14664 l 3601 14624 l 3575 14586 l 3550 14547 l 3526 14510 l 3504 14474 l 3483 14439 l 3463 14406 l 3445 14374 l 3428 14344 l 3412 14316 l 3398 14291 l 3386 14268 l 3375 14247 l 3365 14229 l 3358 14214 l 3351 14202 l 3346 14192 l 3342 14185 l 3337 14174 l gs col0 s gr gr % arrowhead 0 slj n 3504 14397 m 3351 14204 l 3395 14447 l col0 s % Polyline 2 slj gs clippath 9272 13857 m 9313 13744 l 9042 13647 l 9248 13785 l 9001 13760 l cp eoclip n 7050 13725 m 7051 13725 l 7053 13724 l 7057 13723 l 7062 13720 l 7071 13718 l 7081 13714 l 7095 13709 l 7112 13703 l 7131 13697 l 7153 13689 l 7177 13682 l 7204 13673 l 7233 13665 l 7263 13656 l 7296 13647 l 7330 13638 l 7365 13629 l 7402 13620 l 7440 13612 l 7481 13604 l 7523 13596 l 7567 13589 l 7613 13582 l 7662 13576 l 7714 13571 l 7769 13567 l 7827 13563 l 7888 13561 l 7953 13560 l 8020 13560 l 8089 13561 l 8155 13564 l 8220 13568 l 8283 13573 l 8344 13579 l 8404 13585 l 8461 13593 l 8515 13601 l 8567 13609 l 8618 13618 l 8666 13627 l 8713 13637 l 8759 13647 l 8803 13657 l 8846 13668 l 8888 13678 l 8928 13689 l 8967 13700 l 9005 13711 l 9041 13721 l 9075 13731 l 9108 13741 l 9138 13750 l 9165 13759 l 9189 13767 l 9211 13773 l 9229 13779 l 9244 13784 l 9256 13788 l 9265 13791 l 9279 13796 l gs col0 s gr gr % arrowhead 0 slj n 9001 13760 m 9248 13785 l 9042 13647 l col0 s % Polyline 2 slj gs clippath 7053 13888 m 7018 14002 l 7293 14087 l 7082 13960 l 7329 13973 l cp eoclip n 9242 13895 m 9241 13895 l 9239 13896 l 9236 13898 l 9230 13900 l 9222 13904 l 9211 13908 l 9198 13914 l 9182 13920 l 9163 13928 l 9142 13936 l 9118 13946 l 9092 13955 l 9064 13966 l 9034 13977 l 9003 13987 l 8969 13998 l 8935 14009 l 8899 14020 l 8861 14031 l 8822 14041 l 8781 14051 l 8738 14061 l 8692 14070 l 8644 14078 l 8594 14087 l 8540 14094 l 8483 14101 l 8422 14107 l 8359 14112 l 8293 14116 l 8225 14118 l 8160 14119 l 8097 14119 l 8034 14117 l 7974 14115 l 7915 14111 l 7859 14107 l 7805 14102 l 7754 14097 l 7704 14091 l 7656 14084 l 7610 14077 l 7565 14070 l 7521 14062 l 7479 14054 l 7437 14046 l 7397 14037 l 7359 14029 l 7321 14020 l 7285 14012 l 7252 14003 l 7220 13995 l 7190 13988 l 7163 13981 l 7139 13974 l 7118 13969 l 7099 13964 l 7084 13960 l 7072 13956 l 7063 13954 l 7050 13950 l gs col0 s gr gr % arrowhead 0 slj n 7329 13973 m 7082 13960 l 7293 14087 l col0 s % Polyline 2 slj gs clippath 6874 14063 m 6763 14109 l 6874 14375 l 6838 14131 l 6985 14329 l cp eoclip n 9269 16104 m 9268 16104 l 9266 16103 l 9263 16102 l 9258 16100 l 9250 16097 l 9240 16093 l 9227 16088 l 9211 16081 l 9191 16074 l 9169 16065 l 9144 16055 l 9116 16043 l 9085 16030 l 9052 16017 l 9016 16002 l 8978 15986 l 8938 15969 l 8896 15951 l 8854 15932 l 8809 15912 l 8764 15892 l 8718 15870 l 8671 15848 l 8624 15825 l 8575 15801 l 8527 15777 l 8477 15751 l 8427 15724 l 8375 15696 l 8324 15667 l 8271 15636 l 8217 15604 l 8162 15570 l 8106 15535 l 8049 15498 l 7992 15458 l 7933 15417 l 7873 15374 l 7813 15330 l 7754 15283 l 7695 15236 l 7628 15180 l 7565 15124 l 7505 15069 l 7449 15016 l 7396 14963 l 7348 14913 l 7303 14864 l 7261 14817 l 7223 14771 l 7187 14726 l 7154 14683 l 7123 14641 l 7095 14600 l 7068 14560 l 7043 14521 l 7019 14483 l 6997 14445 l 6976 14409 l 6957 14374 l 6939 14340 l 6922 14308 l 6907 14278 l 6893 14249 l 6880 14223 l 6869 14199 l 6859 14177 l 6851 14159 l 6843 14143 l 6838 14130 l 6833 14119 l 6830 14112 l 6825 14100 l gs col0 s gr gr % arrowhead 0 slj n 6985 14329 m 6838 14131 l 6874 14375 l col0 s % Polyline 2 slj gs clippath 12572 13782 m 12613 13669 l 12342 13572 l 12548 13710 l 12301 13685 l cp eoclip n 10350 13650 m 10351 13650 l 10353 13649 l 10357 13648 l 10362 13645 l 10371 13643 l 10381 13639 l 10395 13634 l 10412 13628 l 10431 13622 l 10453 13614 l 10477 13607 l 10504 13598 l 10533 13590 l 10563 13581 l 10596 13572 l 10630 13563 l 10665 13554 l 10702 13545 l 10740 13537 l 10781 13529 l 10823 13521 l 10867 13514 l 10913 13507 l 10962 13501 l 11014 13496 l 11069 13492 l 11127 13488 l 11188 13486 l 11253 13485 l 11320 13485 l 11389 13486 l 11455 13489 l 11520 13493 l 11583 13498 l 11644 13504 l 11704 13510 l 11761 13518 l 11815 13526 l 11867 13534 l 11918 13543 l 11966 13552 l 12013 13562 l 12059 13572 l 12103 13582 l 12146 13593 l 12188 13603 l 12228 13614 l 12267 13625 l 12305 13636 l 12341 13646 l 12375 13656 l 12408 13666 l 12438 13675 l 12465 13684 l 12489 13692 l 12511 13698 l 12529 13704 l 12544 13709 l 12556 13713 l 12565 13716 l 12579 13721 l gs col0 s gr gr % arrowhead 0 slj n 12301 13685 m 12548 13710 l 12342 13572 l col0 s % Polyline 2 slj gs clippath 10429 13813 m 10391 13927 l 10664 14017 l 10456 13885 l 10702 13903 l cp eoclip n 12542 13820 m 12541 13820 l 12539 13821 l 12535 13823 l 12530 13825 l 12521 13829 l 12510 13833 l 12496 13839 l 12480 13845 l 12460 13853 l 12438 13861 l 12414 13871 l 12387 13880 l 12358 13891 l 12328 13902 l 12296 13912 l 12262 13923 l 12227 13934 l 12190 13945 l 12152 13956 l 12112 13966 l 12071 13976 l 12028 13986 l 11983 13995 l 11935 14003 l 11885 14012 l 11832 14019 l 11776 14026 l 11717 14032 l 11655 14037 l 11591 14041 l 11525 14043 l 11459 14044 l 11394 14044 l 11331 14042 l 11270 14039 l 11211 14035 l 11156 14031 l 11103 14025 l 11052 14019 l 11003 14012 l 10957 14005 l 10912 13997 l 10868 13989 l 10826 13981 l 10785 13972 l 10746 13963 l 10708 13954 l 10671 13945 l 10637 13936 l 10604 13927 l 10573 13918 l 10545 13911 l 10520 13903 l 10497 13897 l 10478 13891 l 10462 13886 l 10449 13882 l 10440 13880 l 10425 13875 l gs col0 s gr gr % arrowhead 0 slj n 10702 13903 m 10456 13885 l 10664 14017 l col0 s % Polyline 2 slj gs clippath 12533 16261 m 12578 16149 l 12310 16043 l 12511 16188 l 12265 16154 l cp eoclip n 10425 16125 m 10426 16124 l 10428 16123 l 10431 16121 l 10437 16117 l 10444 16112 l 10454 16105 l 10467 16097 l 10482 16088 l 10500 16077 l 10520 16065 l 10542 16052 l 10567 16038 l 10593 16024 l 10621 16010 l 10651 15996 l 10682 15982 l 10716 15968 l 10751 15955 l 10788 15942 l 10827 15930 l 10869 15919 l 10913 15909 l 10961 15900 l 11013 15892 l 11068 15886 l 11127 15881 l 11191 15878 l 11257 15877 l 11327 15878 l 11390 15881 l 11452 15886 l 11514 15892 l 11574 15900 l 11632 15909 l 11688 15919 l 11743 15930 l 11796 15941 l 11847 15953 l 11896 15966 l 11944 15979 l 11991 15993 l 12037 16007 l 12082 16022 l 12125 16036 l 12168 16051 l 12209 16066 l 12249 16081 l 12287 16096 l 12324 16110 l 12358 16123 l 12390 16136 l 12419 16148 l 12445 16159 l 12468 16169 l 12488 16177 l 12505 16184 l 12518 16189 l 12527 16194 l 12542 16200 l gs col0 s gr gr % arrowhead 0 slj n 12265 16154 m 12511 16188 l 12310 16043 l col0 s % Polyline 2 slj gs clippath 10361 16214 m 10311 16323 l 10572 16444 l 10380 16289 l 10623 16335 l cp eoclip n 12542 16262 m 12541 16262 l 12539 16263 l 12534 16264 l 12527 16266 l 12518 16269 l 12505 16273 l 12489 16278 l 12469 16283 l 12446 16290 l 12420 16297 l 12391 16306 l 12359 16314 l 12325 16324 l 12288 16333 l 12250 16343 l 12210 16353 l 12169 16363 l 12126 16373 l 12083 16383 l 12038 16393 l 11992 16402 l 11944 16411 l 11896 16420 l 11846 16428 l 11794 16436 l 11741 16444 l 11685 16450 l 11628 16456 l 11568 16462 l 11506 16466 l 11443 16470 l 11379 16472 l 11314 16473 l 11242 16473 l 11172 16470 l 11106 16467 l 11044 16462 l 10986 16456 l 10931 16450 l 10881 16442 l 10833 16434 l 10789 16425 l 10746 16415 l 10707 16406 l 10669 16395 l 10633 16385 l 10599 16374 l 10566 16363 l 10536 16352 l 10507 16341 l 10480 16331 l 10455 16321 l 10433 16312 l 10414 16303 l 10397 16296 l 10383 16290 l 10371 16285 l 10363 16281 l 10350 16275 l gs col0 s gr gr % arrowhead 0 slj n 10623 16335 m 10380 16289 l 10572 16444 l col0 s % Polyline 2 slj gs clippath 10169 13952 m 10064 14009 l 10202 14262 l 10140 14023 l 10307 14204 l cp eoclip n 12600 16050 m 12599 16050 l 12597 16049 l 12594 16048 l 12588 16046 l 12580 16042 l 12569 16038 l 12556 16033 l 12539 16027 l 12519 16019 l 12497 16010 l 12471 15999 l 12442 15988 l 12410 15975 l 12376 15961 l 12340 15946 l 12302 15929 l 12262 15912 l 12220 15894 l 12178 15875 l 12134 15855 l 12089 15834 l 12043 15812 l 11996 15789 l 11948 15765 l 11900 15740 l 11850 15714 l 11800 15686 l 11748 15657 l 11696 15626 l 11642 15594 l 11587 15560 l 11531 15524 l 11473 15485 l 11414 15445 l 11353 15402 l 11292 15357 l 11229 15309 l 11166 15260 l 11104 15209 l 11040 15155 l 10978 15100 l 10918 15046 l 10862 14992 l 10809 14940 l 10759 14889 l 10712 14840 l 10668 14792 l 10627 14745 l 10588 14700 l 10552 14656 l 10517 14612 l 10485 14570 l 10454 14528 l 10425 14488 l 10397 14448 l 10370 14408 l 10345 14370 l 10321 14333 l 10298 14297 l 10276 14262 l 10256 14228 l 10237 14196 l 10219 14166 l 10203 14138 l 10188 14112 l 10175 14089 l 10164 14068 l 10154 14050 l 10146 14035 l 10139 14022 l 10134 14012 l 10130 14005 l 10124 13994 l gs col0 s gr gr % arrowhead 0 slj n 10307 14204 m 10140 14023 l 10202 14262 l col0 s % Polyline 2 slj gs clippath 5972 13932 m 6013 13819 l 5742 13722 l 5948 13860 l 5701 13835 l cp eoclip n 3825 13875 m 3826 13874 l 3828 13873 l 3832 13871 l 3838 13868 l 3847 13863 l 3858 13857 l 3873 13850 l 3890 13841 l 3910 13831 l 3932 13821 l 3957 13809 l 3985 13797 l 4014 13784 l 4045 13771 l 4078 13758 l 4112 13745 l 4148 13732 l 4186 13720 l 4226 13708 l 4268 13697 l 4313 13686 l 4360 13676 l 4411 13667 l 4465 13658 l 4523 13651 l 4584 13645 l 4649 13640 l 4718 13637 l 4789 13636 l 4853 13637 l 4916 13639 l 4978 13642 l 5038 13647 l 5096 13653 l 5152 13659 l 5206 13667 l 5258 13675 l 5308 13683 l 5357 13693 l 5404 13702 l 5450 13713 l 5494 13723 l 5537 13734 l 5580 13745 l 5621 13756 l 5660 13768 l 5699 13779 l 5736 13790 l 5770 13801 l 5803 13812 l 5834 13822 l 5862 13831 l 5887 13839 l 5909 13847 l 5928 13853 l 5943 13858 l 5956 13863 l 5965 13866 l 5979 13871 l gs col0 s gr gr % arrowhead 0 slj n 5701 13835 m 5948 13860 l 5742 13722 l col0 s % Polyline 2 slj gs clippath 10116 16394 m 10000 16424 l 10070 16703 l 10070 16456 l 10186 16674 l cp eoclip n 12600 18600 m 12599 18600 l 12597 18599 l 12593 18598 l 12587 18596 l 12579 18593 l 12567 18590 l 12552 18585 l 12534 18579 l 12513 18572 l 12488 18564 l 12460 18555 l 12428 18544 l 12393 18532 l 12356 18520 l 12316 18506 l 12273 18491 l 12229 18475 l 12183 18458 l 12135 18440 l 12086 18421 l 12036 18402 l 11985 18381 l 11933 18360 l 11880 18337 l 11827 18314 l 11773 18289 l 11718 18264 l 11663 18237 l 11607 18209 l 11551 18179 l 11493 18148 l 11435 18115 l 11376 18080 l 11316 18043 l 11255 18004 l 11193 17963 l 11131 17920 l 11068 17874 l 11005 17826 l 10942 17776 l 10881 17725 l 10816 17667 l 10753 17609 l 10695 17552 l 10640 17495 l 10590 17440 l 10543 17386 l 10500 17333 l 10460 17282 l 10423 17232 l 10390 17183 l 10359 17136 l 10330 17089 l 10304 17044 l 10280 16999 l 10257 16955 l 10236 16913 l 10217 16871 l 10199 16829 l 10182 16789 l 10167 16750 l 10153 16712 l 10140 16676 l 10128 16642 l 10117 16609 l 10107 16579 l 10098 16551 l 10091 16526 l 10084 16504 l 10078 16484 l 10074 16468 l 10070 16454 l 10067 16444 l 10065 16436 l 10062 16424 l gs col0 s gr gr % arrowhead 0 slj n 10186 16674 m 10070 16456 l 10070 16703 l col0 s /Times-Roman ff 405.00 scf sf 3075 14025 m gs 1 -1 sc (0H) col0 sh gr /Times-Roman ff 405.00 scf sf 6075 16350 m gs 1 -1 sc (1H,2) col0 sh gr /Times-Roman ff 405.00 scf sf 6075 13950 m gs 1 -1 sc (1H,1) col0 sh gr /Times-Roman ff 360.00 scf sf 9300 13875 m gs 1 -1 sc (2H,1,1) col0 sh gr /Times-Roman ff 360.00 scf sf 12600 13800 m gs 1 -1 sc (3H,1,1) col0 sh gr /Times-Roman ff 360.00 scf sf 9300 16275 m gs 1 -1 sc (2H,1,2) col0 sh gr /Times-Roman ff 360.00 scf sf 12675 16275 m gs 1 -1 sc (3H,1,2) col0 sh gr /Times-Roman ff 300.00 scf sf 8295 18075 m gs 1 -1 sc (H) col0 sh gr /Times-Roman ff 300.00 scf sf 8213 17732 m gs 1 -1 sc (\(2\)) col0 sh gr /Symbol ff 390.00 scf sf 7800 17904 m gs 1 -1 sc (2m) col0 sh gr % Polyline 2 slj gs clippath 9913 18452 m 10030 18476 l 10086 18194 l 9981 18418 l 9969 18170 l cp eoclip n 9889 16436 m 9889 16437 l 9890 16439 l 9892 16443 l 9894 16449 l 9897 16457 l 9901 16468 l 9906 16482 l 9912 16499 l 9919 16518 l 9927 16540 l 9935 16564 l 9944 16590 l 9953 16618 l 9962 16648 l 9972 16680 l 9981 16713 l 9990 16748 l 10000 16784 l 10008 16822 l 10017 16862 l 10026 16905 l 10034 16950 l 10041 16998 l 10049 17049 l 10055 17103 l 10062 17161 l 10067 17222 l 10072 17287 l 10075 17353 l 10077 17416 l 10078 17479 l 10078 17540 l 10078 17599 l 10076 17655 l 10074 17710 l 10071 17762 l 10067 17812 l 10064 17861 l 10059 17907 l 10054 17952 l 10049 17996 l 10044 18039 l 10038 18080 l 10033 18120 l 10027 18159 l 10021 18196 l 10015 18232 l 10009 18265 l 10004 18297 l 9999 18326 l 9994 18352 l 9990 18375 l 9986 18395 l 9983 18412 l 9980 18425 l 9978 18435 l 9975 18450 l gs col0 s gr gr % arrowhead 0 slj n 9969 18170 m 9981 18418 l 10086 18194 l col0 s % Polyline 2 slj gs clippath 13139 18513 m 13248 18563 l 13369 18302 l 13214 18495 l 13260 18251 l cp eoclip n 13124 16473 m 13124 16474 l 13125 16477 l 13127 16481 l 13130 16488 l 13133 16499 l 13138 16512 l 13144 16529 l 13152 16549 l 13160 16572 l 13169 16599 l 13179 16629 l 13190 16661 l 13202 16695 l 13213 16731 l 13225 16769 l 13237 16808 l 13249 16849 l 13261 16891 l 13273 16934 l 13284 16979 l 13296 17025 l 13306 17072 l 13316 17121 l 13326 17172 l 13335 17226 l 13344 17281 l 13352 17339 l 13358 17399 l 13364 17461 l 13369 17525 l 13372 17589 l 13374 17657 l 13374 17722 l 13372 17785 l 13369 17844 l 13365 17899 l 13359 17951 l 13353 18000 l 13346 18046 l 13339 18089 l 13330 18130 l 13321 18169 l 13312 18206 l 13302 18242 l 13292 18276 l 13282 18308 l 13272 18338 l 13262 18367 l 13253 18394 l 13243 18419 l 13235 18441 l 13227 18461 l 13220 18478 l 13214 18492 l 13209 18503 l 13206 18512 l 13200 18525 l gs col0 s gr gr % arrowhead 0 slj n 13260 18251 m 13214 18495 l 13369 18302 l col0 s % Polyline 2 slj gs clippath 12561 18877 m 12575 18758 l 12289 18724 l 12521 18812 l 12275 18843 l cp eoclip n 10575 18750 m 10576 18750 l 10577 18749 l 10580 18748 l 10585 18747 l 10591 18745 l 10600 18742 l 10611 18739 l 10624 18735 l 10639 18731 l 10656 18727 l 10675 18723 l 10697 18718 l 10720 18714 l 10745 18710 l 10773 18706 l 10804 18702 l 10838 18699 l 10875 18696 l 10916 18693 l 10962 18691 l 11014 18690 l 11071 18689 l 11134 18689 l 11203 18690 l 11277 18692 l 11336 18694 l 11396 18697 l 11455 18700 l 11514 18704 l 11572 18708 l 11629 18712 l 11684 18716 l 11739 18721 l 11791 18726 l 11843 18731 l 11894 18736 l 11944 18741 l 11993 18746 l 12041 18752 l 12089 18757 l 12135 18762 l 12181 18768 l 12225 18773 l 12267 18779 l 12308 18784 l 12347 18789 l 12382 18793 l 12415 18798 l 12445 18801 l 12471 18805 l 12493 18808 l 12511 18810 l 12526 18812 l 12537 18814 l 12554 18816 l gs col0 s gr gr % arrowhead 0 slj n 12275 18843 m 12521 18812 l 12289 18724 l col0 s /Times-Roman ff 360.00 scf sf 9450 18900 m gs 1 -1 sc (2H,2,2) col0 sh gr /Times-Roman ff 360.00 scf sf 12600 18900 m gs 1 -1 sc (3H,2,2) col0 sh gr /Times-Roman ff 330.00 scf sf 8550 11100 m gs 1 -1 sc (2 possible) col0 sh gr /Times-Roman ff 330.00 scf sf 9975 11100 m gs 1 -1 sc (states) col0 sh gr /Times-Roman ff 330.00 scf sf 8550 11520 m gs 1 -1 sc (for start of) col0 sh gr /Times-Roman ff 330.00 scf sf 8550 11940 m gs 1 -1 sc (busy periods.) col0 sh gr /Times-Roman ff 330.00 scf sf 5025 11175 m gs 1 -1 sc (2 possible) col0 sh gr /Times-Roman ff 330.00 scf sf 6450 11175 m gs 1 -1 sc (states) col0 sh gr /Times-Roman ff 330.00 scf sf 5025 11595 m gs 1 -1 sc (for end of) col0 sh gr /Times-Roman ff 330.00 scf sf 5025 12015 m gs 1 -1 sc (busy periods.) col0 sh gr % Polyline gs clippath 9483 12570 m 9583 12504 l 9423 12264 l 9507 12497 l 9323 12330 l cp eoclip n 9225 12075 m 9525 12525 l gs col0 s gr gr % arrowhead n 9323 12330 m 9507 12497 l 9423 12264 l col0 s % Polyline gs clippath 6333 12645 m 6433 12579 l 6273 12339 l 6357 12572 l 6173 12405 l cp eoclip n 6075 12150 m 6375 12600 l gs col0 s gr gr % arrowhead n 6173 12405 m 6357 12572 l 6273 12339 l col0 s % here ends figure; F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psEnd rs showpage %%EndDocument endTexFig 938 2059 a FB(\(b\))2078 387 y 14654098 12314374 0 0 42495016 35456368 startTexFig 2078 387 a %%BeginDocument: ../../figures/3column.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: 3column.fig %%Creator: fig2dev Version 3.2 Patchlevel 4 %%CreationDate: Sun Jan 30 14:23:40 2005 %%For: harchol@mor.sync.cs.cmu.edu (Mor Harchol-Balter) %%BoundingBox: 0 0 646 539 %%Magnification: 1.0000 %%EndComments /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 539 moveto 0 0 lineto 646 0 lineto 646 539 lineto closepath clip newpath -38.1 523.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /reencdict 12 dict def /ReEncode { reencdict begin /newcodesandnames exch def /newfontname exch def /basefontname exch def /basefontdict basefontname findfont def /newfont basefontdict maxlength dict def basefontdict { exch dup /FID ne { dup /Encoding eq { exch dup length array copy newfont 3 1 roll put } { exch newfont 3 1 roll put } ifelse } { pop pop } ifelse } forall newfont /FontName newfontname put newcodesandnames aload pop 128 1 255 { newfont /Encoding get exch /.notdef put } for newcodesandnames length 2 idiv { newfont /Encoding get 3 1 roll put } repeat newfontname newfont definefont pop end } def /isovec [ 8#055 /minus 8#200 /grave 8#201 /acute 8#202 /circumflex 8#203 /tilde 8#204 /macron 8#205 /breve 8#206 /dotaccent 8#207 /dieresis 8#210 /ring 8#211 /cedilla 8#212 /hungarumlaut 8#213 /ogonek 8#214 /caron 8#220 /dotlessi 8#230 /oe 8#231 /OE 8#240 /space 8#241 /exclamdown 8#242 /cent 8#243 /sterling 8#244 /currency 8#245 /yen 8#246 /brokenbar 8#247 /section 8#250 /dieresis 8#251 /copyright 8#252 /ordfeminine 8#253 /guillemotleft 8#254 /logicalnot 8#255 /hyphen 8#256 /registered 8#257 /macron 8#260 /degree 8#261 /plusminus 8#262 /twosuperior 8#263 /threesuperior 8#264 /acute 8#265 /mu 8#266 /paragraph 8#267 /periodcentered 8#270 /cedilla 8#271 /onesuperior 8#272 /ordmasculine 8#273 /guillemotright 8#274 /onequarter 8#275 /onehalf 8#276 /threequarters 8#277 /questiondown 8#300 /Agrave 8#301 /Aacute 8#302 /Acircumflex 8#303 /Atilde 8#304 /Adieresis 8#305 /Aring 8#306 /AE 8#307 /Ccedilla 8#310 /Egrave 8#311 /Eacute 8#312 /Ecircumflex 8#313 /Edieresis 8#314 /Igrave 8#315 /Iacute 8#316 /Icircumflex 8#317 /Idieresis 8#320 /Eth 8#321 /Ntilde 8#322 /Ograve 8#323 /Oacute 8#324 /Ocircumflex 8#325 /Otilde 8#326 /Odieresis 8#327 /multiply 8#330 /Oslash 8#331 /Ugrave 8#332 /Uacute 8#333 /Ucircumflex 8#334 /Udieresis 8#335 /Yacute 8#336 /Thorn 8#337 /germandbls 8#340 /agrave 8#341 /aacute 8#342 /acircumflex 8#343 /atilde 8#344 /adieresis 8#345 /aring 8#346 /ae 8#347 /ccedilla 8#350 /egrave 8#351 /eacute 8#352 /ecircumflex 8#353 /edieresis 8#354 /igrave 8#355 /iacute 8#356 /icircumflex 8#357 /idieresis 8#360 /eth 8#361 /ntilde 8#362 /ograve 8#363 /oacute 8#364 /ocircumflex 8#365 /otilde 8#366 /odieresis 8#367 /divide 8#370 /oslash 8#371 /ugrave 8#372 /uacute 8#373 /ucircumflex 8#374 /udieresis 8#375 /yacute 8#376 /thorn 8#377 /ydieresis] def /Times-Roman /Times-Roman-iso isovec ReEncode /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psBegin 10 setmiterlimit 0 slj 0 slc 0.06000 0.06000 sc % % Fig objects follow % % % here starts figure with depth 50 /Times-Roman-iso ff 330.00 scf sf 6450 4350 m gs 1 -1 sc (B) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 6675 4425 m gs 1 -1 sc (2) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 6675 5400 m gs 1 -1 sc (B) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 6900 5475 m gs 1 -1 sc (1) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 6975 6750 m gs 1 -1 sc (B) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 7200 6825 m gs 1 -1 sc (4) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 7200 7725 m gs 1 -1 sc (B) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 7425 7800 m gs 1 -1 sc (3) col0 sh gr /Symbol ff 330.00 scf sf 6750 1425 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 6900 1500 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 5325 1425 m gs 1 -1 sc (m) col0 sh gr /Times-Roman-iso ff 255.00 scf sf 5550 1275 m gs 1 -1 sc (\(1\)) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5475 1575 m gs 1 -1 sc (H) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 5850 1425 m gs 1 -1 sc (q) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 6000 1575 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 5475 2775 m gs 1 -1 sc (m) col0 sh gr /Times-Roman-iso ff 255.00 scf sf 5700 2625 m gs 1 -1 sc (\(1\)) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5625 2925 m gs 1 -1 sc (H) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 6000 2775 m gs 1 -1 sc (p) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 6150 2925 m gs 1 -1 sc (H) col0 sh gr % Arc 15.000 slw gs clippath 6598 627 m 6573 714 l 6724 757 l 6622 681 l 6749 671 l cp eoclip [90] 0 sd n 8100.0 -4212.5 5112.5 72.9 107.1 arc gs col0 s gr gr [] 0 sd % arrowhead n 6749 671 m 6622 681 l 6724 757 l col0 s % Arc gs clippath 9601 497 m 9626 410 l 9475 367 l 9578 444 l 9450 453 l cp eoclip [90] 0 sd n 8100.0 5337.5 5112.5 -107.1 -72.9 arc gs col0 s gr gr [] 0 sd % arrowhead n 9450 453 m 9578 444 l 9475 367 l col0 s % Arc gs clippath 6523 2127 m 6498 2214 l 6649 2257 l 6547 2181 l 6674 2171 l cp eoclip [90] 0 sd n 8025.0 -2712.5 5112.5 72.9 107.1 arc gs col0 s gr gr [] 0 sd % arrowhead n 6674 2171 m 6547 2181 l 6649 2257 l col0 s % Arc gs clippath 9526 1997 m 9551 1910 l 9400 1867 l 9503 1944 l 9375 1953 l cp eoclip [90] 0 sd n 8025.0 6837.5 5112.5 -107.1 -72.9 arc gs col0 s gr gr [] 0 sd % arrowhead n 9375 1953 m 9503 1944 l 9400 1867 l col0 s % Arc gs clippath 6523 3327 m 6498 3414 l 6649 3457 l 6547 3381 l 6674 3371 l cp eoclip [90] 0 sd n 8025.0 -1512.5 5112.5 72.9 107.1 arc gs col0 s gr gr [] 0 sd % arrowhead n 6674 3371 m 6547 3381 l 6649 3457 l col0 s % Arc gs clippath 9526 3197 m 9551 3110 l 9400 3067 l 9503 3144 l 9375 3153 l cp eoclip [90] 0 sd n 8025.0 8037.5 5112.5 -107.1 -72.9 arc gs col0 s gr gr [] 0 sd % arrowhead n 9375 3153 m 9503 3144 l 9400 3067 l col0 s % Ellipse n 5962 4800 633 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 5962 600 633 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 5962 2100 633 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 5961 3298 633 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 5962 6000 633 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 5962 7200 633 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 5962 8400 633 300 0 360 DrawEllipse gs col0 s gr % Arc gs clippath 2398 702 m 2373 789 l 2524 832 l 2422 756 l 2549 746 l cp eoclip [90] 0 sd n 3900.0 -4137.5 5112.5 72.9 107.1 arc gs col0 s gr gr [] 0 sd % arrowhead n 2549 746 m 2422 756 l 2524 832 l col0 s % Arc gs clippath 5401 572 m 5426 485 l 5275 442 l 5378 519 l 5250 528 l cp eoclip [90] 0 sd n 3900.0 5412.5 5112.5 -107.1 -72.9 arc gs col0 s gr gr [] 0 sd % arrowhead n 5250 528 m 5378 519 l 5275 442 l col0 s % Arc gs clippath 2398 2202 m 2373 2289 l 2524 2332 l 2422 2256 l 2549 2246 l cp eoclip [90] 0 sd n 3900.0 -2637.5 5112.5 72.9 107.1 arc gs col0 s gr gr [] 0 sd % arrowhead n 2549 2246 m 2422 2256 l 2524 2332 l col0 s % Arc gs clippath 5401 2072 m 5426 1985 l 5275 1942 l 5378 2019 l 5250 2028 l cp eoclip [90] 0 sd n 3900.0 6912.5 5112.5 -107.1 -72.9 arc gs col0 s gr gr [] 0 sd % arrowhead n 5250 2028 m 5378 2019 l 5275 1942 l col0 s % Arc gs clippath 2398 3402 m 2373 3489 l 2524 3532 l 2422 3456 l 2549 3446 l cp eoclip [90] 0 sd n 3900.0 -1437.5 5112.5 72.9 107.1 arc gs col0 s gr gr [] 0 sd % arrowhead n 2549 3446 m 2422 3456 l 2524 3532 l col0 s % Arc gs clippath 5401 3272 m 5426 3185 l 5275 3142 l 5378 3219 l 5250 3228 l cp eoclip [90] 0 sd n 3900.0 8112.5 5112.5 -107.1 -72.9 arc gs col0 s gr gr [] 0 sd % arrowhead n 5250 3228 m 5378 3219 l 5275 3142 l col0 s /Symbol ff 330.00 scf sf 4350 1350 m gs 1 -1 sc (m) col0 sh gr /Times-Roman-iso ff 255.00 scf sf 4575 1200 m gs 1 -1 sc (\(2\)) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4500 1500 m gs 1 -1 sc (H) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 735 8505 m gs 1 -1 sc (2 H,1,2,\(u-1\)L) col0 sh gr /Symbol ff 360.00 scf sf 7860 34 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 315.00 scf sf 8075 140 m gs 1 -1 sc (L) col0 sh gr /Symbol ff 360.00 scf sf 3569 125 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 315.00 scf sf 3784 231 m gs 1 -1 sc (L) col0 sh gr % Arc gs clippath 6323 1841 m 6404 1929 l 6584 1762 l 6412 1841 l 6503 1674 l cp eoclip n 6016.1 1321.7 659.5 -48.9 57.0 arc gs col0 s gr gr % arrowhead 30.000 slw n 6503 1674 m 6412 1841 l 6584 1762 l col0 s % Arc 15.000 slw gs clippath 5530 3133 m 5595 3032 l 5388 2899 l 5507 3048 l 5323 3000 l cp eoclip n 5681.2 2662.5 432.9 -107.7 107.7 arcn gs col0 s gr gr % arrowhead 30.000 slw n 5323 3000 m 5507 3048 l 5388 2899 l col0 s % Arc 90.000 slw gs clippath 6648 2172 m 6528 2307 l 6740 2496 l 6666 2309 l 6860 2361 l cp eoclip n 5100.0 4125.0 2401.2 51.3 -51.3 arcn gs col0 s gr gr % arrowhead 75.000 slw n 6860 2361 m 6666 2309 l 6740 2496 l col0 s % Arc 90.000 slw gs clippath 6614 3209 m 6557 3380 l 6826 3470 l 6684 3328 l 6883 3299 l cp eoclip n 6082.5 5250.0 2017.5 75.1 -75.1 arcn gs col0 s gr gr % arrowhead 75.000 slw n 6883 3299 m 6684 3328 l 6826 3470 l col0 s % Arc 90.000 slw gs clippath 6624 2011 m 6548 2175 l 6806 2294 l 6681 2137 l 6882 2130 l cp eoclip n 5287.5 5250.0 3412.5 67.4 -67.4 arcn gs col0 s gr gr % arrowhead 75.000 slw n 6882 2130 m 6681 2137 l 6806 2294 l col0 s % Arc 15.000 slw gs clippath 9526 4697 m 9551 4610 l 9400 4567 l 9503 4644 l 9375 4653 l cp eoclip [90] 0 sd n 8025.0 9537.5 5112.5 -107.1 -72.9 arc gs col0 s gr gr [] 0 sd % arrowhead n 9375 4653 m 9503 4644 l 9400 4567 l col0 s % Arc gs clippath 9526 5897 m 9551 5810 l 9400 5767 l 9503 5844 l 9375 5853 l cp eoclip [90] 0 sd n 8025.0 10737.5 5112.5 -107.1 -72.9 arc gs col0 s gr gr [] 0 sd % arrowhead n 9375 5853 m 9503 5844 l 9400 5767 l col0 s % Arc gs clippath 9526 7097 m 9551 7010 l 9400 6967 l 9503 7044 l 9375 7053 l cp eoclip [90] 0 sd n 8025.0 11937.5 5112.5 -107.1 -72.9 arc gs col0 s gr gr [] 0 sd % arrowhead n 9375 7053 m 9503 7044 l 9400 6967 l col0 s % Arc gs clippath 9526 8372 m 9551 8285 l 9400 8242 l 9503 8319 l 9375 8328 l cp eoclip [90] 0 sd n 8025.0 13212.5 5112.5 -107.1 -72.9 arc gs col0 s gr gr [] 0 sd % arrowhead n 9375 8328 m 9503 8319 l 9400 8242 l col0 s % Arc gs clippath 5401 5897 m 5426 5810 l 5275 5767 l 5378 5844 l 5250 5853 l cp eoclip [90] 0 sd n 3900.0 10737.5 5112.5 -107.1 -72.9 arc gs col0 s gr gr [] 0 sd % arrowhead n 5250 5853 m 5378 5844 l 5275 5767 l col0 s % Arc gs clippath 5401 7172 m 5426 7085 l 5275 7042 l 5378 7119 l 5250 7128 l cp eoclip [90] 0 sd n 3900.0 12012.5 5112.5 -107.1 -72.9 arc gs col0 s gr gr [] 0 sd % arrowhead n 5250 7128 m 5378 7119 l 5275 7042 l col0 s % Arc gs clippath 5316 8461 m 5361 8349 l 5133 8258 l 5278 8381 l 5088 8369 l cp eoclip n 6231.2 5850.0 2706.2 -109.6 109.6 arcn gs col0 s gr gr % arrowhead 30.000 slw n 5088 8369 m 5278 8381 l 5133 8258 l col0 s % Arc 15.000 slw gs clippath 5320 7261 m 5357 7147 l 5124 7071 l 5277 7184 l 5087 7185 l cp eoclip n 5835.0 5250.0 2015.6 -104.7 104.7 arcn gs col0 s gr gr % arrowhead 30.000 slw n 5087 7185 m 5277 7184 l 5124 7071 l col0 s % Arc 15.000 slw gs clippath 5331 6061 m 5348 5942 l 5104 5908 l 5275 5993 l 5088 6027 l cp eoclip n 5481.2 4050.0 1956.2 -94.6 94.6 arcn gs col0 s gr gr % arrowhead 30.000 slw n 5088 6027 m 5275 5993 l 5104 5908 l col0 s % Arc 15.000 slw gs clippath 5327 4861 m 5351 4744 l 5110 4695 l 5275 4790 l 5086 4812 l cp eoclip n 5484.4 3450.0 1359.4 -96.7 96.7 arcn gs col0 s gr gr % arrowhead 30.000 slw n 5086 4812 m 5275 4790 l 5110 4695 l col0 s % Arc 15.000 slw gs clippath 5593 868 m 5532 765 l 5320 891 l 5506 851 l 5382 994 l cp eoclip n 5742.2 1366.4 574.5 117.7 -109.5 arc gs col0 s gr gr % arrowhead 30.000 slw n 5382 994 m 5506 851 l 5320 891 l col0 s % Arc 15.000 slw gs clippath 5401 8297 m 5426 8210 l 5275 8167 l 5378 8244 l 5250 8253 l cp eoclip [90] 0 sd n 3900.0 13137.5 5112.5 -107.1 -72.9 arc gs col0 s gr gr [] 0 sd % arrowhead n 5250 8253 m 5378 8244 l 5275 8167 l col0 s % Arc gs clippath 5444 718 m 5381 615 l 5172 743 l 5357 701 l 5234 845 l cp eoclip n 6022.5 1912.5 1385.2 116.7 -116.7 arc gs col0 s gr gr % arrowhead 30.000 slw n 5234 845 m 5357 701 l 5172 743 l col0 s % Arc 90.000 slw gs clippath 6562 3366 m 6462 3516 l 6698 3673 l 6599 3499 l 6798 3524 l cp eoclip n 6214.8 4144.3 760.5 59.6 -65.9 arcn gs col0 s gr gr % arrowhead 75.000 slw n 6798 3524 m 6599 3499 l 6698 3673 l col0 s % Arc 15.000 slw gs clippath 5401 4772 m 5426 4685 l 5275 4642 l 5378 4719 l 5250 4728 l cp eoclip [90] 0 sd n 3900.0 9612.5 5112.5 -107.1 -72.9 arc gs col0 s gr gr [] 0 sd % arrowhead n 5250 4728 m 5378 4719 l 5275 4642 l col0 s % Ellipse [90] 0 sd n 1573 4800 865 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10407 510 865 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10407 2010 865 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10405 3208 865 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 1573 600 865 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 1573 2100 865 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 1571 3298 865 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10407 8310 865 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 1573 6000 865 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 1557 7200 865 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 1515 8403 865 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10348 4725 865 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10407 5910 865 300 0 360 DrawEllipse gs col0 s gr [] 0 sd % Ellipse [90] 0 sd n 10407 7110 865 300 0 360 DrawEllipse gs col0 s gr [] 0 sd /Times-Roman-iso ff 330.00 scf sf 840 690 m gs 1 -1 sc (0H,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 750 2205 m gs 1 -1 sc (1H,1,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 750 3405 m gs 1 -1 sc (1H,2,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 816 7303 m gs 1 -1 sc (2 H,1,2,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 942 7217 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 875 8405 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 791 6117 m gs 1 -1 sc (2 H,1,1,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 942 6003 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 789 4902 m gs 1 -1 sc (2 H,1,1,\(u-1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 914 4818 m gs 1 -1 sc (+) col0 sh gr /Symbol ff 330.00 scf sf 4500 5550 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 4875 5475 m gs 1 -1 sc (p) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5025 5625 m gs 1 -1 sc (\(1,1\),1) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4650 5625 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 4575 4350 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 4950 4275 m gs 1 -1 sc (p) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5100 4425 m gs 1 -1 sc (\(1,1\),2) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4725 4425 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 4575 6675 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 4950 6600 m gs 1 -1 sc (p) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5100 6750 m gs 1 -1 sc (\(1,2\),2) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4725 6750 m gs 1 -1 sc (H) col0 sh gr /Symbol ff 330.00 scf sf 4650 7950 m gs 1 -1 sc (l) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 5025 7875 m gs 1 -1 sc (p) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5175 8025 m gs 1 -1 sc (\(1,2\),1) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 4800 8025 m gs 1 -1 sc (H) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 5550 705 m gs 1 -1 sc (0H,0L) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 5445 2220 m gs 1 -1 sc (1H,1,uL) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 5415 3420 m gs 1 -1 sc (1H,2,uL) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5428 4911 m gs 1 -1 sc (2 H,1,1,uL) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5562 4801 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5428 6103 m gs 1 -1 sc (2 H,1,1,uL) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5548 6006 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5575 7225 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5534 8417 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5441 7322 m gs 1 -1 sc (2 H,1,2,uL) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 5414 8514 m gs 1 -1 sc (2 H,1,2,uL) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 9674 600 m gs 1 -1 sc (0H,\(u+1\)L) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 9584 2115 m gs 1 -1 sc (1H,1,\(u+1\)L) col0 sh gr /Times-Roman-iso ff 330.00 scf sf 9584 3315 m gs 1 -1 sc (1H,2,\(u+1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 9609 4839 m gs 1 -1 sc (2 H,1,1,\(u+1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 9751 4752 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 9623 6005 m gs 1 -1 sc (2 H,1,1,\(u+1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 9764 5917 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 9778 7123 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 9751 8341 m gs 1 -1 sc (+) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 9650 7197 m gs 1 -1 sc (2 H,1,2,\(u+1\)L) col0 sh gr /Times-Roman-iso ff 270.00 scf sf 9610 8429 m gs 1 -1 sc (2 H,1,2,\(u+1\)L) col0 sh gr % here ends figure; F2psBegin10setmiterlimit0slj0slc0.060000.06000scF2psEnd rs showpage %%EndDocument endTexFig 2956 2059 a FB(\(c\))0 2271 y(Figure)22 b(4:)28 b Fs(\(a\))22 b(A)f(2-phase)j(PH)c(distrib)n(ution)26 b(with)21 b(Coxian)i(r)m(epr)m (esentation.)32 b(\(b\))22 b(Mark)o(o)o(v)h(c)o(hain)f(whic)o(h)g(will) g(be)g(used)g(to)0 2384 y(compute)k(the)g(high-priority)j(job)c(b)n (usy)h(periods,)i(in)d(the)g(case)h(wher)m(e)f(high-priority)k(job)d (size)f(have)h(a)f(PH)e(distrib)n(ution)0 2497 y(with)k(Coxian)g(r)m (epr)m(esentation)k(shown)d(in)e(\(a\).)39 b(\(c\))27 b(Chain)h(for)f(a)f(system)i(with)f(two)f(server)o(s)j(and)e(two)g (priority)h(classes)0 2610 y(wher)m(e)c(high)g(priority)h(jobs)g(have)f (Coxian)g(service)i(times.)0 2986 y FB(at)j(state)g(\(0H\))g(there)h (are)e(no)h(high)h(priority)h(jobs)e(in)g(the)g(system;)j(at)d(state)h (\(1H,)p Fv(i)p FB(\),)f(there)h(is)f(one)g(high)g(priority)i(job)e(in) 0 3133 y(phase)f Fv(i)p FB(;)g(at)e(state)i(\()p Fv(n)p FB(H,)p Fv(i;)15 b(j)5 b FB(\))26 b(there)i(are)f Fv(n)e FB(high)j(priority)g(jobs)f(in)g(the)g(system)g(and)g(the)g(tw)o(o)g (jobs)g(are)g(being)h(processed)0 3280 y(are)f(in)f(phase)h Fv(i)f FB(and)h Fv(j)5 b FB(,)26 b(respecti)n(v)o(ely)k(\(jobs)d(in)f (the)h(queue)g(are)g(all)f(in)g(phase)i(1\).)37 b(The)26 b(\002rst)g(passage)i(times)e(in)h(Figure)g(4)0 3426 y(are)d(computed)h(again)f(using)h(techniques)h(in)e(Appendix)h(A.)141 3573 y(Figure)h(4\(c\))g(sho)n(ws)g(a)e(le)n(v)o(el)i(of)f(the)h(chain) h(that)f(tracks)g(the)g(number)g(of)f(lo)n(w)g(priority)i(jobs,)g (where)e(the)h(number)g(of)0 3720 y(lo)n(w)c(priority)j(jobs)e(is)g Fv(u)p FB(.)28 b(The)22 b(lo)n(w)g(priority)j(job)e(sizes)g(are)g (assumed)h(to)f(be)g(e)o(xponentially)j(distrib)n(uted,)g(b)n(ut)e (this)f(can)g(be)0 3867 y(generalized)g(to)e(PH)d(distrib)n(utions.)32 b(In)20 b(state)h(\(0H,)p Fv(u)p FB(L\),)e(no)i(high)g(priority)h(jobs) f(are)f(in)h(the)f(system.)29 b(An)19 b(arri)n(v)n(al)i(of)g(a)e(high)0 4013 y(priority)24 b(job)f(in)f(state)h(\(0H,)p Fv(u)p FB(L\))f(triggers)i(a)e(transition)j(to)d(state)h(\(1H,1,)p Fv(u)p FB(L\).)f(In)g(state)h(\(1H,)p Fv(j)5 b FB(,)p Fv(u)p FB(L\),)22 b(one)g(high)i(priority)g(job)0 4160 y(in)h(phase)h Fv(j)j FB(is)c(in)f(service)j(for)e Fv(j)33 b Fu(=)27 b(1)p Fv(;)15 b Fu(2)p FB(.)32 b(An)24 b(arri)n(v)n(al)i(of)f (a)f(high)i(priority)g(job)f(in)g(state)g(\(1H,)p Fv(j)5 b FB(,)p Fv(u)p FB(L\))25 b(triggers)h(a)f(transition)0 4307 y(to)g(state)h(\()p Fu(2)361 4274 y Fn(+)421 4307 y FB(H,)p Fu(1)p Fv(;)15 b(j)5 b FB(,)p Fv(u)p FB(L\))24 b(for)i Fv(j)34 b Fu(=)27 b(1)p Fv(;)15 b Fu(2)p FB(.)34 b(In)25 b(state)h(\()p Fu(2)1675 4274 y Fn(+)1735 4307 y FB(H,)p Fu(1)p Fv(;)15 b(j)5 b FB(,)p Fv(u)p FB(L\),)25 b(at)g(least)g(tw)o(o)g(high)h(priority)h(jobs)f(are)f(in)g(the)h (system,)0 4454 y(and)c(the)g(tw)o(o)f(jobs)h(that)g(started)h(the)f(b) n(usy)g(period)h(were)f(in)f(phase)i Fu(1)e FB(and)h Fv(j)5 b FB(,)21 b(respecti)n(v)o(ely)-6 b(,)25 b(for)d Fv(j)30 b Fu(=)25 b(1)p Fv(;)15 b Fu(2)p FB(.)29 b(The)21 b(four)h(types)0 4601 y(of)k(b)n(usy)g(periods)i(are)e(labeled)h(as)f Fv(B)1181 4615 y Fn(1)1220 4601 y FB(,)g Fv(B)1338 4615 y Fn(2)1377 4601 y FB(,)f Fv(B)1494 4615 y Fn(3)1534 4601 y FB(,)g(and)h Fv(B)1807 4615 y Fn(4)1846 4601 y FB(,)g(and)g(the)g(duration)i(of)d(these)i(b)n(usy)g(periods)h(is)d (approximated)0 4747 y(by)h(PH)f(distrib)n(utions)30 b(by)d(matching)g(the)g(\002rst)f(three)h(moments)g(of)f(the)h(b)n(usy) g(period)h(distrib)n(ution)h(\(note)f(that)f(the)f(b)n(usy)0 4894 y(period)j(cannot)h(start)f(with)e(tw)o(o)h(jobs)h(in)f(phase)h (tw)o(o\).)42 b(Finally)-6 b(,)29 b Fv(p)2153 4913 y Fn(\(1)p Fp(;j)t Fn(\))p Fp(;i)2370 4894 y FB(denotes)h(the)e (probability)k(that)c(a)g(b)n(usy)h(period)0 5041 y(started)c(by)f(tw)o (o)f(jobs)h(in)g(phases)h Fu(1)e FB(and)h Fv(j)5 b FB(,)23 b(ends)h(with)g(a)f(single)i(job)f(in)f(phase)i Fv(i)p FB(,)e(for)g Fv(j)31 b Fu(=)25 b(1)p Fv(;)15 b Fu(2)p FB(,)24 b(and)g Fv(i)h Fu(=)g(1)p Fv(;)15 b Fu(2)p FB(.)1905 5596 y(13)p eop end %%Page: 14 14 TeXDict begin 14 13 bop 0 159 a Ft(2.4)99 b(Computing)26 b(v)o(ariance)f(of)g(r)n(esponse)h(time)f(and)g(higher)h(moments)0 367 y FB(Throughout)32 b(our)f(discussion)i(of)c(RDR)f(thus)j(f)o(ar)l (,)h(we)d(ha)n(v)o(e)h(been)h(concerned)i(with)d(computing)i(the)e (mean)g(per)n(-class)0 513 y(response)k(time.)52 b(It)31 b(turns)h(out)g(that)g(computing)i(higher)f(moments)e(of)h(per)n (-class)i(response)f(time)f(is)f(not)h(much)f(more)0 660 y(dif)n(\002cult.)46 b(Before)30 b(we)e(present)j(our)f(approach,)j (we)28 b(mak)o(e)h(tw)o(o)g(remarks.)47 b(First,)30 b(observ)o(e)h (that)e(it)g(is)g(tri)n(vial)h(to)f(deri)n(v)o(e)0 807 y(all)c(moments)h(of)f(the)g(steady-state)k(per)n(-class)f Fs(number)e(of)f(jobs)h FB(in)f(the)g(system,)h(directly)h(from)e(the)h (steady-state)i(prob-)0 954 y(abilities)f(for)d(the)h(Mark)o(o)o(v)h (chain,)f(which)g(we)f(ha)n(v)o(e)h(already)h(computed.)34 b(Unfortunately)-6 b(,)28 b(ho)n(we)n(v)o(er)l(,)d(we)f(cannot)i(apply) 0 1101 y(the)d(beautiful)j(generalization)h(of)c(Little')-5 b(s)24 b(La)o(w)d(to)i(higher)i(moments)e(\(see)h([29)q(,)e(1)q(]\))g (to)h(immediately)i(get)e(the)h(per)n(-class)0 1247 y(higher)33 b(moments)f(of)f(response)j(time)d(for)h(free,)h(since)g(jobs)f(do)f (not)h(necessarily)j(lea)n(v)o(e)d(our)g(system)g(in)f(the)h(order)g (in)0 1394 y(which)24 b(the)o(y)g(arri)n(v)o(e.)141 1541 y(Belo)n(w)30 b(we)g(sk)o(etch)i(our)f(approach)h(for)f(computing)i (per)n(-class)g(v)n(ariance)f(in)e(response)j(time)e(for)f(the)h(case)g (of)g(tw)o(o)0 1688 y(serv)o(ers,)f(tw)o(o)d(priority)i(classes)h(\(H)c (and)i(L\),)f(and)h(e)o(xponential)i(service)g(times.)41 b(W)-7 b(e)26 b(will)i(refer)g(to)f(Figure)h(1\(c\))h(during)0 1834 y(our)h(discussion.)49 b(F)o(or)29 b(class)h(H)f(jobs,)i(it)e(is)g (easy)i(to)e(compute)i(the)f(v)n(ariance)h(of)e(their)h(response)i (time,)f(since)f(the)o(y)g(are)0 1981 y(obli)n(vious)h(to)e(class)h(L)d (jobs,)k(and)e(the)g(v)n(ariance)i(of)e(response)i(time)d(in)h(an)g (M/M/2/FCFS)e(queue)j(is)f(well)f(kno)n(wn)i(\(see)0 2128 y(page)24 b(529)g(in)g([10)q(]\).)29 b(Thus)23 b(we)g(will)g (concentrate)k(on)c(class)i(L)d(jobs.)141 2275 y(Consider)j(the)e (1D-in\002nite)h(Mark)o(o)o(v)g(Chain)g(sho)n(wn)f(in)g(Figure)h (1\(c\))f(that)h(tracks)g(the)g(number)g(of)f(class)h(L)e(jobs.)29 b(W)-7 b(e)0 2422 y(use)28 b(the)g(limiting)h(probabilities)i(to)c (condition)k(on)c(what)h(a)f(class)h(L)f(arri)n(v)n(al)h(sees.)41 b(Speci\002cally)-6 b(,)30 b(by)e(P)-8 b(AST)g(A)24 b(\(Poisson)0 2568 y(Arri)n(v)n(als)19 b(See)g(T)m(ime)e(A)-7 b(v)o(erages\))21 b(a)d(class)i(L)e(arri)n(v)n(al)h(with)g(probability)j Fv(\031)2277 2587 y Fn(\()p Fp(iH)q(;`L)p Fn(\))2534 2568 y FB(will)c(see)h(state)h Fu(\()p Fv(iH)r(;)15 b(`L)p Fu(\))k FB(when)g(it)g(arri)n(v)o(es,)0 2715 y(and)24 b(will)f(cause)i(the)f(system)g(state)g(to)g(change)h(to)e Fu(\()p Fv(iH)r(;)15 b Fu(\()p Fv(`)22 b Fu(+)e(1\))p Fv(L)p Fu(\))j FB(at)h(that)g(moment.)141 2862 y(T)-7 b(o)31 b(calculate)k(the)d(v)n(ariance)i(in)e(response)j(time)d(seen)h (by)f(this)h(\223tagged\224)h(\(class)f Fv(L)p FB(\))f(arri)n(v)n(al,)j (we)c(remo)o(v)o(e)i(all)f(the)0 3009 y Fv(\025)53 3023 y Fp(L)133 3009 y FB(arcs)d(from)f(the)h(Mark)o(o)o(v)g(chain)h(in)e (Figure)h(1\(c\),)h(so)e(that)h(there)h(are)e(no)h(more)f(class)i Fv(L)d FB(arri)n(v)n(als.)45 b(This)28 b(enables)i(us)0 3156 y(to)f(vie)n(w)f(the)h(response)i(time)d(for)h(the)g(tagged)h (arri)n(v)n(al)g(as)e(the)h(\002rst)f(passage)j(time)d(of)h(this)g (modi\002ed)g(chain)h(from)e(state)0 3302 y Fu(\()p Fv(iH)r(;)15 b Fu(\()p Fv(`)23 b Fu(+)e(1\))p Fv(L)p Fu(\))k FB(to)h(the)f(state)h (where)g(the)f(tagged)i(arri)n(v)n(al)g(departs.)35 b(The)25 b(only)h(comple)o(xity)h(is)f(in)f(\002guring)h(out)g(e)o(xactly)0 3449 y(in)d(which)h(state)h(the)f(tagged)h(arri)n(v)n(al)f(departs.)141 3596 y(The)29 b(tagged)j(arri)n(v)n(al)f(may)e(depart)i(the)f (modi\002ed)h(Mark)o(o)o(v)f(chain)h(the)f(\002rst)f(time)h(it)g(hits)g Fu(\(0)p Fv(H)r(;)15 b Fu(1)p Fv(L)p Fu(\))31 b FB(or)e Fu(\(1)p Fv(H)r(;)15 b Fu(1)p Fv(L)p Fu(\))p FB(,)0 3743 y(depending)22 b(on)d(the)h(sample)f(path)h(the)g(chain)g(follo)n(ws.) 28 b(W)-7 b(e)18 b(will)h(compute)h(the)f(passage)i(time)e(to)g(go)g (from)g(state)h Fu(\()p Fv(iH)r(;)15 b Fu(\()p Fv(`)t Fu(+)0 3889 y(1\))p Fv(L)p Fu(\))26 b FB(to)g(one)h(of)f(these)h (states)h Fo(f)d Fu(\(0)p Fv(H)r(;)15 b Fu(1)p Fv(L)p Fu(\))27 b FB(or)f Fu(\(1)p Fv(H)r(;)15 b Fu(1)p Fv(L)p Fu(\))28 b Fo(g)p FB(.)36 b(It)26 b(is)g(important)h(to)f(observ)o(e)i (that)f(the)f(\002rst)g(time)g(we)f(hit)i(a)0 4036 y(state)19 b(with)f(1L,)g(cannot)i(be)e(state)h Fu(\(2)1132 4003 y Fn(+)1192 4036 y Fv(H)r(;)c Fu(1)p Fv(L)p Fu(\))p FB(,)k(by)g(virtue) g(of)g(the)f(f)o(act)h(that)g(the)g(Mark)o(o)o(v)g(chain)g(does)h(not)e (ha)n(v)o(e)h(decreasing)0 4183 y(arcs)24 b(in)g(its)f(bottom)i(ro)n (ws.)141 4330 y(If)32 b Fu(\(1)p Fv(H)r(;)15 b Fu(1)p Fv(L)p Fu(\))32 b FB(is)g(the)g(\002rst)f(state)h(that)h(we)e(hit)g (with)h(1L,)f(then)h(we)f(kno)n(w)g(that)i(we)e(must)g(ha)n(v)o(e)i (gotten)g(there)f(from)0 4477 y Fu(\(1)p Fv(H)r(;)15 b Fu(2)p Fv(L)p Fu(\))p FB(,)41 b(which)c(means)g(that)h(the)f(single)h (L)d(job)j(remaining)g(is)f(in)g(f)o(act)g(the)g(tagged)i(arri)n(v)n (al.)69 b(\(W)-7 b(e')i(re)38 b(assuming)0 4623 y(preemption)28 b(is)d(done)i(\223youngest)h(\002rst)e(to)f(be)h(preempted\224\).)37 b(Thus)26 b(we)f(need)h(to)g(no)n(w)f(add)h(on)g(the)g(passage)h(time)f (to)f(go)0 4770 y(from)e Fu(\(1)p Fv(H)r(;)15 b Fu(1)p Fv(L)p Fu(\))25 b FB(to)e Fu(\()p Fo(\003)p Fv(;)15 b Fu(0)p Fv(L)p Fu(\))25 b FB(to)e(get)h(the)g(full)g(response)i(time)d (for)h(the)g(tagged)h(arri)n(v)n(al.)141 4917 y(If)e Fu(\(0)p Fv(H)r(;)15 b Fu(1)p Fv(L)p Fu(\))23 b FB(is)g(the)g(\002rst)f (state)i(that)f(we)f(hit)h(with)g(1L,)e(then)j(we)e(kno)n(w)h(that)g (we)f(got)h(there)h(from)e(state)i Fu(\(0)p Fv(H)r(;)15 b Fu(2)p Fv(L)p Fu(\))p FB(.)29 b(In)0 5064 y(this)23 b(case,)g(the)g(remaining)i(1L)d(is)g(equally)j(lik)o(ely)f(to)f(be)f (the)h(tagged)i(arri)n(v)n(al)e(or)g(not.)29 b(W)l(ith)23 b(probability)j(half,)d(the)g(tagged)0 5211 y(arri)n(v)n(al)g(is)g (already)h(gone,)f(in)g(which)f(case)h(we)f(add)h(nothing)h(to)f(the)g (response)h(time.)k(W)l(ith)23 b(probability)j(half,)d(the)g(tagged) 1905 5596 y(14)p eop end %%Page: 15 15 TeXDict begin 15 14 bop 0 159 a FB(arri)n(v)n(al)22 b(remains,)h(in)f (which)f(case)i(we)d(no)n(w)h(add)h(on)g(the)g(passage)h(time)f(to)f (go)h(from)f Fu(\(0)p Fv(H)r(;)15 b Fu(1)p Fv(L)p Fu(\))23 b FB(to)e Fu(\()p Fo(\003)p Fv(;)15 b Fu(0)p Fv(L)p Fu(\))23 b FB(to)e(get)h(the)g(full)0 305 y(response)k(time)d(for)h(the)g (tagged)h(arri)n(v)n(al.)141 452 y(Observ)o(e)d(that)f(computing)j(the) d(moments)g(of)g(the)h(abo)o(v)o(e)f(passage)i(times)e(is)g (straightforw)o(ard,)k(since)d(all)f(the)g Fv(\025)3681 466 y Fp(L)3754 452 y FB(arcs)0 599 y(ha)n(v)o(e)j(been)h(remo)o(v)o (ed.)0 883 y Ft(2.5)99 b(Intr)n(oducing)27 b(RDR-A)0 1091 y FB(W)-7 b(e)22 b(ha)n(v)o(e)i(seen)f(that)h(the)f(RDR)e(method)j (can)f(become)h(computationally)j(intensi)n(v)o(e)e(as)e(the)g(number)h (of)f(priority)i(classes)0 1238 y(gro)n(ws.)41 b(This)28 b(moti)n(v)n(ates)h(us)e(to)h(introduce)i(an)e(approximation)j(based)e (on)f(RDR)e(called)j(RDR-A.)c(RDR-A)h(applies)j(to)0 1385 y Fv(m)c(>)g Fu(2)e FB(priority)j(classes)f(and)f(PH)e(job)i(size) g(distrib)n(utions.)141 1531 y(The)d(k)o(e)o(y)g(idea)h(behind)g(RDR-A) d(is)i(that)h(the)f(RDR)e(computation)24 b(is)d(f)o(ar)g(simpler)h (when)f(there)h(are)g(only)g(tw)o(o)e(priority)0 1678 y(classes:)36 b(H)25 b(and)h(L.)f(In)h(RDR-A,)d(under)28 b Fv(m)d FB(priority)j(classes,)g(we)d(simply)i(aggre)o(gate)g(these)g (classes)h(into)f(tw)o(o)e(priority)0 1825 y(classes,)e(where)e(the)g Fv(m)10 b Fo(\000)g Fu(1)19 b FB(higher)k(priority)f(classes)h(become)e (the)g(ne)n(w)g(aggre)o(gate)h(H)e(class)h(and)h(the)f Fv(m)3341 1792 y Fp(th)3431 1825 y FB(priority)h(class)0 1972 y(becomes)30 b(the)g(L)e(class.)46 b(W)-7 b(e)28 b(de\002ne)h(the)h(H)e(class)i(to)f(ha)n(v)o(e)g(a)g(PH)f(job)h(size)h (distrib)n(ution)i(that)e(matches)g(the)g(\002rst)e(three)0 2119 y(moments)c(of)g(the)f(aggre)o(gation)j(of)e(the)g Fv(m)c Fo(\000)g Fu(1)j FB(higher)i(priority)g(classes.)141 2265 y(The)e(RDR-A)f(method)i(is)g(similar)g(to)g(the)g(MK-N)e (approximation.)32 b(The)23 b(dif)n(ference)j(is)e(that)g(in)f(MK-N,)f (both)i(the)g(H)0 2412 y(and)e(L)e(classes)j(are)e(e)o(xponentially)k (distrib)n(uted.)31 b(Thus)21 b(under)i(MK-N,)c(the)j(H)e(class)i(only) g(matches)g(the)g Fs(\002r)o(st)g FB(moment)f(of)0 2559 y(the)g(aggre)o(gate)h Fv(m)8 b Fo(\000)g Fu(1)20 b FB(classes,)i (whereas)f(under)h(RDR-A)c Fs(thr)m(ee)j FB(moments)g(are)f(matched.)29 b(The)20 b(reason)i(that)f(we)e(are)i(able)0 2706 y(to)j(match)g(the)g (\002rst)g(three)h(moments,)f(rather)h(than)f(just)h(the)f(\002rst,)f (is)h(that)h(we)e(ha)n(v)o(e)h(the)g(RDR)e(technique,)27 b(which)d(allo)n(ws)0 2852 y(the)g(analysis)h(of)f(multi-serv)o(er)i (priority)f(queues)g(with)f Fs(PH)44 b FB(job)24 b(size)g(distrib)n (utions,)k(as)23 b(described)j(in)e(Section)g(2.3.)0 3190 y FA(3)119 b(Results)30 b(and)h(V)-11 b(alidation)0 3431 y FB(In)20 b(this)h(section)h(we)e(present)i(numerical)g(results)g (for)e(per)n(-class)j(mean)d(response)j(times)d(in)h(M/M/)p Fv(k)i FB(and)d(M/PH/)p Fv(k)j FB(queues)0 3578 y(with)32 b Fv(m)41 b Fu(=)g(4)32 b FB(priority)i(classes,)i(deri)n(v)o(ed)e (using)f(RDR)d(and)j(RDR-A,)d(respecti)n(v)o(ely)-6 b(.)58 b(W)-7 b(e)31 b(will)h(v)n(alidate)i(our)f(results)0 3724 y(against)24 b(simulation)h(and)e(sho)n(w)f(that)i(their)f(relati) n(v)o(e)h(error)g(is)e(small.)29 b(Furthermore,)24 b(the)f(time)g (required)h(to)f(generate)i(our)0 3871 y(results)g(is)e(short,)i (typically)h(less)e(than)g(a)f(second)i(for)f(each)g(data)g(point.)141 4018 y(Figure)30 b(5)f(\(top)h(ro)n(w\))e(sho)n(ws)i(our)f(results)i (for)f(per)n(-class)h(mean)f(response)h(times)e(in)h(an)f(M/M/2)g (queue)h(\(left)g(plot\))0 4165 y(and)e(an)g(M/PH/2)f(queue)i(\(right)g (plot\),)g(both)f(as)g(a)f(function)j(of)e(load)g Fv(\032)p FB(.)40 b(The)28 b(PH)e(distrib)n(ution)31 b(used)d(is)g(a)f(2-phase)j (PH)0 4311 y(distrib)n(ution)i(with)c(squared)h(coef)n(\002cient)h(of)e (v)n(ariation,)j Fv(C)1899 4278 y Fn(2)1972 4311 y Fu(=)i(8)p FB(.)42 b(All)27 b(job)i(classes)g(ha)n(v)o(e)g(the)f(same)g(distrib)n (ution,)33 b(and)0 4458 y(the)24 b(load)g(is)f(distrib)n(uted)j(e)n(v)o (enly)e(between)h(the)e(four)h(classes.)30 b(The)23 b(left)h(plot)g(is) f(deri)n(v)o(ed)h(using)h(RDR)c(and)j(the)f(right)i(plot)0 4605 y(using)32 b(RDR-A.)d(Observ)o(e)i(that)g(the)h(M/PH/2)e(queue)i (\(right)g(plot\))f(results)i(in)d(higher)j(mean)e(response)i(time)d (than)i(the)0 4752 y(M/M/2)e(queue)i(\(left)f(plot\),)i(as)e(e)o (xpected.)52 b(In)30 b(both)h(cases)h(the)f(mean)f(response)j(time)e (of)f(the)h(lo)n(wer)n(-priority)j(classes)0 4899 y(dw)o(arfs)24 b(that)g(of)g(the)g(higher)n(-priority)k(classes.)141 5045 y(Figure)22 b(5)f(\(bottom)h(ro)n(w\))e(sho)n(ws)i(the)f(relati)n (v)o(e)h(per)n(-class)i(error)e(for)f(our)h(results,)g(when)g(compared) g(with)f(simulation.)0 5192 y(Throughout)34 b(the)e(paper)g(we)f(al)o (w)o(ays)h(sho)n(w)g(error)g(in)f Fs(delay)i FB(\(queueing)h(time\))e (rather)h(than)f(response)i(time)d(\(sojourn)1905 5596 y(15)p eop end %%Page: 16 16 TeXDict begin 16 15 bop 116 67 a 13261617 10741904 2499706 11774935 36048404 39074365 startTexFig 116 67 a %%BeginDocument: rdr-mm2-4class-meanresp-vs-load-all-2.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: rdr-mm2-4class-meanresp-vs-load-all-2.eps %%CreationDate: 09/20/2004 12:02:14 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 38 179 548 594 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 38 179 548 594 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 241 207 6130 4978 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (0) s 1970 4615 mt 1970 4561 L 1970 389 mt 1970 442 L 1804 4872 mt (0.2) s 3041 4615 mt 3041 4561 L 3041 389 mt 3041 442 L 2875 4872 mt (0.4) s 4112 4615 mt 4112 4561 L 4112 389 mt 4112 442 L 3946 4872 mt (0.6) s 5183 4615 mt 5183 4561 L 5183 389 mt 5183 442 L 5017 4872 mt (0.8) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6189 4872 mt (1) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 731 4704 mt (0) s 899 4011 mt 952 4011 L 6255 4011 mt 6201 4011 L 731 4100 mt (5) s 899 3407 mt 952 3407 L 6255 3407 mt 6201 3407 L 598 3496 mt (10) s 899 2803 mt 952 2803 L 6255 2803 mt 6201 2803 L 598 2892 mt (15) s 899 2200 mt 952 2200 L 6255 2200 mt 6201 2200 L 598 2289 mt (20) s 899 1596 mt 952 1596 L 6255 1596 mt 6201 1596 L 598 1685 mt (25) s 899 992 mt 952 992 L 6255 992 mt 6201 992 L 598 1081 mt (30) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 598 478 mt (35) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np DO 24 w /c8 { 0.000000 0.000000 1.000000 sr} bdef c8 1071 -5 1071 -4 1072 -3 1071 -1 1434 4373 5 MP stroke DD 1071 -50 1071 -32 1072 -18 1071 -9 1434 4372 5 MP stroke DA 1071 -276 1071 -122 1072 -58 1071 -25 1434 4370 5 MP stroke SO 1071 -2860 1071 -449 1072 -146 1071 -51 1434 4367 5 MP stroke gr 24 w c8 0 sg %%IncludeResource: font Symbol /Symbol /ISOLatin1Encoding 240 FMSR 3510 5092 mt (r) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 489 3586 mt -90 rotate (mean response time) s 90 rotate 6 w 1 sg 0 1152 1549 0 0 -1152 959 1601 4 MP PP -1549 0 0 1152 1549 0 0 -1152 959 1601 5 MP stroke 4 w DO SO 6 w 0 sg 959 1601 mt 2508 1601 L 959 449 mt 2508 449 L 959 1601 mt 959 449 L 2508 1601 mt 2508 449 L 959 1601 mt 2508 1601 L 959 1601 mt 959 449 L 959 1601 mt 2508 1601 L 959 449 mt 2508 449 L 959 1601 mt 959 449 L 2508 1601 mt 2508 449 L 1627 694 mt (class 1) s 1627 971 mt (class 2) s 1627 1248 mt (class 3) s 1627 1525 mt (class 4) s gs 959 449 1550 1153 MR c np DO 24 w c8 401 0 1092 613 2 MP stroke SO DD 401 0 1092 890 2 MP stroke SO DA 401 0 1092 1167 2 MP stroke SO 401 0 1092 1445 2 MP stroke 6 w gr c8 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 2081 101 a 13261617 10476671 1710325 11774935 36048404 39074365 startTexFig 2081 101 a %%BeginDocument: rdra-mph2-4class-meanresp-vs-load-all-2.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: rdra-mph2-4class-meanresp-vs-load-all-2.eps %%CreationDate: 09/20/2004 12:04:43 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 26 179 548 594 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 26 179 548 594 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 107 207 6264 4978 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (0) s 1970 4615 mt 1970 4561 L 1970 389 mt 1970 442 L 1804 4872 mt (0.2) s 3041 4615 mt 3041 4561 L 3041 389 mt 3041 442 L 2875 4872 mt (0.4) s 4112 4615 mt 4112 4561 L 4112 389 mt 4112 442 L 3946 4872 mt (0.6) s 5183 4615 mt 5183 4561 L 5183 389 mt 5183 442 L 5017 4872 mt (0.8) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6189 4872 mt (1) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 731 4704 mt (0) s 899 4011 mt 952 4011 L 6255 4011 mt 6201 4011 L 598 4100 mt (20) s 899 3407 mt 952 3407 L 6255 3407 mt 6201 3407 L 598 3496 mt (40) s 899 2803 mt 952 2803 L 6255 2803 mt 6201 2803 L 598 2892 mt (60) s 899 2200 mt 952 2200 L 6255 2200 mt 6201 2200 L 598 2289 mt (80) s 899 1596 mt 952 1596 L 6255 1596 mt 6201 1596 L 464 1685 mt (100) s 899 992 mt 952 992 L 6255 992 mt 6201 992 L 464 1081 mt (120) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 464 478 mt (140) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np DO 24 w /c8 { 0.000000 0.000000 1.000000 sr} bdef c8 1071 -5 1071 -3 1072 -3 1071 -1 1434 4554 5 MP stroke DD 1071 -44 1071 -25 1072 -14 1071 -6 1434 4553 5 MP stroke DA 1071 -263 1071 -105 1072 -45 1071 -16 1434 4552 5 MP stroke SO 1071 -3055 1071 -423 1072 -118 1071 -35 1434 4551 5 MP stroke gr 24 w c8 0 sg %%IncludeResource: font Symbol /Symbol /ISOLatin1Encoding 240 FMSR 3510 5092 mt (r) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 355 3586 mt -90 rotate (mean response time) s 90 rotate 6 w 1 sg 0 1152 1549 0 0 -1152 959 1601 4 MP PP -1549 0 0 1152 1549 0 0 -1152 959 1601 5 MP stroke 4 w DO SO 6 w 0 sg 959 1601 mt 2508 1601 L 959 449 mt 2508 449 L 959 1601 mt 959 449 L 2508 1601 mt 2508 449 L 959 1601 mt 2508 1601 L 959 1601 mt 959 449 L 959 1601 mt 2508 1601 L 959 449 mt 2508 449 L 959 1601 mt 959 449 L 2508 1601 mt 2508 449 L 1627 694 mt (class 1) s 1627 971 mt (class 2) s 1627 1248 mt (class 3) s 1627 1525 mt (class 4) s gs 959 449 1550 1153 MR c np DO 24 w c8 401 0 1092 613 2 MP stroke SO DD 401 0 1092 890 2 MP stroke SO DA 401 0 1092 1167 2 MP stroke SO 401 0 1092 1445 2 MP stroke 6 w gr c8 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 116 1436 a 13261617 9472573 2433925 11774935 36048404 39074365 startTexFig 116 1436 a %%BeginDocument: error-rdr-mm2-4class-meanresp-vs-load-all-2.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: error-rdr-mm2-4class-meanresp-vs-load-all-2.eps %%CreationDate: 09/20/2004 12:02:14 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 37 179 548 594 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 37 179 548 594 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 234 207 6137 4978 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (0) s 1970 4615 mt 1970 4561 L 1970 389 mt 1970 442 L 1804 4872 mt (0.2) s 3041 4615 mt 3041 4561 L 3041 389 mt 3041 442 L 2875 4872 mt (0.4) s 4112 4615 mt 4112 4561 L 4112 389 mt 4112 442 L 3946 4872 mt (0.6) s 5183 4615 mt 5183 4561 L 5183 389 mt 5183 442 L 5017 4872 mt (0.8) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6189 4872 mt (1) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 591 4704 mt (-3) s 899 3910 mt 952 3910 L 6255 3910 mt 6201 3910 L 591 3999 mt (-2) s 899 3206 mt 952 3206 L 6255 3206 mt 6201 3206 L 591 3295 mt (-1) s 899 2502 mt 952 2502 L 6255 2502 mt 6201 2502 L 731 2591 mt (0) s 899 1797 mt 952 1797 L 6255 1797 mt 6201 1797 L 731 1886 mt (1) s 899 1093 mt 952 1093 L 6255 1093 mt 6201 1093 L 731 1182 mt (2) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 731 478 mt (3) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np DD 24 w /c8 { 0.000000 0.000000 1.000000 sr} bdef c8 1071 -142 1071 172 1072 251 1071 1054 1434 1005 5 MP stroke DA 1071 -280 1071 15 1072 151 1071 310 1434 2035 5 MP stroke SO 1071 -688 1071 265 1072 28 1071 160 1434 2167 5 MP stroke gr 24 w c8 0 sg %%IncludeResource: font Symbol /Symbol /ISOLatin1Encoding 240 FMSR 3510 5092 mt (r) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 482 2973 mt -90 rotate (error \(%\)) s 90 rotate 6 w 1 sg 0 875 1549 0 0 -875 4646 4555 4 MP PP -1549 0 0 875 1549 0 0 -875 4646 4555 5 MP stroke 4 w DO SO 6 w 0 sg 4646 4555 mt 6195 4555 L 4646 3680 mt 6195 3680 L 4646 4555 mt 4646 3680 L 6195 4555 mt 6195 3680 L 4646 4555 mt 6195 4555 L 4646 4555 mt 4646 3680 L 4646 4555 mt 6195 4555 L 4646 3680 mt 6195 3680 L 4646 4555 mt 4646 3680 L 6195 4555 mt 6195 3680 L 5314 3925 mt (class 2) s 5314 4202 mt (class 3) s 5314 4479 mt (class 4) s gs 4646 3680 1550 876 MR c np DD 24 w c8 401 0 4779 3844 2 MP stroke SO DA 401 0 4779 4121 2 MP stroke SO 401 0 4779 4399 2 MP stroke 6 w gr c8 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 2081 1436 a 13261617 9472573 2433925 11774935 36048404 39074365 startTexFig 2081 1436 a %%BeginDocument: error-rdra-mph2-4class-meanresp-vs-load-all-2.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: error-rdra-mph2-4class-meanresp-vs-load-all-2.eps %%CreationDate: 09/20/2004 12:04:44 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 37 179 548 594 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 37 179 548 594 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 234 207 6137 4978 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (0) s 1970 4615 mt 1970 4561 L 1970 389 mt 1970 442 L 1804 4872 mt (0.2) s 3041 4615 mt 3041 4561 L 3041 389 mt 3041 442 L 2875 4872 mt (0.4) s 4112 4615 mt 4112 4561 L 4112 389 mt 4112 442 L 3946 4872 mt (0.6) s 5183 4615 mt 5183 4561 L 5183 389 mt 5183 442 L 5017 4872 mt (0.8) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6189 4872 mt (1) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 591 4704 mt (-3) s 899 3910 mt 952 3910 L 6255 3910 mt 6201 3910 L 591 3999 mt (-2) s 899 3206 mt 952 3206 L 6255 3206 mt 6201 3206 L 591 3295 mt (-1) s 899 2502 mt 952 2502 L 6255 2502 mt 6201 2502 L 731 2591 mt (0) s 899 1797 mt 952 1797 L 6255 1797 mt 6201 1797 L 731 1886 mt (1) s 899 1093 mt 952 1093 L 6255 1093 mt 6201 1093 L 731 1182 mt (2) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 731 478 mt (3) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np DD 24 w /c8 { 0.000000 0.000000 1.000000 sr} bdef c8 1071 461 1071 -340 1072 289 1071 -298 1434 2670 5 MP stroke DA 1071 393 1071 -259 1072 445 1071 -905 1434 2877 5 MP stroke SO 1071 328 1071 -33 1072 589 1071 -1365 1434 2931 5 MP stroke gr 24 w c8 0 sg %%IncludeResource: font Symbol /Symbol /ISOLatin1Encoding 240 FMSR 3510 5092 mt (r) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 482 2973 mt -90 rotate (error \(%\)) s 90 rotate 6 w 1 sg 0 875 1549 0 0 -875 4646 4555 4 MP PP -1549 0 0 875 1549 0 0 -875 4646 4555 5 MP stroke 4 w DO SO 6 w 0 sg 4646 4555 mt 6195 4555 L 4646 3680 mt 6195 3680 L 4646 4555 mt 4646 3680 L 6195 4555 mt 6195 3680 L 4646 4555 mt 6195 4555 L 4646 4555 mt 4646 3680 L 4646 4555 mt 6195 4555 L 4646 3680 mt 6195 3680 L 4646 4555 mt 4646 3680 L 6195 4555 mt 6195 3680 L 5314 3925 mt (class 2) s 5314 4202 mt (class 3) s 5314 4479 mt (class 4) s gs 4646 3680 1550 876 MR c np DD 24 w c8 401 0 4779 3844 2 MP stroke SO DA 401 0 4779 4121 2 MP stroke SO 401 0 4779 4399 2 MP stroke 6 w gr c8 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 603 2749 a FB(\(a\))24 b(M/M/2)f(with)h(four)g(classes)648 b(\(b\))24 b(M/PH/2)e(with)i(four)g(classes)0 2945 y(Figure)19 b(5:)27 b Fs(T)-8 b(op)18 b(r)l(ow)g(shows)h(per)n(-class)i(mean)e(r)m (esponse)i(time)d(for)h(M/M/2)f(\(left\))i(and)f(M/PH/2)f(\(right\))i (with)f(four)g(priority)0 3058 y(classes.)44 b(Left)28 b(gr)o(aph)h(is)f(derived)h(using)h(RDR)c(and)i(right)h(gr)o(aph)g(is)f (derived)i(using)f(RDR-A.)d(Bottom)i(r)l(ow)f(shows)i(the)0 3171 y(err)l(or)d(in)e(our)h(analytically-derive)q(d)30 b(mean)25 b(delay)g(r)m(elative)h(to)f(simulation)h(r)m(esults,)g(for)f (the)g(corr)m(esponding)j(gr)o(aphs)e(in)0 3284 y(the)e(top)g(r)l(ow)-7 b(.)0 3560 y FB(time\),)23 b(since)i(the)f(error)g(in)g(delay)g(is)g (proportionally)j(greater)-5 b(.)31 b(W)-7 b(e)22 b(de\002ne)i(relati)n (v)o(e)h(error)f(as)380 3826 y(error)j Fu(=)e(100)c Fo(\002)935 3764 y FB(\(mean)j(delay)g(by)g(RDR)e(or)h(RDR-A\))c Fo(\000)h FB(\(mean)k(delay)h(by)f(simulation\))p 935 3804 2313 4 v 1593 3888 a(\(mean)g(delay)g(by)g(simulation\))3349 3826 y Fu(\(\045\))p Fv(:)0 4091 y FB(W)-7 b(e)27 b(only)j(sho)n(w)e (the)g(error)i(for)e(classes)i(2,)f(3,)g(and)g(4,)g(since)g(our)g (analysis)h(is)f(virtually)h(e)o(xact)f(for)g(class)g(1)f(\(solv)o(ed)i (via)0 4238 y(matrix-analytic)h(methods\).)43 b(W)-7 b(e)27 b(see)h(that)g(the)g(relati)n(v)o(e)h(error)g(in)e(the)h(mean)g (delay)h(of)f(RDR)e(and)i(RDR-A)e(compared)0 4385 y(to)i(simulation)h (is)f(within)g(2\045)f(for)h(all)g(classes)h(and)g(typically)h(within)e (1\045,)g(for)g(all)g Fv(\032)p FB(')-5 b(s)27 b(\(the)h(jaggedness)j (of)d(the)g(\002gure)0 4531 y(is)f(due)g(to)g(the)g(f)o(act)h(that)g (error)f(is)g(only)h(e)n(v)n(aluated)h(at)e(discrete)i(loads\).)40 b(This)27 b(error)h(increases)h(only)f(slightly)h(when)e(we)0 4678 y(mo)o(v)o(e)c(to)g(the)h(case)g(of)g(priority)h(classes)h(with)d (dif)n(ferent)i(means.)141 4825 y(Figure)i(6)g(\(left\))g(again)g(uses) h(RDR-A)c(to)j(calculate)i(per)n(-class)g(mean)e(response)i(time)d(in)h (the)g(M/PH/2)e(queue)j(with)0 4972 y(four)21 b(classes,)i(b)n(ut)f (this)f(time)g(as)f(a)h(function)i(of)d Fv(C)1581 4939 y Fn(2)1620 4972 y FB(,)h(the)g(squared)h(coef)n(\002cient)h(of)e(v)n (ariation)h(of)f(the)g(job)g(size)h(distrib)n(ution.)0 5118 y(\(Again,)38 b(all)d(classes)h(ha)n(v)o(e)g(the)f(same)g(job)g (size)g(distrib)n(ution\).)67 b(As)34 b(we)g(see)h(from)g(the)g (\002gure,)j(the)d(per)n(-class)i(mean)0 5265 y(response)e(time)d (increases)i(nearly)g(linearly)g(with)e Fv(C)1740 5232 y Fn(2)1779 5265 y FB(.)54 b(Figure)33 b(6)f(\(right\))h(sho)n(ws)g (the)f(relati)n(v)o(e)i(error)f(in)f(mean)g(delay)1905 5596 y(16)p eop end %%Page: 17 17 TeXDict begin 17 16 bop 116 101 a 13261617 10211439 1710325 11774935 36837785 39074365 startTexFig 116 101 a %%BeginDocument: rdra-mph2-4class-meanresp-vs-c2-all-2.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: rdra-mph2-4class-meanresp-vs-c2-all-2.eps %%CreationDate: 09/20/2004 12:06:17 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 26 179 560 594 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 26 179 560 594 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 107 207 6397 4978 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (0) s 2684 4615 mt 2684 4561 L 2684 389 mt 2684 442 L 2551 4872 mt (50) s 4469 4615 mt 4469 4561 L 4469 389 mt 4469 442 L 4269 4872 mt (100) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6055 4872 mt (150) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 731 4704 mt (0) s 899 3910 mt 952 3910 L 6255 3910 mt 6201 3910 L 464 3999 mt (100) s 899 3206 mt 952 3206 L 6255 3206 mt 6201 3206 L 464 3295 mt (200) s 899 2502 mt 952 2502 L 6255 2502 mt 6201 2502 L 464 2591 mt (300) s 899 1797 mt 952 1797 L 6255 1797 mt 6201 1797 L 464 1886 mt (400) s 899 1093 mt 952 1093 L 6255 1093 mt 6201 1093 L 464 1182 mt (500) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 464 478 mt (600) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np DO 24 w /c8 { 0.000000 0.000000 1.000000 sr} bdef c8 2285 -16 1143 -7 571 -4 286 -2 143 -1 71 -1 54 0 916 4600 8 MP stroke DD 2285 -93 1143 -47 571 -23 286 -12 143 -6 71 -3 54 -2 916 4596 8 MP stroke DA 2285 -393 1143 -196 571 -99 286 -49 143 -25 71 -13 54 -9 916 4585 8 MP stroke SO 2285 -1951 1143 -976 571 -489 286 -244 143 -123 71 -62 54 -47 916 4540 8 MP stroke gr 24 w c8 0 sg 3436 5177 mt (C) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 192 FMSR 3609 5057 mt (2) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 355 3586 mt -90 rotate (mean response time) s 90 rotate 6 w 1 sg 0 1152 1549 0 0 -1152 959 1601 4 MP PP -1549 0 0 1152 1549 0 0 -1152 959 1601 5 MP stroke 4 w DO SO 6 w 0 sg 959 1601 mt 2508 1601 L 959 449 mt 2508 449 L 959 1601 mt 959 449 L 2508 1601 mt 2508 449 L 959 1601 mt 2508 1601 L 959 1601 mt 959 449 L 959 1601 mt 2508 1601 L 959 449 mt 2508 449 L 959 1601 mt 959 449 L 2508 1601 mt 2508 449 L 1627 694 mt (class 1) s 1627 971 mt (class 2) s 1627 1248 mt (class 3) s 1627 1525 mt (class 4) s gs 959 449 1550 1153 MR c np DO 24 w c8 401 0 1092 613 2 MP stroke SO DD 401 0 1092 890 2 MP stroke SO DA 401 0 1092 1167 2 MP stroke SO 401 0 1092 1445 2 MP stroke 6 w gr c8 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 2081 67 a 13261617 10476671 2433925 11774935 36837785 39074365 startTexFig 2081 67 a %%BeginDocument: error-rdra-mph2-4class-meanresp-vs-c2-all-2.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: error-rdra-mph2-4class-meanresp-vs-c2-all-2.eps %%CreationDate: 09/20/2004 12:06:18 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 37 179 560 594 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 37 179 560 594 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 234 207 6270 4978 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (0) s 2684 4615 mt 2684 4561 L 2684 389 mt 2684 442 L 2551 4872 mt (50) s 4469 4615 mt 4469 4561 L 4469 389 mt 4469 442 L 4269 4872 mt (100) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6055 4872 mt (150) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 591 4704 mt (-3) s 899 3910 mt 952 3910 L 6255 3910 mt 6201 3910 L 591 3999 mt (-2) s 899 3206 mt 952 3206 L 6255 3206 mt 6201 3206 L 591 3295 mt (-1) s 899 2502 mt 952 2502 L 6255 2502 mt 6201 2502 L 731 2591 mt (0) s 899 1797 mt 952 1797 L 6255 1797 mt 6201 1797 L 731 1886 mt (1) s 899 1093 mt 952 1093 L 6255 1093 mt 6201 1093 L 731 1182 mt (2) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 731 478 mt (3) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np DD 24 w /c8 { 0.000000 0.000000 1.000000 sr} bdef c8 2285 20 1143 427 571 -1049 286 72 143 488 71 -378 54 357 916 2510 8 MP stroke DA 2285 -491 1143 733 571 -1372 286 116 143 374 71 -336 54 189 916 2559 8 MP stroke SO 2285 0 1143 1170 571 -1538 286 75 143 860 71 -430 54 161 916 2685 8 MP stroke gr 24 w c8 0 sg 3436 5177 mt (C) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 192 FMSR 3609 5057 mt (2) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 482 2973 mt -90 rotate (error \(%\)) s 90 rotate 6 w 1 sg 0 875 1549 0 0 -875 4646 4555 4 MP PP -1549 0 0 875 1549 0 0 -875 4646 4555 5 MP stroke 4 w DO SO 6 w 0 sg 4646 4555 mt 6195 4555 L 4646 3680 mt 6195 3680 L 4646 4555 mt 4646 3680 L 6195 4555 mt 6195 3680 L 4646 4555 mt 6195 4555 L 4646 4555 mt 4646 3680 L 4646 4555 mt 6195 4555 L 4646 3680 mt 6195 3680 L 4646 4555 mt 4646 3680 L 6195 4555 mt 6195 3680 L 5314 3925 mt (class 2) s 5314 4202 mt (class 3) s 5314 4479 mt (class 4) s gs 4646 3680 1550 876 MR c np DD 24 w c8 401 0 4779 3844 2 MP stroke SO DA 401 0 4779 4121 2 MP stroke SO 401 0 4779 4399 2 MP stroke 6 w gr c8 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 0 1590 a FB(Figure)30 b(6:)39 b Fs(\(Left\))30 b(P)-7 b(er)n(-class)30 b(mean)f(r)m(esponse)i(times)e(for)h(M/PH/2)e(with)h (four)g(priority)i(classes,)h(derived)f(via)e(RDR-A)0 1703 y(analysis.)i(\(Right\))24 b(Relative)h(err)l(or)f(in)g(analysis)i (of)d(mean)h(delay)g(compar)m(ed)h(with)f(simulation.)0 1979 y FB(when)35 b(the)f(results)i(of)f(the)g(RDR-A)d(analysis)37 b(in)d(the)h(left)g(plot)g(are)g(compared)h(with)e(simulation.)64 b(Again)35 b(the)f(error)0 2126 y(is)d(under)h(2\045.)50 b(Again,)33 b(this)e(error)h(increases)i(only)d(slightly)i(when)f(we)e (mo)o(v)o(e)g(to)h(the)g(case)h(of)f(priority)i(classes)f(with)0 2273 y(dif)n(ferent)25 b(means.)141 2420 y(Finally)-6 b(,)26 b(we)e(note)h(that)g(in)g(the)g(abo)o(v)o(e)g(computations)j (RDR)23 b(is)h(much)h(more)g(computationally)j(ef)n(\002cient)e(than)f (sim-)0 2567 y(ulation.)47 b(Simulation)30 b(requires)h(tens)f(of)f (minutes)h(to)f(generate)i(each)e(\002gure,)i(since)f(the)f(simulation) i(is)e(run)g(30)g(times,)0 2713 y(and)f(in)g(each)g(run)g(1,000,000)i (e)n(v)o(ents)e(are)g(generated.)44 b(By)27 b(comparison)j(our)e (analysis)i(tak)o(es)f(only)f(a)f(fe)n(w)g(seconds)j(for)0 2860 y(each)d(\002gure.)37 b(Further)l(,)28 b(if)e(we)g(try)h(to)f (reduce)i(the)e(number)h(of)g(e)n(v)o(ents)g(in)f(the)h(simulation)h (to)e(100,000)i(e)n(v)o(ents,)g(in)e(order)0 3007 y(to)d(speed)i(it)e (up,)h(we)f(see)g(\002)n(v)o(e)g(times)h(as)f(much)h(v)n(ariation)h(in) f(the)g(simulation)h(around)g(our)f(analytical)j(v)n(alues.)0 3344 y FA(4)119 b(Comparisons)30 b(and)g(Insights)0 3585 y FB(In)35 b(this)h(section,)j(we)c(apply)h(RDR)e(and)h(RDR-A)e(to)j (answer)f(fundamental)j(questions)g(on)d(prioritization)40 b(in)35 b(multi-)0 3732 y(serv)o(er)e(systems.)56 b(In)32 b(Section)h(4.1)f(we)g(study)h(the)g(beha)n(vior)h(of)e(multi-serv)o (er)j(v)o(ersus)e(single)h(serv)o(er)f(systems)g(under)0 3879 y(prioritization.)59 b(In)32 b(this)h(conte)o(xt,)i(we)d(also)g(e) n(v)n(aluate)i(the)f(BB)d(approximation,)38 b(which)33 b(approximates)i(the)d(ef)n(fect)h(of)0 4026 y(prioritization)k(in)32 b(a)g(multi-serv)o(er)j(system)e(by)g(that)g(in)g(a)f(single)i(serv)o (er)g(system.)56 b(In)33 b(Section)g(4.2,)i(we)d(e)n(v)n(aluate)i(the)0 4172 y(ef)n(fect)29 b(of)g(prioritization)j(schemes)e(which)f(f)o(a)n (v)n(or)h(short)f(jobs)h(in)e(multi-serv)o(er)j(systems.)44 b(Finally)-6 b(,)31 b(in)d(Section)i(4.3)e(we)0 4319 y(study)d(the)g(ef)n(fect)g(of)f(aggre)o(gating)j(multiple)e(priority)h (classes)g(into)f(just)g(tw)o(o)f(classes,)h(so)g(as)f(to)g (signi\002cantly)j(speed)e(up)0 4466 y(the)f(analysis.)31 b(In)23 b(this)h(conte)o(xt)h(we)e(also)h(e)n(v)n(aluate)h(the)f(MK-N)e (approximation.)0 4750 y Ft(4.1)99 b(Comparing)25 b(multi-ser)o(v)o(er) h(v)o(ersus)f(single)f(ser)o(v)o(er)i(perf)n(ormance)g(under)g (prioritization)0 4958 y FB(In)20 b(this)g(section,)i(we)e(compare)h (systems)g(with)e(dif)n(ferent)j(numbers)f(of)f(serv)o(ers.)29 b(It)20 b(is)f(important)j(to)e(note)h(that)f(throughout)0 5105 y(these)i(comparisons,)i Fs(we)d(hold)h(the)f(total)h(system)g (capacity)h(\002xed.)29 b FB(That)21 b(is,)g(we)f(compare)j(a)e(single) h(serv)o(er)g(of)f(unit)h(speed)0 5252 y(with)31 b(a)g(2-serv)o(er)h (system,)i(where)d(each)h(serv)o(er)g(has)f(speed)i(half,)g(with)e(a)f (4-serv)o(er)j(system,)h(where)d(each)h(serv)o(er)g(has)1905 5596 y(17)p eop end %%Page: 18 18 TeXDict begin 18 17 bop -27 67 a 9472573 7104424 1710325 11774935 36837785 38350766 startTexFig -27 67 a %%BeginDocument: rdr-mph-2class-meanresp-vs-c2-all-1.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: rdr-mph-2class-meanresp-vs-c2-all-1.eps %%CreationDate: 09/20/2004 12:34:23 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 26 179 560 583 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 26 179 560 583 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 107 341 6397 4844 MR c np 92 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (0) s 2684 4615 mt 2684 4561 L 2684 389 mt 2684 442 L 2551 4872 mt (50) s 4469 4615 mt 4469 4561 L 4469 389 mt 4469 442 L 4269 4872 mt (100) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6055 4872 mt (150) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 731 4704 mt (0) s 899 3636 mt 952 3636 L 6255 3636 mt 6201 3636 L 598 3725 mt (50) s 899 2658 mt 952 2658 L 6255 2658 mt 6201 2658 L 464 2747 mt (100) s 899 1680 mt 952 1680 L 6255 1680 mt 6201 1680 L 464 1769 mt (150) s 899 702 mt 952 702 L 6255 702 mt 6201 702 L 464 791 mt (200) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 24 w /c8 { 1.000000 0.000000 0.000000 sr} bdef c8 178 -32 179 -33 179 -33 178 -32 179 -33 178 -33 179 -32 178 -33 179 -32 178 -33 179 -33 178 -32 179 -33 178 -32 179 -33 178 -33 179 -32 179 -33 178 -32 179 -33 178 -33 179 -32 178 -33 179 -32 178 -33 917 4585 26 MP stroke DA /c9 { 0.000000 1.000000 0.000000 sr} bdef c9 178 -163 179 -164 179 -163 178 -163 179 -163 178 -163 179 -163 178 -163 179 -163 178 -163 179 -163 178 -163 179 -163 178 -163 179 -163 178 -163 179 -163 179 -163 178 -163 179 -163 178 -163 179 -163 178 -163 179 -163 178 -163 917 4467 26 MP stroke gr 24 w c9 DA 0 sg 3420 5068 mt (C) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 192 FMSR 3593 4948 mt (2) s 3593 5188 mt (H) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 355 2722 mt -90 rotate (E[T]) s 90 rotate SO 6 w 1 sg 0 598 2105 0 0 -598 959 1047 4 MP PP -2105 0 0 598 2105 0 0 -598 959 1047 5 MP stroke 4 w DO SO 6 w 0 sg 959 1047 mt 3064 1047 L 959 449 mt 3064 449 L 959 1047 mt 959 449 L 3064 1047 mt 3064 449 L 959 1047 mt 3064 1047 L 959 1047 mt 959 449 L 959 1047 mt 3064 1047 L 959 449 mt 3064 449 L 959 1047 mt 959 449 L 3064 1047 mt 3064 449 L 1627 694 mt (High Priority) s 1627 971 mt (Low Priority) s gs 959 449 2106 599 MR c np 24 w c8 401 0 1092 613 2 MP stroke DA c9 401 0 1092 891 2 MP stroke SO 6 w gr c9 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 1339 67 a 9472573 7104424 1710325 11774935 36837785 38350766 startTexFig 1339 67 a %%BeginDocument: rdr-mph-2class-meanresp-vs-c2-all-2.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: rdr-mph-2class-meanresp-vs-c2-all-2.eps %%CreationDate: 09/20/2004 12:34:23 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 26 179 560 583 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 26 179 560 583 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 107 341 6397 4844 MR c np 92 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (0) s 2684 4615 mt 2684 4561 L 2684 389 mt 2684 442 L 2551 4872 mt (50) s 4469 4615 mt 4469 4561 L 4469 389 mt 4469 442 L 4269 4872 mt (100) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6055 4872 mt (150) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 731 4704 mt (0) s 899 3636 mt 952 3636 L 6255 3636 mt 6201 3636 L 598 3725 mt (50) s 899 2658 mt 952 2658 L 6255 2658 mt 6201 2658 L 464 2747 mt (100) s 899 1680 mt 952 1680 L 6255 1680 mt 6201 1680 L 464 1769 mt (150) s 899 702 mt 952 702 L 6255 702 mt 6201 702 L 464 791 mt (200) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 24 w /c8 { 1.000000 0.000000 0.000000 sr} bdef c8 178 -11 179 -11 179 -11 178 -11 179 -11 178 -11 179 -10 178 -11 179 -11 178 -11 179 -11 178 -11 179 -11 178 -11 179 -10 178 -11 179 -11 179 -11 178 -11 179 -11 178 -11 179 -11 178 -10 179 -11 178 -12 917 4570 26 MP stroke DA /c9 { 0.000000 1.000000 0.000000 sr} bdef c9 178 -136 179 -136 179 -136 178 -136 179 -136 178 -136 179 -136 178 -136 179 -136 178 -136 179 -137 178 -136 179 -136 178 -136 179 -136 178 -136 179 -137 179 -136 178 -137 179 -137 178 -137 179 -137 178 -139 179 -140 178 -143 917 4458 26 MP stroke gr 24 w c9 DA 0 sg 3420 5068 mt (C) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 192 FMSR 3593 4948 mt (2) s 3593 5188 mt (H) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 355 2722 mt -90 rotate (E[T]) s 90 rotate SO 6 w 1 sg 0 598 2105 0 0 -598 959 1047 4 MP PP -2105 0 0 598 2105 0 0 -598 959 1047 5 MP stroke 4 w DO SO 6 w 0 sg 959 1047 mt 3064 1047 L 959 449 mt 3064 449 L 959 1047 mt 959 449 L 3064 1047 mt 3064 449 L 959 1047 mt 3064 1047 L 959 1047 mt 959 449 L 959 1047 mt 3064 1047 L 959 449 mt 3064 449 L 959 1047 mt 959 449 L 3064 1047 mt 3064 449 L 1627 694 mt (High Priority) s 1627 971 mt (Low Priority) s gs 959 449 2106 599 MR c np 24 w c8 401 0 1092 613 2 MP stroke DA c9 401 0 1092 891 2 MP stroke SO 6 w gr c9 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 2704 67 a 9472573 7104424 1710325 11774935 36837785 38350766 startTexFig 2704 67 a %%BeginDocument: rdr-mph-2class-meanresp-vs-c2-all-4.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: rdr-mph-2class-meanresp-vs-c2-all-4.eps %%CreationDate: 09/20/2004 12:34:24 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 26 179 560 583 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 26 179 560 583 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 107 341 6397 4844 MR c np 92 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (0) s 2684 4615 mt 2684 4561 L 2684 389 mt 2684 442 L 2551 4872 mt (50) s 4469 4615 mt 4469 4561 L 4469 389 mt 4469 442 L 4269 4872 mt (100) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6055 4872 mt (150) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 731 4704 mt (0) s 899 3636 mt 952 3636 L 6255 3636 mt 6201 3636 L 598 3725 mt (50) s 899 2658 mt 952 2658 L 6255 2658 mt 6201 2658 L 464 2747 mt (100) s 899 1680 mt 952 1680 L 6255 1680 mt 6201 1680 L 464 1769 mt (150) s 899 702 mt 952 702 L 6255 702 mt 6201 702 L 464 791 mt (200) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 24 w /c8 { 1.000000 0.000000 0.000000 sr} bdef c8 178 0 179 -1 179 -1 178 0 179 -1 178 -1 179 0 178 -1 179 -1 178 0 179 -1 178 -1 179 0 178 -1 179 -1 178 0 179 -1 179 -1 178 -1 179 0 178 -1 179 -1 178 -1 179 0 178 -2 917 4534 26 MP stroke DA /c9 { 0.000000 1.000000 0.000000 sr} bdef c9 178 -65 179 -64 179 -65 178 -65 179 -65 178 -65 179 -65 178 -65 179 -66 178 -66 179 -66 178 -66 179 -66 178 -67 179 -67 178 -68 179 -68 179 -69 178 -69 179 -71 178 -71 179 -73 178 -76 179 -80 178 -91 917 4435 26 MP stroke gr 24 w c9 DA 0 sg 3420 5068 mt (C) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 192 FMSR 3593 4948 mt (2) s 3593 5188 mt (H) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 355 2722 mt -90 rotate (E[T]) s 90 rotate SO 6 w 1 sg 0 598 2105 0 0 -598 959 1047 4 MP PP -2105 0 0 598 2105 0 0 -598 959 1047 5 MP stroke 4 w DO SO 6 w 0 sg 959 1047 mt 3064 1047 L 959 449 mt 3064 449 L 959 1047 mt 959 449 L 3064 1047 mt 3064 449 L 959 1047 mt 3064 1047 L 959 1047 mt 959 449 L 959 1047 mt 3064 1047 L 959 449 mt 3064 449 L 959 1047 mt 959 449 L 3064 1047 mt 3064 449 L 1627 694 mt (High Priority) s 1627 971 mt (Low Priority) s gs 959 449 2106 599 MR c np 24 w c8 401 0 1092 613 2 MP stroke DA c9 401 0 1092 891 2 MP stroke SO 6 w gr c9 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 385 1080 a FB(\(1)23 b(serv)o(er\))1008 b(\(2)23 b(serv)o(ers\))1008 b(\(4)24 b(serv)o(ers\))0 1276 y(Figure)j(7:)35 b Fs(Contr)o(asting)29 b(per)n(-class)g(mean)e(r)m(esponse)h(time)e(under)i(one)f(server)h (\(left\),)g(two)e(server)o(s)j(\(middle\))e(and)g(four)0 1389 y(server)o(s)36 b(\(right\))g(for)f(an)g(M/PH/)p Fv(k)h Fs(with)e(two)g(priority)j(classes.)63 b(T)-8 b(otal)34 b(system)h(capacity)i(is)d(\002xed)i(thr)l(oughout,)k(and)0 1502 y Fv(\032)25 b Fu(=)g(0)p Fv(:)p Fu(8)p Fs(.)k(Results)c(ar)m(e)e (obtained)j(using)f(RDR.)0 1778 y FB(speed)g(one-fourth,)h(etc.)141 1925 y(Figure)e(7)f(considers)j(an)d(M/PH/)p Fv(k)i FB(system)g(with)e (tw)o(o)g(priority)i(classes)g(where)f Fv(k)h FB(is)e(one)h(\(left\),)g (tw)o(o)f(\(middle\),)i(four)0 2072 y(\(right\),)31 b(b)n(ut)e(the)g (total)h(system)f(capacity)i(is)e(held)g(\002x)o(ed,)g(and)h(load)f(is) g(\002x)o(ed)f(at)g Fv(\032)35 b Fu(=)g(0)p Fv(:)p Fu(8)p FB(.)44 b(The)29 b(lo)n(w-priority)i(jobs)e(are)0 2218 y(e)o(xponentially)i(distrib)n(uted.)43 b(The)27 b(high-priority)k (jobs)d(follo)n(w)g(a)f(PH)e(distrib)n(ution)31 b(where)d(the)f (squared)i(coef)n(\002cient)g(of)0 2365 y(v)n(ariation)i(for)e(high)h (priority)h(jobs,)g Fv(C)1250 2332 y Fn(2)1243 2391 y Fp(H)1310 2365 y FB(,)f(is)f(v)n(aried.)46 b(The)29 b(means)g(of)g(the) h(tw)o(o)e(classes)j(are)e(the)h(same)f(and)g(the)h(load)f(is)0 2512 y(split)24 b(e)n(v)o(enly)f(between)h(the)f(tw)o(o)g(classes.)30 b(The)22 b(plots)i(sho)n(w)f(per)n(-class)i(mean)e(response)i(time)e (as)g(a)f(function)j(of)e Fv(C)3673 2479 y Fn(2)3666 2538 y Fp(H)3733 2512 y FB(.)28 b(All)0 2659 y(results)d(are)f (computed)h(using)g(RDR.)141 2805 y(The)g(\002rst)f(thing)i(to)f (observ)o(e)h(is)f(that)h(the)f(response)i(times)e(in)g(the)g(case)h (of)f(one)g(serv)o(er)h(appear)g(v)o(ery)f(dif)n(ferent)i(from)0 2952 y(the)f(response)j(times)d(in)h(the)f(case)h(of)f(tw)o(o)g(serv)o (ers,)i(or)e(four)h(serv)o(ers.)38 b(The)26 b(ef)n(fect)h(of)f (prioritization)k(in)c(a)g(single)h(serv)o(er)0 3099 y(system)d(of)n(fers)g(little)g(\(quantitati)n(v)o(e\))j(insight)e (into)f(the)f(ef)n(fect)h(of)g(prioritization)j(in)c(a)g(multi-serv)o (er)i(system,)f(aside)g(from)0 3246 y(the)g(f)o(act)g(that)g(in)f(all)h (cases)h(the)e(response)j(times)e(appear)h(to)e(be)h(a)f(nearly)i (linear)g(function)g(of)f Fv(C)3073 3213 y Fn(2)3066 3271 y Fp(H)3133 3246 y FB(.)141 3393 y(Figure)f(7)f(also)h (illustrates)j(some)c(other)i(interesting)h(points.)30 b(W)-7 b(e)21 b(see)i(that)g(as)g(we)e(increase)k(the)d(number)i(of)e (serv)o(ers,)0 3539 y(under)29 b Fs(high)h Fv(C)496 3506 y Fn(2)489 3565 y Fp(H)556 3539 y FB(,)e(the)h(performance)i(of)d(both) h(high-priority)j(and)d(lo)n(w-priority)h(jobs)f(impro)o(v)o(es.)44 b(By)28 b(contrast,)j(under)0 3686 y Fs(low)d Fv(C)231 3653 y Fn(2)224 3712 y Fp(H)292 3686 y FB(,)g(the)h(performance)j(can)d (get)g(w)o(orse)g(as)g(we)f(increase)i(the)f(number)h(of)f(serv)o(ers)h (\(this)f(f)o(act)h(is)e(more)h(visible)h(in)0 3833 y(Figure)e(7)f(for) h(the)f(high-priority)32 b(jobs\).)41 b(T)-7 b(o)26 b(understand)31 b(this)d(phenomenon,)j(observ)o(e)e(that)f(when)f Fv(C)3332 3800 y Fn(2)3325 3859 y Fp(H)3419 3833 y FB(is)g(high,)i(short)0 3980 y(jobs)c(can)g(get)f(stuck)i(behind)g(long)f(jobs,)g(and)g (increasing)i(the)e(number)g(of)f(serv)o(ers)i(can)e(allo)n(w)h(the)f (short)i(jobs)f(a)f(chance)0 4127 y(to)c(be)g(serv)o(ed.)29 b(By)19 b(contrast)k(when)d Fv(C)1202 4094 y Fn(2)1195 4152 y Fp(H)1281 4127 y FB(is)g(lo)n(w)-6 b(,)20 b(all)h(jobs)g(are)f (similar)h(in)f(size,)h(so)f(we)f(do)i(not)f(get)h(the)f(bene\002t)h (of)f(allo)n(wing)0 4273 y(short)j(jobs)f(to)g(jump)f(ahead)i(of)f (long)g(jobs)h(when)e(there)i(are)f(more)f(serv)o(ers.)30 b(Ho)n(we)n(v)o(er)21 b(we)g(do)h(get)f(the)h(ne)o(gati)n(v)o(e)h(ef)n (fect)f(of)0 4420 y(increasing)29 b(the)e(number)g(of)f(serv)o(ers,)i (namely)f(the)f(underutilization)31 b(of)c(system)f(resources)j(when)d (there)i(are)e(fe)n(w)f(jobs)0 4567 y(in)30 b(the)h(system,)h(since)f (each)g(of)f(the)h Fv(k)h FB(serv)o(ers)g(only)f(has)f(speed)i Fu(1)p Fv(=k)s FB(.)49 b(The)29 b(beha)n(vior)k(under)e(lo)n(w)f Fv(C)3348 4534 y Fn(2)3341 4593 y Fp(H)3408 4567 y FB(,)h(where)f(more) 0 4714 y(serv)o(ers)25 b(lead)f(to)f(w)o(orse)h(performance,)i(is)e (more)f(prominent)j(under)e(lo)n(wer)g(load)g Fv(\032)p FB(.)141 4860 y(Figure)g(7)f(already)j(implies)e(that)g(the)g(ef)n (fect)h(of)e(prioritization)28 b(on)23 b(mean)h(response)i(time)d(in)h (a)f(multi-serv)o(er)i(system)0 5007 y(may)f(be)h(quite)h(dif)n(ferent) g(from)f(that)g(in)g(a)f(single)i(serv)o(er)g(system.)33 b(In)24 b(Figure)h(8)g(we)f(in)l(v)o(estigate)j(this)e(phenomena)i (more)0 5154 y(closely)-6 b(,)40 b(by)35 b(e)n(v)n(aluating)j(the)e (accurac)o(y)h(of)e(the)h(BB)e(approximation)k([2)q(],)g(which)d(is)h (based)g(on)g(this)g(assumption)h(of)0 5301 y(similar)24 b(beha)n(vior)i(in)e(single)g(and)g(multi-serv)o(er)i(priority)g (queues.)k(Looking)25 b(at)e(Figure)h(8,)f(we)g(see)g(that)h(the)g (error)g(in)g(the)1905 5596 y(18)p eop end %%Page: 19 19 TeXDict begin 19 18 bop 127 67 a 13261617 11367059 1710325 11840716 36048404 39074365 startTexFig 127 67 a %%BeginDocument: error-bb-C2is8.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: error-bb-C2is8.eps %%CreationDate: 09/20/2004 17:23:01 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 26 180 548 594 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 26 180 548 594 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 100 207 6271 4975 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (1) s 1664 4615 mt 1664 4561 L 1664 389 mt 1664 442 L 1598 4872 mt (2) s 2429 4615 mt 2429 4561 L 2429 389 mt 2429 442 L 2363 4872 mt (3) s 3194 4615 mt 3194 4561 L 3194 389 mt 3194 442 L 3128 4872 mt (4) s 3959 4615 mt 3959 4561 L 3959 389 mt 3959 442 L 3893 4872 mt (5) s 4724 4615 mt 4724 4561 L 4724 389 mt 4724 442 L 4658 4872 mt (6) s 5489 4615 mt 5489 4561 L 5489 389 mt 5489 442 L 5423 4872 mt (7) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6189 4872 mt (8) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 457 4704 mt (-40) s 899 4086 mt 952 4086 L 6255 4086 mt 6201 4086 L 457 4175 mt (-30) s 899 3558 mt 952 3558 L 6255 3558 mt 6201 3558 L 457 3647 mt (-20) s 899 3030 mt 952 3030 L 6255 3030 mt 6201 3030 L 457 3119 mt (-10) s 899 2502 mt 952 2502 L 6255 2502 mt 6201 2502 L 731 2591 mt (0) s 899 1973 mt 952 1973 L 6255 1973 mt 6201 1973 L 598 2062 mt (10) s 899 1445 mt 952 1445 L 6255 1445 mt 6201 1445 L 598 1534 mt (20) s 899 917 mt 952 917 L 6255 917 mt 6201 917 L 598 1006 mt (30) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 598 478 mt (40) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 24 w /c8 { 0.000000 0.000000 1.000000 sr} bdef c8 766 109 765 29 765 258 765 -65 765 -43 765 -117 765 -499 899 2479 8 MP stroke DA 766 85 765 8 765 17 765 -132 765 -72 765 -308 765 -483 899 2487 8 MP stroke DO 766 -38 765 13 765 -78 765 -201 765 -92 765 -290 765 -391 899 2492 8 MP stroke gr 24 w c8 DO 0 sg 2613 5103 mt (number of servers) s 348 2973 mt -90 rotate (error \(%\)) s 90 rotate SO 6 w 1 sg 0 875 1549 0 0 -875 959 1324 4 MP PP -1549 0 0 875 1549 0 0 -875 959 1324 5 MP stroke 4 w DO SO 6 w 0 sg 959 1324 mt 2508 1324 L 959 449 mt 2508 449 L 959 1324 mt 959 449 L 2508 1324 mt 2508 449 L 959 1324 mt 2508 1324 L 959 1324 mt 959 449 L 959 1324 mt 2508 1324 L 959 449 mt 2508 449 L 959 1324 mt 959 449 L 2508 1324 mt 2508 449 L 1627 694 mt (class 2) s 1627 971 mt (class 3) s 1627 1248 mt (class 4) s gs 959 449 1550 876 MR c np 24 w c8 401 0 1092 613 2 MP stroke DA 401 0 1092 890 2 MP stroke SO DO 401 0 1092 1168 2 MP stroke SO 6 w gr c8 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 2093 67 a 13261617 11367059 1710325 11840716 36048404 39074365 startTexFig 2093 67 a %%BeginDocument: error-bb-C2is25.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: error-bb-C2is25.eps %%CreationDate: 09/20/2004 17:23:01 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 26 180 548 594 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 26 180 548 594 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 100 207 6271 4975 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (1) s 1664 4615 mt 1664 4561 L 1664 389 mt 1664 442 L 1598 4872 mt (2) s 2429 4615 mt 2429 4561 L 2429 389 mt 2429 442 L 2363 4872 mt (3) s 3194 4615 mt 3194 4561 L 3194 389 mt 3194 442 L 3128 4872 mt (4) s 3959 4615 mt 3959 4561 L 3959 389 mt 3959 442 L 3893 4872 mt (5) s 4724 4615 mt 4724 4561 L 4724 389 mt 4724 442 L 4658 4872 mt (6) s 5489 4615 mt 5489 4561 L 5489 389 mt 5489 442 L 5423 4872 mt (7) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6189 4872 mt (8) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 457 4704 mt (-40) s 899 4086 mt 952 4086 L 6255 4086 mt 6201 4086 L 457 4175 mt (-30) s 899 3558 mt 952 3558 L 6255 3558 mt 6201 3558 L 457 3647 mt (-20) s 899 3030 mt 952 3030 L 6255 3030 mt 6201 3030 L 457 3119 mt (-10) s 899 2502 mt 952 2502 L 6255 2502 mt 6201 2502 L 731 2591 mt (0) s 899 1973 mt 952 1973 L 6255 1973 mt 6201 1973 L 598 2062 mt (10) s 899 1445 mt 952 1445 L 6255 1445 mt 6201 1445 L 598 1534 mt (20) s 899 917 mt 952 917 L 6255 917 mt 6201 917 L 598 1006 mt (30) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 598 478 mt (40) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 24 w /c8 { 0.000000 0.000000 1.000000 sr} bdef c8 766 -111 765 277 765 571 765 -495 765 -165 765 -318 765 -692 899 2502 8 MP stroke DA 766 29 765 -287 765 223 765 -431 765 -394 765 -402 765 -742 899 2519 8 MP stroke DO 766 -50 765 -190 765 87 765 -468 765 -291 765 -295 765 -645 899 2528 8 MP stroke gr 24 w c8 DO 0 sg 2613 5103 mt (number of servers) s 348 2973 mt -90 rotate (error \(%\)) s 90 rotate SO 6 w 1 sg 0 875 1549 0 0 -875 959 1324 4 MP PP -1549 0 0 875 1549 0 0 -875 959 1324 5 MP stroke 4 w DO SO 6 w 0 sg 959 1324 mt 2508 1324 L 959 449 mt 2508 449 L 959 1324 mt 959 449 L 2508 1324 mt 2508 449 L 959 1324 mt 2508 1324 L 959 1324 mt 959 449 L 959 1324 mt 2508 1324 L 959 449 mt 2508 449 L 959 1324 mt 959 449 L 2508 1324 mt 2508 449 L 1627 694 mt (class 2) s 1627 971 mt (class 3) s 1627 1248 mt (class 4) s gs 959 449 1550 876 MR c np 24 w c8 401 0 1092 613 2 MP stroke DA 401 0 1092 890 2 MP stroke SO DO 401 0 1092 1168 2 MP stroke SO 6 w gr c8 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 859 1620 a FB(\(a\))24 b Fv(C)1055 1587 y Fn(2)1119 1620 y Fu(=)h(8)1306 b FB(\(b\))24 b Fv(C)2767 1587 y Fn(2)2831 1620 y Fu(=)h(25)0 1816 y FB(Figure)30 b(8:)42 b Fs(Err)l(or)29 b(in)h(pr)m(edicting)i(mean)e(delay)h(using)g(the)f (BB)e(appr)l(oximation)33 b(\(compar)m(ed)e(with)f(simulation\))i(for)e (an)0 1929 y(M/PH/2)23 b(with)g(four)h(classes)i(wher)m(e)d Fv(C)1263 1896 y Fn(2)1327 1929 y Fu(=)i(8)e Fs(\(left\))i(or)e Fv(C)1866 1896 y Fn(2)1931 1929 y Fu(=)h(25)g Fs(\(right\))h(and)f Fv(\032)i Fu(=)f(0)p Fv(:)p Fu(8)p Fs(.)0 2205 y FB(BB)h(approximation) k(appears)f(to)e(increase)i(for)e(higher)i Fv(C)1892 2172 y Fn(2)1957 2205 y FB(\(right)f(graph\))h(and)e(for)g(more)g (classes.)41 b(W)l(ith)28 b(four)g(classes)0 2352 y(and)c(tw)o(o)g (serv)o(ers,)g(the)g(error)h(is)e(already)j(10\045)d(when)h Fv(C)1803 2319 y Fn(2)1868 2352 y Fu(=)h(8)e FB(and)h(higher)h(for)f (higher)i Fv(C)2898 2319 y Fn(2)2936 2352 y FB(.)j(By)23 b(contrast,)i(for)f(the)g(same)0 2499 y(4-class)j(case)g(as)e(sho)n(wn) h(in)g(Figure)g(8,)g(the)g(error)h(in)e(RDR)f(is)i(al)o(w)o(ays)g Fv(<)j Fu(2\045)d FB(independent)j(of)d Fv(C)3166 2466 y Fn(2)3229 2499 y FB(and)h(the)f(number)g(of)0 2645 y(serv)o(ers)g(\(we)d(ha)n(v)o(e)i(omitted)h(this)e(graph\).)33 b(In)24 b(the)h(abo)o(v)o(e)g(graphs)g(all)g(classes)h(were)e (statistically)j(identical.)34 b(In)24 b(the)h(case)0 2792 y(where)h(the)h(classes)g(ha)n(v)o(e)g(dif)n(ferent)h(means,)f (the)f(error)h(in)f(BB)f(can)h(be)g(much)g(higher)l(,)i(whereas)f (RDR-A)e(is)g(much)i(less)0 2939 y(insensiti)n(v)o(e)f(to)d(this.)0 3223 y Ft(4.2)99 b(The)26 b(effect)g(of)f(biasing)g(to)o(ward)g(short)g (jobs)g(in)g(multi-ser)o(v)o(er)h(v)o(ersus)f(single)f(ser)o(v)o(er)i (systems)0 3431 y FB(Until)g(no)n(w)-6 b(,)27 b(we)e(ha)n(v)o(e)i (assumed)g(that)g(all)g(job)f(classes)i(ha)n(v)o(e)f(the)f(same)h (means.)37 b(In)26 b(this)h(section)h(and)f(the)f(ne)o(xt)h(section,)0 3578 y(we)21 b(remo)o(v)o(e)h(this)g(assumption.)30 b(In)22 b(this)g(section)i(we)d(consider)j(the)e(ef)n(fect)g(of)g(priority)i (schemes)e(which)h(f)o(a)n(v)n(or)g(short)f(jobs)0 3725 y(in)f(multi-serv)o(er)h(systems.)29 b(Biasing)22 b(to)n(w)o(ards)f (short)h(jobs)f(is)g(a)f(common)h(method)h(for)f(impro)o(ving)h(mean)f (response)i(time.)0 3872 y(W)-7 b(e)22 b(use)h(RDR)e(to)i(understand)j (ho)n(w)d(the)g(bene\002t)h(of)f(f)o(a)n(v)n(oring)i(short)f(jobs)g(in) f(a)f(single)j(serv)o(er)f(system)f(compares)i(to)e(that)0 4018 y(for)h(a)f(multi-serv)o(er)j(system.)141 4165 y(Figure)20 b(9)e(considers)k(a)c(job)h(size)h(distrib)n(ution)i(comprised)f(of)e (an)g(e)o(xponential)j(of)d(mean)g Fu(1)p FB(,)g(representing)j(jobs)e (which)0 4312 y(are)h(\223short\224)i(in)e(e)o(xpectation,)j(and)d(an)h (e)o(xponential)i(of)c(mean)i Fu(10)p FB(,)f(representing)j(jobs)e (which)g(are)f(\223long\224)h(in)f(e)o(xpectation)0 4459 y(\(where)28 b(job)g(sizes)h(are)e(measured)j(in)d(a)g(single-serv)o (er)k(system\).)42 b(The)27 b(probability)k(of)c(each)i(type)f(of)g (job)g(is)f(chosen)i(to)0 4605 y(split)d(load)g(e)n(v)o(enly)g(between) h(the)e(short)i(and)e(long)h(jobs)g(\(e.g.,)g(with)f Fv(m)j Fu(=)g(2)d FB(classes,)2795 4570 y Fn(10)p 2795 4585 71 4 v 2795 4637 a(11)2900 4605 y FB(of)g(the)h(jobs)g(are)f (short)i(and)3837 4570 y Fn(1)p 3819 4585 V 3819 4637 a(11)0 4752 y FB(of)21 b(the)g(jobs)h(are)f(long\).)29 b(The)21 b(SMAR)-5 b(T)18 b(scheduling)24 b(polic)o(y)e(assigns)h(high) f(priority)h(to)e(the)g(short)h(jobs,)g(and)g(the)f(STUPID)0 4899 y(scheduling)26 b(polic)o(y)f(assigns)g(high)f(priority)h(to)f (the)f(long)h(jobs)g(\(possibly)i(due)e(to)f(economic)i(reasons\).)31 b(Figure)24 b(9)f(sho)n(ws)0 5046 y(the)h(results)h(for)f(a)f(\(a\))g (one)h(serv)o(er)l(,)h(\(b\))f(tw)o(o)f(serv)o(er)l(,)h(and)g(\(c\))g (four)g(serv)o(er)h(system.)141 5193 y(Looking)j(at)f(Figure)g(9,)g (the)f(SMAR)-5 b(T)24 b(and)j(STUPID)d(policies)29 b(are)e(the)g(same)f (when)h(load)g Fv(\032)f FB(is)h(lo)n(w)-6 b(.)37 b(At)26 b(lo)n(w)g(load,)0 5339 y(the)i(response)h(time)f(for)f(both)h (policies)i(con)l(v)o(er)n(ges)g(to)e(simply)g(the)f(mean)h(job)g (size,)g(which)g(in)f(these)i(\002gures)f(is)3687 5304 y Fn(20)p 3687 5319 V 3687 5371 a(11)3794 5339 y FB(for)1905 5596 y(19)p eop end %%Page: 20 20 TeXDict begin 20 19 bop -15 67 a 9472573 7672781 2499706 11774935 36048404 39074365 startTexFig -15 67 a %%BeginDocument: rdr-mh1-2class-meanresp-vs-load-smart-eq-stupid-all-1.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: rdr-mh1-2class-meanresp-vs-load-smart-eq-stupid-all-1.eps %%CreationDate: 09/20/2004 12:46:18 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 38 179 548 594 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 38 179 548 594 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 241 207 6130 4978 MR c np 92 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (0) s 1970 4615 mt 1970 4561 L 1970 389 mt 1970 442 L 1804 4872 mt (0.2) s 3041 4615 mt 3041 4561 L 3041 389 mt 3041 442 L 2875 4872 mt (0.4) s 4112 4615 mt 4112 4561 L 4112 389 mt 4112 442 L 3946 4872 mt (0.6) s 5183 4615 mt 5183 4561 L 5183 389 mt 5183 442 L 5017 4872 mt (0.8) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6189 4872 mt (1) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 731 4704 mt (0) s 899 3769 mt 952 3769 L 6255 3769 mt 6201 3769 L 598 3858 mt (10) s 899 2924 mt 952 2924 L 6255 2924 mt 6201 2924 L 598 3013 mt (20) s 899 2079 mt 952 2079 L 6255 2079 mt 6201 2079 L 598 2168 mt (30) s 899 1234 mt 952 1234 L 6255 1234 mt 6201 1234 L 598 1323 mt (40) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 598 478 mt (50) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 24 w /c8 { 0.000000 0.000000 1.000000 sr} bdef c8 268 -852 268 -287 268 -146 535 -149 536 -78 535 -49 536 -34 536 -25 535 -20 536 -16 482 -12 952 4460 12 MP stroke DA /c9 { 0.000000 1.000000 0.000000 sr} bdef c9 227 -1152 535 -1320 536 -628 535 -357 536 -224 536 -151 535 -105 536 -77 482 -53 952 4456 10 MP stroke gr 24 w c9 DA 0 sg %%IncludeResource: font Symbol /Symbol /ISOLatin1Encoding 240 FMSR 3510 5092 mt (r) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 489 2722 mt -90 rotate (E[T]) s 90 rotate SO 6 w 1 sg 0 598 1682 0 0 -598 959 1047 4 MP PP -1682 0 0 598 1682 0 0 -598 959 1047 5 MP stroke 4 w DO SO 6 w 0 sg 959 1047 mt 2641 1047 L 959 449 mt 2641 449 L 959 1047 mt 959 449 L 2641 1047 mt 2641 449 L 959 1047 mt 2641 1047 L 959 1047 mt 959 449 L 959 1047 mt 2641 1047 L 959 449 mt 2641 449 L 959 1047 mt 959 449 L 2641 1047 mt 2641 449 L 1627 694 mt (SMART) s 1627 971 mt (STUPID) s gs 959 449 1683 599 MR c np 24 w c8 401 0 1092 613 2 MP stroke DA c9 401 0 1092 891 2 MP stroke SO 6 w gr c9 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 1350 67 a 9472573 7672781 2499706 11774935 36048404 39074365 startTexFig 1350 67 a %%BeginDocument: rdr-mh1-2class-meanresp-vs-load-smart-eq-stupid-all-2.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: rdr-mh1-2class-meanresp-vs-load-smart-eq-stupid-all-2.eps %%CreationDate: 09/20/2004 12:46:17 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 38 179 548 594 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 38 179 548 594 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 241 207 6130 4978 MR c np 92 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (0) s 1970 4615 mt 1970 4561 L 1970 389 mt 1970 442 L 1804 4872 mt (0.2) s 3041 4615 mt 3041 4561 L 3041 389 mt 3041 442 L 2875 4872 mt (0.4) s 4112 4615 mt 4112 4561 L 4112 389 mt 4112 442 L 3946 4872 mt (0.6) s 5183 4615 mt 5183 4561 L 5183 389 mt 5183 442 L 5017 4872 mt (0.8) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6189 4872 mt (1) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 731 4704 mt (0) s 899 3769 mt 952 3769 L 6255 3769 mt 6201 3769 L 598 3858 mt (10) s 899 2924 mt 952 2924 L 6255 2924 mt 6201 2924 L 598 3013 mt (20) s 899 2079 mt 952 2079 L 6255 2079 mt 6201 2079 L 598 2168 mt (30) s 899 1234 mt 952 1234 L 6255 1234 mt 6201 1234 L 598 1323 mt (40) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 598 478 mt (50) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 24 w /c8 { 0.000000 0.000000 1.000000 sr} bdef c8 268 -850 268 -286 268 -144 535 -146 536 -75 535 -44 536 -29 536 -19 535 -13 536 -7 482 -2 952 4307 12 MP stroke DA /c9 { 0.000000 1.000000 0.000000 sr} bdef c9 266 -1338 535 -1293 536 -595 535 -317 536 -181 536 -103 535 -56 536 -28 482 -7 952 4307 10 MP stroke gr 24 w c9 DA 0 sg %%IncludeResource: font Symbol /Symbol /ISOLatin1Encoding 240 FMSR 3510 5092 mt (r) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 489 2722 mt -90 rotate (E[T]) s 90 rotate SO 6 w 1 sg 0 598 1682 0 0 -598 959 1047 4 MP PP -1682 0 0 598 1682 0 0 -598 959 1047 5 MP stroke 4 w DO SO 6 w 0 sg 959 1047 mt 2641 1047 L 959 449 mt 2641 449 L 959 1047 mt 959 449 L 2641 1047 mt 2641 449 L 959 1047 mt 2641 1047 L 959 1047 mt 959 449 L 959 1047 mt 2641 1047 L 959 449 mt 2641 449 L 959 1047 mt 959 449 L 2641 1047 mt 2641 449 L 1627 694 mt (SMART) s 1627 971 mt (STUPID) s gs 959 449 1683 599 MR c np 24 w c8 401 0 1092 613 2 MP stroke DA c9 401 0 1092 891 2 MP stroke SO 6 w gr c9 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 2715 67 a 9472573 7672781 2499706 11774935 36048404 39074365 startTexFig 2715 67 a %%BeginDocument: rdr-mh1-2class-meanresp-vs-load-smart-eq-stupid-all-4.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: rdr-mh1-2class-meanresp-vs-load-smart-eq-stupid-all-4.eps %%CreationDate: 09/20/2004 12:46:17 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 38 179 548 594 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 38 179 548 594 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 241 207 6130 4978 MR c np 92 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (0) s 1970 4615 mt 1970 4561 L 1970 389 mt 1970 442 L 1804 4872 mt (0.2) s 3041 4615 mt 3041 4561 L 3041 389 mt 3041 442 L 2875 4872 mt (0.4) s 4112 4615 mt 4112 4561 L 4112 389 mt 4112 442 L 3946 4872 mt (0.6) s 5183 4615 mt 5183 4561 L 5183 389 mt 5183 442 L 5017 4872 mt (0.8) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6189 4872 mt (1) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 731 4704 mt (0) s 899 3769 mt 952 3769 L 6255 3769 mt 6201 3769 L 598 3858 mt (10) s 899 2924 mt 952 2924 L 6255 2924 mt 6201 2924 L 598 3013 mt (20) s 899 2079 mt 952 2079 L 6255 2079 mt 6201 2079 L 598 2168 mt (30) s 899 1234 mt 952 1234 L 6255 1234 mt 6201 1234 L 598 1323 mt (40) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 598 478 mt (50) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 24 w /c8 { 0.000000 0.000000 1.000000 sr} bdef c8 268 -847 268 -283 268 -141 535 -140 536 -67 535 -36 536 -20 536 -11 535 -4 536 -2 482 0 952 4000 12 MP stroke DA /c9 { 0.000000 1.000000 0.000000 sr} bdef c9 20 -205 268 -1303 535 -1201 536 -502 535 -231 536 -106 536 -44 535 -15 536 -4 482 0 952 4000 11 MP stroke gr 24 w c9 DA 0 sg %%IncludeResource: font Symbol /Symbol /ISOLatin1Encoding 240 FMSR 3510 5092 mt (r) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 489 2722 mt -90 rotate (E[T]) s 90 rotate SO 6 w 1 sg 0 598 1682 0 0 -598 959 1047 4 MP PP -1682 0 0 598 1682 0 0 -598 959 1047 5 MP stroke 4 w DO SO 6 w 0 sg 959 1047 mt 2641 1047 L 959 449 mt 2641 449 L 959 1047 mt 959 449 L 2641 1047 mt 2641 449 L 959 1047 mt 2641 1047 L 959 1047 mt 959 449 L 959 1047 mt 2641 1047 L 959 449 mt 2641 449 L 959 1047 mt 959 449 L 2641 1047 mt 2641 449 L 1627 694 mt (SMART) s 1627 971 mt (STUPID) s gs 959 449 1683 599 MR c np 24 w c8 401 0 1092 613 2 MP stroke DA c9 401 0 1092 891 2 MP stroke SO 6 w gr c9 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 385 1152 a FB(\(1)23 b(serv)o(er\))1008 b(\(2)23 b(serv)o(ers\))1008 b(\(4)24 b(serv)o(ers\))0 1348 y(Figure)k(9:)38 b Fs(Mean)28 b(r)m(esponse)i(time)d(under)i(SMART)d(ver)o(sus)j(STUPID)d (prioritization)32 b(in)c(a)f(2-class)j(system,)f(wher)m(e)f(the)0 1461 y(classes)k(ar)m(e)e(e)n(xponentially)35 b(distrib)n(uted)f(with)c (means)h(one)g(and)g(ten)f(r)m(espectively)-5 b(,)35 b(for)c(the)f(case)h(of)g(one)g(server)-10 b(,)33 b(two)0 1574 y(server)o(s,)25 b(and)f(four)g(server)o(s.)127 1692 y 13261617 10419816 1184071 11774935 36837785 39074365 startTexFig 127 1692 a %%BeginDocument: error-mk-and-rdra-mph2-4class-meanresp-vs-c2-smart-all-2.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: error-mk-and-rdra-mph2-4class-meanresp-vs-c2-smart-all-2.eps %%CreationDate: 09/20/2004 12:08:42 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 18 179 560 594 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 18 179 560 594 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 0 207 6504 4978 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (0) s 2684 4615 mt 2684 4561 L 2684 389 mt 2684 442 L 2551 4872 mt (50) s 4469 4615 mt 4469 4561 L 4469 389 mt 4469 442 L 4269 4872 mt (100) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6055 4872 mt (150) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 324 4704 mt (-100) s 899 3558 mt 952 3558 L 6255 3558 mt 6201 3558 L 457 3647 mt (-50) s 899 2502 mt 952 2502 L 6255 2502 mt 6201 2502 L 731 2591 mt (0) s 899 1445 mt 952 1445 L 6255 1445 mt 6201 1445 L 598 1534 mt (50) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 464 478 mt (100) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 24 w /c8 { 0.000000 0.000000 1.000000 sr} bdef c8 2285 98 1143 -74 571 -34 286 4 143 17 71 19 54 -3 916 2477 8 MP stroke DA 2285 52 1143 87 571 156 286 264 143 388 71 479 54 843 916 2296 8 MP stroke gr 24 w c8 DA 0 sg 3436 5177 mt (C) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 192 FMSR 3609 5057 mt (2) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 215 2973 mt -90 rotate (error \(%\)) s 90 rotate SO 6 w 1 sg 0 598 1623 0 0 -598 959 1047 4 MP PP -1623 0 0 598 1623 0 0 -598 959 1047 5 MP stroke 4 w DO SO 6 w 0 sg 959 1047 mt 2582 1047 L 959 449 mt 2582 449 L 959 1047 mt 959 449 L 2582 1047 mt 2582 449 L 959 1047 mt 2582 1047 L 959 1047 mt 959 449 L 959 1047 mt 2582 1047 L 959 449 mt 2582 449 L 959 1047 mt 959 449 L 2582 1047 mt 2582 449 L 1627 694 mt (RDR-A) s 1627 971 mt (MK-N) s gs 959 449 1624 599 MR c np 24 w c8 401 0 1092 613 2 MP stroke DA 401 0 1092 891 2 MP stroke SO 6 w gr c8 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 2093 1692 a 13261617 10419816 1184071 11774935 36048404 39074365 startTexFig 2093 1692 a %%BeginDocument: error-mk-and-rdra-mph2-4class-meanresp-vs-load-smart-all-2.eps %!PS-Adobe-2.0 EPSF-1.2 %%Creator: MATLAB, The Mathworks, Inc. %%Title: error-mk-and-rdra-mph2-4class-meanresp-vs-load-smart-all-2.eps %%CreationDate: 09/20/2004 12:07:34 %%DocumentNeededFonts: Helvetica %%DocumentProcessColors: Cyan Magenta Yellow Black %%Extensions: CMYK %%Pages: 1 %%BoundingBox: 18 179 548 594 %%EndComments %%BeginProlog % MathWorks dictionary /MathWorks 160 dict begin % definition operators /bdef {bind def} bind def /ldef {load def} bind def /xdef {exch def} bdef /xstore {exch store} bdef % operator abbreviations /c /clip ldef /cc /concat ldef /cp /closepath ldef /gr /grestore ldef /gs /gsave ldef /mt /moveto ldef /np /newpath ldef /cm /currentmatrix ldef /sm /setmatrix ldef /rm /rmoveto ldef /rl /rlineto ldef /s {show newpath} bdef /sc {setcmykcolor} bdef /sr /setrgbcolor ldef /sg /setgray ldef /w /setlinewidth ldef /j /setlinejoin ldef /cap /setlinecap ldef /rc {rectclip} bdef /rf {rectfill} bdef % page state control /pgsv () def /bpage {/pgsv save def} bdef /epage {pgsv restore} bdef /bplot /gsave ldef /eplot {stroke grestore} bdef % orientation switch /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def % coordinate system mappings /dpi2point 0 def % font control /FontSize 0 def /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0] makefont setfont} bdef /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse exch dup 3 1 roll findfont dup length dict begin { 1 index /FID ne {def}{pop pop} ifelse } forall /Encoding exch def currentdict end definefont pop} bdef /isroman {findfont /CharStrings get /Agrave known} bdef /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse exch FMS} bdef /csm {1 dpi2point div -1 dpi2point div scale neg translate dup landscapeMode eq {pop -90 rotate} {rotateMode eq {90 rotate} if} ifelse} bdef % line types: solid, dotted, dashed, dotdash /SO { [] 0 setdash } bdef /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef /DA { [6 dpi2point mul] 0 setdash } bdef /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef % macros for lines and objects /L {lineto stroke} bdef /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef /AP {{rlineto} repeat} bdef /PDlw -1 def /W {/PDlw currentlinewidth def setlinewidth} def /PP {closepath eofill} bdef /DP {closepath stroke} bdef /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath} bdef /FR {MR stroke} bdef /PR {MR fill} bdef /L1i {{currentfile picstr readhexstring pop} image} bdef /tMatrix matrix def /MakeOval {newpath tMatrix currentmatrix pop translate scale 0 0 1 0 360 arc tMatrix setmatrix} bdef /FO {MakeOval stroke} bdef /PO {MakeOval fill} bdef /PD {currentlinewidth 2 div 0 360 arc fill PDlw -1 eq not {PDlw w /PDlw -1 def} if} def /FA {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef /FAn {newpath tMatrix currentmatrix pop translate scale 0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale 0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef /vradius 0 def /hradius 0 def /lry 0 def /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly vradius add translate hradius vradius scale 0 0 1 180 270 arc tMatrix setmatrix lrx hradius sub uly vradius add translate hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix lrx hradius sub lry vradius sub translate hradius vradius scale 0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix closepath} bdef /FRR {MRR stroke } bdef /PRR {MRR fill } bdef /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix closepath} bdef /FlrRR {MlrRR stroke } bdef /PlrRR {MlrRR fill } bdef /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def newpath tMatrix currentmatrix pop ulx rad add uly rad add translate rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix closepath} bdef /FtbRR {MtbRR stroke } bdef /PtbRR {MtbRR fill } bdef /stri 6 array def /dtri 6 array def /smat 6 array def /dmat 6 array def /tmat1 6 array def /tmat2 6 array def /dif 3 array def /asub {/ind2 exch def /ind1 exch def dup dup ind1 get exch ind2 get sub exch } bdef /tri_to_matrix { 2 0 asub 3 1 asub 4 0 asub 5 1 asub dup 0 get exch 1 get 7 -1 roll astore } bdef /compute_transform { dmat dtri tri_to_matrix tmat1 invertmatrix smat stri tri_to_matrix tmat2 concatmatrix } bdef /ds {stri astore pop} bdef /dt {dtri astore pop} bdef /db {2 copy /cols xdef /rows xdef mul dup 3 mul string currentfile exch readhexstring pop dup 0 3 index getinterval /rbmap xdef dup 2 index dup getinterval /gbmap xdef 1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef /it {gs np dtri aload pop moveto lineto lineto cp c cols rows 8 compute_transform rbmap gbmap bbmap true 3 colorimage gr}bdef /il {newpath moveto lineto stroke}bdef currentdict end def %%EndProlog %%BeginSetup MathWorks begin 0 cap end %%EndSetup %%Page: 1 1 %%BeginPageSetup %%PageBoundingBox: 18 179 548 594 MathWorks begin bpage %%EndPageSetup %%BeginObject: obj1 bplot /dpi2point 12 def portraitMode 0216 7344 csm 0 207 6371 4978 MR c np 91 dict begin %Colortable dictionary /c0 { 0 0 0 sr} bdef /c1 { 1 1 1 sr} bdef /c2 { 1 0 0 sr} bdef /c3 { 0 1 0 sr} bdef /c4 { 0 0 1 sr} bdef /c5 { 1 1 0 sr} bdef /c6 { 1 0 1 sr} bdef /c7 { 0 1 1 sr} bdef c0 1 j 1 sg 0 0 6913 5186 PR 6 w 0 4226 5356 0 0 -4226 899 4615 4 MP PP -5356 0 0 4226 5356 0 0 -4226 899 4615 5 MP stroke 4 w DO SO 6 w 0 sg 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L 899 4615 mt 6255 4615 L 899 4615 mt 899 389 L 899 4615 mt 899 4561 L 899 389 mt 899 442 L %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 833 4872 mt (0) s 1970 4615 mt 1970 4561 L 1970 389 mt 1970 442 L 1804 4872 mt (0.2) s 3041 4615 mt 3041 4561 L 3041 389 mt 3041 442 L 2875 4872 mt (0.4) s 4112 4615 mt 4112 4561 L 4112 389 mt 4112 442 L 3946 4872 mt (0.6) s 5183 4615 mt 5183 4561 L 5183 389 mt 5183 442 L 5017 4872 mt (0.8) s 6255 4615 mt 6255 4561 L 6255 389 mt 6255 442 L 6189 4872 mt (1) s 899 4615 mt 952 4615 L 6255 4615 mt 6201 4615 L 324 4704 mt (-100) s 899 3558 mt 952 3558 L 6255 3558 mt 6201 3558 L 457 3647 mt (-50) s 899 2502 mt 952 2502 L 6255 2502 mt 6201 2502 L 731 2591 mt (0) s 899 1445 mt 952 1445 L 6255 1445 mt 6201 1445 L 598 1534 mt (50) s 899 389 mt 952 389 L 6255 389 mt 6201 389 L 464 478 mt (100) s 899 4615 mt 6255 4615 L 899 389 mt 6255 389 L 899 4615 mt 899 389 L 6255 4615 mt 6255 389 L gs 899 389 5357 4227 MR c np 24 w /c8 { 0.000000 0.000000 1.000000 sr} bdef c8 1071 60 1071 58 1072 -46 1071 -28 1434 2498 5 MP stroke DA 1071 214 1071 209 1072 159 1071 174 1434 3358 5 MP stroke gr 24 w c8 DA 0 sg %%IncludeResource: font Symbol /Symbol /ISOLatin1Encoding 240 FMSR 3510 5092 mt (r) s %%IncludeResource: font Helvetica /Helvetica /ISOLatin1Encoding 240 FMSR 215 2973 mt -90 rotate (error \(%\)) s 90 rotate SO 6 w 1 sg 0 598 1623 0 0 -598 959 1047 4 MP PP -1623 0 0 598 1623 0 0 -598 959 1047 5 MP stroke 4 w DO SO 6 w 0 sg 959 1047 mt 2582 1047 L 959 449 mt 2582 449 L 959 1047 mt 959 449 L 2582 1047 mt 2582 449 L 959 1047 mt 2582 1047 L 959 1047 mt 959 449 L 959 1047 mt 2582 1047 L 959 449 mt 2582 449 L 959 1047 mt 959 449 L 2582 1047 mt 2582 449 L 1627 694 mt (RDR-A) s 1627 971 mt (MK-N) s gs 959 449 1624 599 MR c np 24 w c8 401 0 1092 613 2 MP stroke DA 401 0 1092 891 2 MP stroke SO 6 w gr c8 end eplot %%EndObject epage end showpage %%Trailer %%EOF %%EndDocument endTexFig 0 3208 a FB(Figure)i(10:)34 b Fs(Ef)n(fect)26 b(of)g(a)o(g)o(gr)m(e)l (gation.)38 b(Gr)o(aphs)27 b(show)e(err)l(or)i(in)e(mean)h(delay)h(of)e (the)h(4th)g(\(lowest)h(priority\))h(class)e(in)g(the)0 3321 y(MK-N)20 b(and)h(RDR-A)e(appr)l(oximations)25 b(for)d(an)f (M/PH/2)g(with)g(SMART)e(prioritization,)25 b(as)d(compar)m(ed)g(with)f (simulation.)0 3434 y(On)g(the)g(left)h(as)f(a)g(function)j(of)d Fv(C)1049 3401 y Fn(2)1109 3434 y Fs(wher)m(e)g Fv(\032)k Fu(=)g(0)p Fv(:)p Fu(8)p Fs(,)d(and)g(on)g(the)f(right)i(as)e(a)g (function)j(of)d Fv(\032)f Fs(wher)m(e)i Fv(C)3230 3401 y Fn(2)3294 3434 y Fu(=)j(8)p Fs(.)j(The)20 b(classes)0 3547 y(all)27 b(have)h(a)f(2-phase)i(PH)d(distrib)n(ution)31 b(with)c(the)g(same)h(squar)m(ed)h(coef)n(\002cient)h(of)d(variation)j Fv(C)3080 3514 y Fn(2)3145 3547 y Fs(and)e(dif)n(fer)m(ent)h(means:)0 3660 y(1,)23 b(2,)g(4,)g(and)h(8.)0 3929 y FB(the)i(single)h(serv)o(er) g(system,)935 3893 y Fn(40)p 935 3908 71 4 v 935 3960 a(11)1040 3929 y FB(for)f(the)h(2-serv)o(er)g(system,)g(and)2096 3893 y Fn(80)p 2096 3908 V 2096 3960 a(11)2202 3929 y FB(for)f(the)g(4-serv)o(er)h(system)g(\(recall)g(that)f(in)g(a)f (system)0 4076 y(with)e Fv(k)j FB(serv)o(ers,)f(each)f(serv)o(er)h (runs)f(at)f Fu(1)p Fv(=k)s FB(th)i(the)f(speed\).)141 4222 y(The)j(most)h(interesting)j(observ)n(ation)g(is)c(that)i(more)e (serv)o(ers)i(lead)g(to)e(less)i(dif)n(ferentiation)i(between)e(SMAR)-5 b(T)25 b(and)0 4369 y(STUPID)17 b(schemes.)28 b(F)o(or)19 b(e)o(xample,)h(at)f(load)h Fv(\032)26 b Fu(=)f(0)p Fv(:)p Fu(6)p FB(,)20 b(there)g(is)f(a)g(f)o(actor)h(of)g(\002)n(v)o(e)e(dif)n (ferentiation)23 b(between)e(SMAR)-5 b(T)16 b(and)0 4516 y(STUPID)23 b(with)j(one)g(serv)o(er)h(and)f(only)g(a)g(25\045)f(dif)n (ference)j(between)f(SMAR)-5 b(T)23 b(and)j(STUPID)d(with)j(four)g (serv)o(ers.)37 b(The)0 4663 y(ef)n(fect)23 b(appears)h(more)d (prominent)j(under)f(lighter)h(load.)29 b(This)22 b(can)g(be)g(e)o (xplained)i(by)e(recalling)i(our)f(earlier)g(observ)n(ation)0 4810 y(that)g(multi-serv)o(er)h(systems)f(allo)n(w)f(short)h(jobs)g(a)f (chance)i(to)e(jump)g(ahead)h(of)f(long)h(jobs,)g(hence)h(the)e(ne)o (gati)n(v)o(e)h(ef)n(fects)g(of)0 4956 y(the)h(STUPID)d(scheme)j(are)g (mitigated.)1905 5596 y(20)p eop end %%Page: 21 21 TeXDict begin 21 20 bop 0 159 a Ft(4.3)99 b(Ho)o(w)24 b(effecti)o(v)o(e)i(is)f(class)f(aggr)n(egation:)31 b(RDR-A)0 367 y FB(In)c(the)g(early)h(80')-5 b(s)27 b(Mitrani)h(and)g(King)e (\(later)i(follo)n(wed)g(by)f(Nishida)h(in)f(the)g(early)h(90')-5 b(s\))28 b(proposed)h(analyzing)h(priori-)0 513 y(tization)g(in)d(a)g (multi-serv)o(er)j(system)e(via)g(aggre)o(gation)i(as)e(follo)n(ws:)38 b(T)-7 b(o)26 b(obtain)k(the)d(mean)h(response)i(time)d(of)h(the)g Fv(m)3830 480 y Fp(th)0 660 y FB(class,)f(simply)g(aggre)o(gate)h (classes)g(1)d(through)k Fv(m)21 b Fo(\000)h Fu(1)k FB(into)h(a)e (single)j(high-priority)i(class,)d(and)g(let)f(class)h Fv(m)e FB(represent)0 807 y(the)i(lo)n(w-priority)i(class)e(\226)g (then)g(analyze)h(the)f(remaining)i(tw)o(o)d(class)i(system.)38 b(The)27 b(abo)o(v)o(e)g(MK-N)e(approximation)30 b(re-)0 954 y(quired)c(further)g(approximating)j(the)c(single)h(aggre)o(gate)g (class)g(by)f(an)f Fs(e)n(xponential)29 b FB(job)c(size)g(distrib)n (ution,)j(since)e(it)f(w)o(as)0 1101 y(not)f(kno)n(wn)f(ho)n(w)g(to)g (analyze)i(e)n(v)o(en)e(a)g(tw)o(o)g(class)h(multi-serv)o(er)h(system)f (with)f(non-e)o(xponential)28 b(job)c(size)f(distrib)n(utions.)141 1247 y(Since)28 b(RDR)d(enables)k(the)f(analysis)h(of)e(multi-serv)o (er)j(priority)f(queues)g(with)e(general)i(PH)d(job)i(size)f(distrib)n (utions,)0 1394 y(we)g(can)i(reapply)g(the)g(MK-N)d(aggre)o(gation)31 b(idea,)e(b)n(ut)g(where)f(no)n(w)f(we)h(are)g(able)g(to)g(capture)i (the)e(higher)i(moments)e(of)0 1541 y(the)f(aggre)o(gated)j(class.)40 b(W)-7 b(e)27 b(call)g(this)h(approximation)j(RDR-A,)25 b(since)j(it)f(combines)i(the)e(use)h(of)f(RDR)e(together)k(with)0 1688 y(aggre)o(gation.)141 1834 y(T)-7 b(o)23 b(understand)28 b(the)d(ef)n(fect)g(of)f(aggre)o(gation,)j(we)c(consider)k(a)d(tw)o(o)g (serv)o(er)h(system)g(with)g(four)g(priority)h(classes.)33 b(All)0 1981 y(the)22 b(classes)i(ha)n(v)o(e)e(a)f(tw)o(o)h(phase)h(PH) d(distrib)n(ution,)26 b(with)21 b(v)n(arying)j(squared)f(coef)n (\002cient)h(of)d(v)n(ariation)j(\()p Fv(C)3365 1948 y Fn(2)3405 1981 y FB(\).)j(The)22 b(classes)0 2128 y(dif)n(fer)33 b(ho)n(we)n(v)o(er)g(in)f(their)i(mean,)g(ha)n(ving)h(means)e(1,)h(2,)g (4,)g(and)f(8,)h(respecti)n(v)o(ely)-6 b(,)37 b(and)c(are)g (prioritized)i(according)g(to)0 2275 y(the)27 b(SMAR)-5 b(T)23 b(scheme;)30 b(classes)e(with)f(lo)n(wer)f(means)h(ha)n(v)o(e)g (higher)i(priority)-6 b(.)40 b(\(STUPID)24 b(prioritization)30 b(yields)e(similar)0 2422 y(insights.\))41 b(Figure)27 b(10)g(e)o(xamines)h(the)f(error)h(in)f(the)g(mean)g(delay)h(of)e(the)i (4th)f(class)g(under)i(RDR-A)24 b(and)k(under)g(MK-N)0 2568 y(as)23 b(a)h(function)h(of)f Fv(C)658 2535 y Fn(2)719 2568 y FB(\(left\))h(and)f(as)f(a)g(function)j(of)e Fv(\032)e FB(\(right\).)141 2715 y(W)-7 b(e)26 b(see)g(that)h(the)g(error)g(in)f (RDR-A)f(is)h(ne)n(v)o(er)h(more)f(than)h(5\045)f(re)o(gardless)i(of)f Fv(C)2750 2682 y Fn(2)2814 2715 y FB(or)f Fv(\032)p FB(.)37 b(By)26 b(contrast,)i(the)f(error)g(in)0 2862 y(MK-N)20 b(is)h(almost)h(ne)n(v)o(er)g(less)g(than)g(50\045,)g(and)g(gets)g(w)o (orse)g(under)g(higher)h(load)f(and)g Fv(C)2808 2829 y Fn(2)2847 2862 y FB(.)27 b(W)-7 b(e)21 b(\002nd)g(e)o(xperimentally)k (that)0 3009 y(when)i(the)g(classes)h(are)f(identical,)j(RDR-A)25 b(incurrs)j(only)g(slightly)h(more)e(error)g(than)h(RDR.)c(This)j(mak)o (es)g(sense)h(since)0 3156 y(aggre)o(gating)i(identical)f(classes)g (does)e(not)h(incur)g(additional)i(v)n(ariability)-6 b(.)42 b(Ho)n(we)n(v)o(er)26 b(when)h(the)h(classes)g(are)g(dif)n (ferent,)0 3302 y(as)e(in)g(the)g(case)h(of)e(SMAR)-5 b(T)23 b(scheduling)29 b(in)d(Figure)h(10,)f(the)g(error)h(can)f (increase)i(to)e(5\045)g(under)h(RDR-A)d(as)i Fv(\032)f FB(and)h Fv(C)3861 3269 y Fn(2)0 3449 y FB(are)e(v)n(aried,)g(while)g (it)f(remains)i(belo)n(w)e(3\045)g(for)h(RDR)e(o)o(v)o(er)h(the)h(full) g(range)h(of)e Fv(\032)g FB(and)h Fv(C)2821 3416 y Fn(2)2882 3449 y FB(depicted)i(in)e(Figure)g(10.)141 3596 y(The)e(bottom)h(line)g (is)f(that)h(\223aggre)o(gation)i(into)e(tw)o(o)f(classes\224)i(is)f(a) e(good)j(method)f(for)g(approximating)i(prioritization)0 3743 y(in)g(multi-serv)o(er)i(systems)g(where)e(the)g(number)i(of)e (classes)h(is)f Fv(m)j(>)g Fu(2)p FB(.)34 b(Ho)n(we)n(v)o(er)l(,)25 b(the)g(aggre)o(gation)j(needs)e(to)f(be)g(done)0 3889 y(carefully)h(\226)d(the)h(distrib)n(ution)j(of)d(the)f(aggre)o(gate)j (class)e(must)g(be)f(modeled)i(more)f(closely)h(than)f(can)g(be)g (captured)i(by)d(an)0 4036 y(e)o(xponential)j(distrib)n(ution.)33 b(Thus)23 b(another)i(bene\002t)f(of)f(RDR)f(is)h(re)n(v)o(ealed;)i(by) e(allo)n(wing)i(for)e(PH)f(job)h(size)h(distrib)n(utions)0 4183 y(it)f(enables)j(more)d(accurate)j(approximations)h(of)d (multi-class)h(systems)g(via)f(aggre)o(gation.)0 4519 y FA(5)119 b(Conclusion)0 4760 y FB(This)25 b(paper)i(introduces)i(the) d(RDR)d(technique,)29 b(pro)o(viding)f(the)e(\002rst)f(near)n(-e)o (xact)j(analysis)g(of)d(an)h(M/PH/)p Fv(k)h FB(queue)g(with)0 4907 y Fv(m)h Fo(\025)g Fu(2)d FB(priority)i(classes.)35 b(The)24 b(RDR)g(algorithm)i(is)f(ef)n(\002cient)h(\(requiring)i(only)e (a)f(second)h(or)f(tw)o(o)g(for)h(each)f(data)h(point)0 5054 y(in)21 b(the)g(paper\))h(and)g(accurate)h(\(resulting)h(in)c Fv(<)25 b Fu(2\045)c FB(error)h(for)f(all)g(cases)h(that)f(we)f (studied\).)30 b(Furthermore,)23 b(RDR)c(appears)0 5200 y(to)25 b(maintain)i(its)f(accurac)o(y)h(across)g(a)e(wide)h(range)h (of)e(loads)i(and)f(job)g(size)g(v)n(ariability)i(\(in)e(this)g(paper)g (we)f(studied)i(load)0 5347 y Fv(\032)p FB(,)22 b(ranging)k(from)d Fu(0)p Fv(:)p Fu(05)i FB(to)e Fu(0)p Fv(:)p Fu(95)i FB(and)f(studied)h (squared)g(coef)n(\002cient)g(of)f(v)n(ariation,)h Fv(C)2740 5314 y Fn(2)2779 5347 y FB(,)e(ranging)i(from)f Fu(1)f FB(to)g Fu(128)p FB(\).)1905 5596 y(21)p eop end %%Page: 22 22 TeXDict begin 22 21 bop 141 159 a FB(Although)30 b(the)e(RDR)e (algorithm)k(is)e(ef)n(\002cient)g(when)g(the)h(number)g(of)e(priority) j(classes)g(is)e(small,)h(it)e(becomes)j(less)0 305 y(practical)24 b(when)d(the)h(number)g(of)g(priority)h(classes)g(gro)n(ws)f(\(e.g.,)f (for)h(an)g(M/M/2)f(with)g(10)h(priority)h(classes,)g(the)f(running)0 452 y(time)i(can)h(get)f(as)h(high)g(as)f(tens)h(of)f(seconds\).)33 b(Hence)25 b(we)f(also)h(introduce)h(the)f(RDR-A)d(approximation,)28 b(which)d(w)o(orks)0 599 y(by)f(aggre)o(gating)j(the)e Fv(m)h(>)g Fu(2)e FB(priority)i(classes)g(into)f(only)g(tw)o(o)e (priority)k(classes.)32 b(The)24 b(distrib)n(ution)j(of)e(each)f(aggre) o(gate)0 746 y(class)30 b(is)f(then)h(captured)i(by)d(a)g(PH)f(distrib) n(ution,)34 b(and)29 b(the)h(resulting)i(2)d(class)h(system)g(\(with)f (PH)f(job)h(sizes\))i(is)e(solv)o(ed)0 892 y(using)k(RDR.)c(The)j (RDR-A)e(algorithm)j(is)f(e)o(xtremely)h(ef)n(\002cient)f(\()p Fv(<)41 b Fu(1)31 b FB(second)i(for)f(a)g(data)g(point,)j(re)o (gardless)e(of)f(the)0 1039 y(number)27 b(of)f(classes\),)j(since)e (its)g(running)h(time)e(is)g(that)h(of)f(the)h(RDR)d(algorithm)k(for)e (only)h(tw)o(o)f(classes.)39 b(Furthermore,)0 1186 y(for)23 b(the)f(e)o(xamples)i(in)e(this)h(paper)l(,)h(the)f(RDR-A)d(algorithm) 25 b(has)d(high)i(accurac)o(y)g(\()p Fv(<)h Fu(5\045)d FB(error\))i(across)f(a)f(wide)h(range)g(of)0 1333 y(loads)i(and)f Fv(C)441 1300 y Fn(2)502 1333 y FB(v)n(alues.)141 1480 y(W)-7 b(e)33 b(use)i(our)f(analysis)i(to)e(obtain)i(insights)g(about)f (priority)h(queueing)h(in)d(multi-serv)o(er)i(systems.)61 b(W)-7 b(e)33 b(start)i(by)0 1626 y(comparing)g(multi-serv)o(er)h (systems)e(with)f(single)i(serv)o(er)f(systems)h(of)e(equal)h(capacity) -6 b(.)60 b(W)-7 b(e)33 b(\002nd)g(that)h(the)f(ef)n(fect)h(of)0 1773 y(prioritization)25 b(in)c(multi-serv)o(er)i(systems)g(cannot)f (be)g(predicted)h(by)e(considering)k(a)c(comparable)i(single)g(serv)o (er)f(system.)0 1920 y(The)c(reason)i(is)f(that)g(adding)i(serv)o(ers)f (creates)g(comple)o(x)f(ef)n(fects)h(not)f(present)i(in)e(a)f(single)i (serv)o(er)-5 b(.)28 b(F)o(or)18 b(e)o(xample,)i(multiple)0 2067 y(serv)o(ers)27 b(pro)o(vide)h(a)e(strong)h(bene\002t)g(in)f (dealing)i(with)e(highly)i(v)n(ariable)g(job)f(sizes,)g(b)n(ut)g(the)o (y)f(also)h(hinder)h(performance)0 2213 y(under)f(lighter)g(load.)37 b(W)-7 b(e)24 b(also)j(compare)g(multi-serv)o(er)h(with)d(single)j (serv)o(er)e(systems,)h(by)f(e)n(v)n(aluating)j(the)d(error)g(in)g(the) 0 2360 y(Bondi-Buzen)h(\(BB\))c(approximation)28 b(which)d(is)f(based)i (on)e(relating)j(multi-serv)o(er)g(performance)g(under)e (prioritization)0 2507 y(to)e(single-serv)o(er)i(performance.)31 b(W)-7 b(e)22 b(\002nd)g(that)i(the)e(error)i(in)e(BB)f(can)i(become)h (lar)n(ge,)g(when)e Fv(C)3089 2474 y Fn(2)3150 2507 y FB(gro)n(ws)h(or)f(the)h(number)0 2654 y(of)g(classes)j(gro)n(ws.)141 2801 y(W)-7 b(e)21 b(ne)o(xt)h(consider)h(the)f(ef)n(fect)h(of)e (\223smart\224)i(prioritization,)i(where)d(classes)h(of)f(jobs)g(with)f (smaller)i(means)f(are)g(gi)n(v)o(en)0 2947 y(priority)32 b(o)o(v)o(er)e(those)i(with)e(lar)n(ger)h(means.)49 b(W)-7 b(e)30 b(\002nd)g(that)g(\223smart\224)h(prioritization)k(has)30 b(a)g(much)g(stronger)j(ef)n(fect)e(in)f(a)0 3094 y(single-serv)o(er)h (system,)d(than)g(in)f(a)g(multi-serv)o(er)i(system)f(of)f(equal)h (capacity)-6 b(.)42 b(This)27 b(can)g(be)g(e)o(xplained)j(in)d(part)h (by)f(the)0 3241 y(observ)n(ation)g(that)d(multiple)h(serv)o(ers)f (inherently)j(aid)d(short)g(jobs)g(by)g(allo)n(wing)h(them)e(to)h(jump) f(ahead)i(of)e(long)i(jobs.)141 3388 y(Lastly)-6 b(,)28 b(we)d(contrast)k(dif)n(ferent)f(methods)g(of)e(class)i(aggre)o (gation,)h(when)e(used)g(to)f(approximately)k(analyze)e(a)e(high)0 3535 y(number)36 b(of)e(classes.)64 b(W)-7 b(e)34 b(\002nd)g(that)h (aggre)o(gation)i(when)e(done)g(carefully)i(\226)e(by)f(capturing)k (three)d(moments)g(of)g(the)0 3681 y(aggre)o(gated)28 b(class)f(\226)e(w)o(orks)h(surprisingly)k(well,)c(resulting)i(in)d(v)o (ery)i(lo)n(w)e(error)-5 b(.)36 b(Ho)n(we)n(v)o(er)l(,)26 b(when)g(the)g(aggre)o(gate)h(class)0 3828 y(is)f(approximated)j(only)e (with)e(respect)j(to)e(its)g(\002rst)f(moment)h(\(by)h(just)f(an)g(e)o (xponential)j(distrib)n(ution\),)h(aggre)o(gation)f(can)0 3975 y(be)23 b(v)o(ery)h(poor)l(,)g(resulting)h(in)e(error)h(of)f(well) g(o)o(v)o(er)g(50\045.)29 b(The)22 b(f)o(act)i(that)g(RDR)d(allo)n(ws)i (the)h(\002rst)e(analysis)k(of)d(classes)h(with)0 4122 y(PH)e(job)i(size)g(distrib)n(utions)j(enables)f(this)e(good)g(aggre)o (gation)j(approximation.)141 4268 y(In)21 b(this)g(paper)h(we)f(ha)n(v) o(e)g(focused)i(on)e(the)g(problem)h(of)f(multi-serv)o(er)i(queues)g (with)e Fv(m)k(>)g Fu(2)20 b FB(priorities.)31 b(What)21 b(mak)o(es)0 4415 y(this)k(problem)i(dif)n(\002cult)e(is)g(the)g(f)o (act)h(that)f(its)g(Mark)o(o)o(v)h(chain)g(representation)j(gro)n(ws)c (in\002nitely)i(in)d Fv(m)g FB(dimensions,)k(and)0 4562 y(there)22 b(are)e(dependencies)25 b(between)d(those)g(dimensions)h (\(the)e(class)g(M)f(jobs)h(depend)i(on)e(the)f(class)i(H)e(jobs,)h (and)g(the)g(class)0 4709 y(L)27 b(jobs)i(depend)h(on)e(both)h(the)g (class)g(M)e(and)i(class)g(H)e(jobs\).)44 b(The)28 b(RDR)e(algorithm)k (greatly)g(simpli\002es)f(this)g(problem)0 4856 y(by)f(reducing)j(the)e (dimensionality)j(of)c(the)g(Mark)o(o)o(v)h(chain)h(to)e(just)h(one.)43 b(There)29 b(are)f(man)o(y)h(other)g(problems)h(that)f(also)0 5002 y(e)o(xhibit)23 b(high)f(dimensionality)i(in)d(their)h(Mark)o(o)o (v)g(chain)h(representation,)i(and)d(the)f(RDR)e(method)j(introduced)j (here)c(may)0 5149 y(be)j(applicable)i(to)d(those)i(problems)g(as)f (well.)1905 5596 y(22)p eop end %%Page: 23 23 TeXDict begin 23 22 bop 0 159 a FA(Refer)n(ences)45 366 y FB([1])47 b(D.)27 b(Bertsimas)j(and)g(D.)d(Nakazato.)52 b(The)29 b(distrib)n(utional)k(Little')-5 b(s)30 b(La)o(w)d(and)j(its)f (applications.)54 b Fs(Oper)o(ations)31 b(Re-)197 478 y(sear)m(c)o(h)p FB(,)24 b(43\(2\):298\226310,)k(1995.)45 591 y([2])47 b(A.)29 b(Bondi)j(and)f(J.)f(Buzen.)57 b(The)31 b(response)i(times)e(of)g(priority)i(classes)f(under)g(preempti)n(v)o (e)h(resume)e(in)g(M/G/m)197 704 y(queues.)k(In)23 b Fs(A)m(CM)f(Sigmetrics)p FB(,)j(pages)g(195\226201,)h(August)e(1984.)45 817 y([3])47 b(L.)28 b(Bright)i(and)g(P)-10 b(.)28 b(T)-7 b(aylor)i(.)54 b(Calculating)32 b(the)e(equilibrium)i(distrib)n(ution)h (in)d(le)n(v)o(el)g(dependent)i(quasi-birth-and-)197 930 y(death)25 b(processes.)35 b Fs(Stoc)o(hastic)26 b(Models)p FB(,)f(11:497\226514,)h(1995.)45 1043 y([4])47 b(J.)29 b(Buzen)i(and)f(A.)f(Bondi.)54 b(The)30 b(response)i(times)e (of)g(priority)i(classes)g(under)f(preempti)n(v)o(e)g(resume)g(in)f (M/M/m)197 1156 y(queues.)35 b Fs(Oper)o(ations)25 b(Resear)m(c)o(h)p FB(,)f(31:456\226465,)j(1983.)45 1269 y([5])47 b(A.)22 b(Cobham.)34 b(Priority)24 b(assignment)i(in)d(w)o(aiting)i(line)f (problems.)35 b Fs(Oper)o(ations)25 b(Resear)m(c)o(h)p FB(,)f(2:70\22676,)i(1954.)45 1382 y([6])47 b(R.)22 b(Da)n(vis.)33 b(W)-7 b(aiting-time)25 b(distrib)n(ution)j(of)23 b(a)g(multi-serv)o (er)l(,)i(priority)h(queueing)g(system.)33 b Fs(Oper)o(ations)26 b(Resear)m(c)o(h)p FB(,)197 1495 y(14:133\226136,)h(1966.)45 1608 y([7])47 b(W)-8 b(.)26 b(Feng,)j(M.)d(Ka)o(w)o(ada,)j(and)f(K.)e (Adachi.)48 b(Analysis)29 b(of)f(a)f(multiserv)o(er)j(queue)f(with)f (tw)o(o)g(priority)h(classes)h(and)197 1720 y(\(M,N\)-threshold)23 b(service)e(schedule)i(ii:)k(preempti)n(v)o(e)22 b(priority)-6 b(.)27 b Fs(Asia-P)-7 b(aci\002c)22 b(J)n(ournal)g(of)e(Oper)o(ations)i (Resear)m(c)o(h)p FB(,)197 1833 y(18:101\226124,)27 b(2001.)45 1946 y([8])47 b(H.)21 b(Gail,)h(S.)f(Hantler)l(,)j(and)f(B.)e(T)-7 b(aylor)i(.)32 b(Analysis)24 b(of)e(a)g(non-preempti)n(v)o(e)k (priority)f(multiserv)o(er)f(queue.)33 b Fs(Advances)197 2059 y(in)23 b(Applied)i(Pr)l(obability)p FB(,)g(20:852\226879,)i (1988.)45 2172 y([9])47 b(H.)24 b(Gail,)h(S.)f(Hantler)l(,)j(and)f(B.)e (T)-7 b(aylor)i(.)40 b(On)24 b(a)h(preempti)n(v)o(e)i(Mark)o(o)o(vian)h (queues)f(with)e(multiple)i(serv)o(ers)g(and)f(tw)o(o)197 2285 y(priority)f(classes.)35 b Fs(Mathematics)26 b(of)d(Oper)o(ations) j(Resear)m(c)o(h)p FB(,)e(17:365\226391,)i(1992.)0 2398 y([10])47 b(R.)22 b(Jain.)34 b Fs(The)23 b(Art)g(of)g(Computer)i (Systems)f(P)-7 b(erformance)25 b(Analysis)p FB(.)35 b(John)24 b(W)l(ile)o(y)g(and)g(Sons,)g(1991.)0 2511 y([11])47 b(E.)20 b(Kao)g(and)i(K.)e(Narayanan.)30 b(Modeling)23 b(a)e(multiprocessor)k(system)d(with)f(preempti)n(v)o(e)h(priorities.) 31 b Fs(Mana)o(g)o(ement)197 2624 y(Science)p FB(,)25 b(2:185\22697,)h(1991.)0 2737 y([12])47 b(E.)35 b(Kao)h(and)h(S.)e(W)l (ilson.)76 b(Analysis)38 b(of)e(nonpreempti)n(v)o(e)k(priority)e (queues)h(with)d(multiple)i(serv)o(ers)g(and)f(tw)o(o)197 2850 y(priority)25 b(classes.)35 b Fs(Eur)l(opean)25 b(J)n(ournal)h(of)d(Oper)o(ational)j(Resear)m(c)o(h)p FB(,)e(118:181\226193,)j(1999.)0 2962 y([13])47 b(E.)30 b(P)-10 b(.)31 b(C.)f(Kao)i(and)g(K.)f(S.)f(Narayanan.)62 b(Computing)34 b(steady-state)h(probabilities)h(of)c(a)f(nonpreepti)n (v)o(e)k(priority)197 3075 y(multiserv)o(er)25 b(queue.)35 b Fs(J)n(ournal)25 b(on)f(Computing)p FB(,)g(2\(3\):211)i(\226)d(218,)h (1990.)0 3188 y([14])47 b(A.)23 b(Kapadia,)j(M.)d(Kazumi,)i(and)g(A.)e (Mitchell.)38 b(Analysis)26 b(of)f(a)f(\002nite)g(capacity)j (nonpreempti)n(v)o(e)h(priority)e(queue.)197 3301 y Fs(Computer)o(s)f (and)f(Oper)o(ations)h(Resear)m(c)o(h)p FB(,)f(11:337\226343,)j(1984.)0 3414 y([15])47 b(O.)33 b(K)n(ella)h(and)h(U.)e(Y)-9 b(echiali.)69 b(W)-7 b(aiting)35 b(times)g(in)f(the)h(non-preempti)n(v)o(e)j (priority)e(M/M/c)e(queue.)70 b Fs(Stoc)o(hastic)197 3527 y(Models)p FB(,)24 b(1:257)h(\226)e(262,)h(1985.)0 3640 y([16])47 b(G.)30 b(Latouche)j(and)f(V)-12 b(.)31 b(Ramasw)o(ami.)59 b Fs(Intr)l(oduction)35 b(to)d(Matrix)g(Analytic)h (Methods)g(in)f(Stoc)o(hastic)i(Modeling)p FB(.)197 3753 y(ASA-SIAM,)21 b(1999.)0 3866 y([17])47 b(H.)29 b(Leemans.)58 b Fs(The)30 b(T)-7 b(wo-Class)31 b(T)-7 b(wo-Server)33 b(Queue)e(with)g(Nonpr)m(eemptive)i(Heter)l(o)o(g)o(eneous)i(Priority)d (Struc-)197 3979 y(tur)m(es)p FB(.)i(PhD)22 b(thesis,)j(K.U.Leuv)o(en,) d(1998.)0 4092 y([18])47 b(D.)30 b(McWherter)l(,)35 b(B.)c(Schroeder)l (,)k(N.)c(Ailamaki,)j(and)e(M.)f(Harchol-Balter)-5 b(.)62 b(Priority)33 b(mechanisms)g(for)f(OL)-8 b(TP)197 4204 y(and)36 b(transactional)k(web)35 b(applications.)76 b(In)35 b Fs(Pr)l(oceedings)k(of)c(the)h(20th)h(International)j(Confer) m(ence)d(on)f(Data)197 4317 y(Engineering)26 b(\(ICDE)c(2004\))p FB(,)j(pages)f(535\226546,)i(April)e(2004.)0 4430 y([19])47 b(D.)19 b(Miller)-5 b(.)29 b(Steady-state)23 b(algorithmic)g(analysis)g (of)e(M/M/c)g(tw)o(o-priority)j(queues)e(with)f(heterogeneous)k(serv)o (ers.)197 4543 y(In)i(R.)f(L.)f(Disne)o(y)j(and)f(T)-7 b(.)26 b(J.)h(Ott,)g(editors,)i Fs(Applied)f(pr)l(obability)i(-)d (Computer)h(science)o(,)i(The)c(Interface)o(,)k(volume)197 4656 y(II)p FB(,)23 b(pages)i(207\226222.)g(Birkhauser)l(,)h(1992.)0 4769 y([20])47 b(I.)27 b(Mitrani)h(and)g(P)-10 b(.)26 b(King.)47 b(Multiprocessor)31 b(systems)e(with)e(preempti)n(v)o(e)i (priorities.)49 b Fs(P)-7 b(erformance)29 b(Evaluation)p FB(,)197 4882 y(1:118\226125,)d(1981.)0 4995 y([21])47 b(M.)23 b(Neuts.)37 b(Moment)24 b(formulas)i(for)f(the)g(Mark)o(o)o(v)g (rene)n(w)o(al)g(branching)i(process.)39 b Fs(Advances)26 b(in)e(Applied)i(Pr)l(oba-)197 5108 y(bilities)p FB(,)f(8:690\226711,)h (1978.)0 5221 y([22])47 b(B.)22 b(Ngo)h(and)h(H.)f(Lee.)33 b(Analysis)24 b(of)g(a)f(pre-empti)n(v)o(e)j(priority)f(M/M/c)e(model)h (with)g(tw)o(o)f(types)i(of)e(customers)j(and)197 5334 y(restriction.)36 b Fs(Electr)l(onics)26 b(Letter)o(s)p FB(,)e(26:1190\2261192,)k(1990.)1905 5596 y(23)p eop end %%Page: 24 24 TeXDict begin 24 23 bop 0 159 a FB([23])47 b(T)-7 b(.)26 b(Nishida.)48 b(Approximate)29 b(analysis)h(for)e(heterogeneous)k (multiprocessor)f(systems)d(with)g(priority)h(jobs.)48 b Fs(P)-7 b(er)n(-)197 271 y(formance)25 b(Evaluation)p FB(,)g(15:77\22688,)h(1992.)0 384 y([24])47 b(T)-7 b(.)18 b(Osogami.)23 b(Analysis)e(of)e(a)f(QBD)g(process)i(that)g(depends)h (on)e(background)k(QBD)17 b(processes.)26 b(T)-6 b(echnical)21 b(Report)197 497 y(CMU-CS-04-163,)33 b(School)f(of)g(Computer)g (Science,)i(Carne)o(gie)e(Mellon)g(Uni)n(v)o(ersity)-6 b(,)34 b(2004.)e(Implementation)197 610 y(softw)o(are)25 b(a)n(v)n(ailable)h(at)d(www)-6 b(.cs.cmu.edu/)p Fo(\030)p FB(osogami/code/inde)o(x.html.)0 723 y([25])47 b(T)-7 b(.)21 b(Osogami)i(and)h(M.)d(Harchol-Balter)-5 b(.)34 b(A)22 b(closed-form)j(solution)h(for)d(mapping)h(general)g(distrib)n (utions)j(to)c(mini-)197 836 y(mal)g(PH)f(distrib)n(utions.)37 b(In)24 b Fs(P)-7 b(erformance)25 b(T)n(OOLS)p FB(,)c(pages)k (200\226217,)h(2003.)0 949 y([26])47 b(T)-7 b(.)23 b(Osogami,)h(M.)e (Harchol-Balter)l(,)27 b(and)e(A.)d(Scheller)n(-W)-7 b(olf.)37 b(Analysis)26 b(of)d(c)o(ycle)i(stealing)h(with)e(switching)i (cost.)197 1062 y(In)20 b Fs(A)m(CM)g(Sigmetrics)i(Confer)m(ence)h(on)e (Measur)m(ement)h(and)f(Modeling)h(of)f(Computer)h(Systems)p FB(,)g(pages)f(184)h(\226)e(195,)197 1175 y(2003.)0 1288 y([27])47 b(A.)30 b(Sleptchenk)o(o.)61 b(Multi-class,)35 b(multi-serv)o(er)f(queues)f(with)e(non-preempti)n(v)o(e)k(priorities.) 61 b(T)-6 b(echnical)33 b(Report)197 1401 y(2003-016,)26 b(EURANDOM,)19 b(Eindho)o(v)o(en)25 b(Uni)n(v)o(ersity)g(of)f(T)-6 b(echnology)g(,)25 b(2003.)0 1513 y([28])47 b(A.)25 b(Sleptchenk)o(o,) 30 b(A.)25 b(v)n(an)i(Harten,)h(and)f(M.)f(v)n(an)h(der)f(Heijden.)45 b(An)26 b(e)o(xact)h(solution)i(for)e(the)g(state)g(probabilities)197 1626 y(of)c(the)h(multi-class,)i(multi-serv)o(er)f(queue)g(with)f (preempti)n(v)o(e)h(priorities,)g(2003)g(\226)e(Manuscript.)0 1739 y([29])47 b(W)-8 b(.)22 b(Whitt.)33 b(A)23 b(re)n(vie)n(w)g(of)h Fv(L)h Fu(=)g Fv(\025W)35 b FB(and)24 b(e)o(xtensions.)36 b Fs(Queueing)25 b(Systems)p FB(,)f(9:235\226268,)j(1991.)0 1852 y([30])47 b(A.)26 b(W)l(ierman,)j(T)-7 b(.)26 b(Osogami,)i(M.)e (Harchol-Balter)l(,)31 b(and)d(A.)d(Scheller)n(-W)-7 b(olf.)48 b(Ho)n(w)26 b(man)o(y)h(serv)o(ers)i(are)e(best)h(in)g(a)197 1965 y(dual-priority)f(M/PH/k)c(system.)34 b Fs(Unpublished)26 b(manuscript.)g(In)d(submission.)p FB(,)j(2005.)1905 5596 y(24)p eop end %%Page: 25 25 TeXDict begin 25 24 bop 0 159 a FA(A)120 b(Neuts')34 b(algorithm)h(f)m(or)f(computing)h(moments)f(of)g(Inter)l(-le)n(v)o(el) g(passage)g(times)f(in)206 353 y(QBD)d(pr)n(ocesses)0 594 y FB(Neuts')22 b(algorithm)h([21)q(])e(is)g(an)h(ef)n(\002cient)g (algorithm)h(that)f(calculates)i(the)e(moments)g(of)f(v)n(arious)i (types)f(of)g(passage)h(times)0 740 y(in)j(v)o(ery)h(general)h (processes,)h(i.e.)36 b(M/G/1)26 b(type)h(semi-Mark)o(o)o(v)h (processes.)39 b(Because)28 b(of)e(its)g(generality)-6 b(,)30 b(ho)n(we)n(v)o(er)l(,)d(the)0 887 y(description)g(of)d(the)g (algorithm)i(in)d([21)r(])g(is)h(sophisticated,)j(and)d(thus)h(non-tri) n(vial)i(to)c(understand)k(or)d(implement.)31 b(Since)0 1034 y(Neuts')20 b(algorithm)h(can)f(be)g(applied)i(to)d(the)h (performance)i(analysis)g(of)d(man)o(y)h(computer)h(and)f (communication)i(systems,)0 1181 y(it)h(is)h(a)f(shame)h(that)g(it)f (has)h(not)g(been)g(used)h(more)e(frequently)k(in)c(the)h(literature.) 141 1328 y(The)g(purpose)j(of)d(this)h(section)i(is)d(to)h(mak)o(e)f (Neuts')h(algorithm)i(more)d(accessible)k(by)c(re-describing)29 b(his)24 b(algorithm)0 1474 y(restricted)29 b(to)e(the)g(\002rst)f (three)h(moments)h(of)e(inter)n(-le)n(v)o(el)j(passage)g(times)e(in)f (QBD)f(processes.)40 b(In)27 b([21)q(],)g(the)g(analysis)h(is)0 1621 y(limited)21 b(to)e(homogeneous)k(\(le)n(v)o(el)d(independent\))k (processes.)30 b(Ho)n(we)n(v)o(er)l(,)20 b(it)f(is)h(tri)n(vially)h(e)o (xtended)h(to)e(nonhomogeneous)0 1768 y(\(le)n(v)o(el)28 b(dependent\))j(QBD)25 b(process)30 b(which)d(we)g(need)h(in)g(this)g (paper)-5 b(.)42 b(Therefore,)29 b(we)e(describe)j(Neuts')e(algorithm)h (for)0 1915 y(nonhomogeneous)h(QBD)23 b(processes)28 b(that)e(repeat)g(after)g(le)n(v)o(el)2057 1891 y Fu(^)2051 1915 y Fv(`)p FB(.)33 b(W)-7 b(e)24 b(omit)h(all)h(proofs,)h(which)e (are)h(pro)o(vided)h(in)e(detail)0 2061 y(in)f([21)q(],)f(and)i(we)e (instead)i(focus)g(on)f(intuition)j(and)d(interpretation.)34 b(W)-7 b(e)23 b(include)j(e)n(v)o(erything)g(needed)g(to)e(apply)h (Neuts')0 2208 y(algorithm)g(within)f(our)g(solution)i(frame)n(w)o (ork,)e(so)g(that)g(readers)h(who)e(wish)h(to)f(apply)i(our)f (methodology)i(can)e(do)g(so.)141 2355 y(In)j(our)g(paper)l(,)h(we)e (consider)j(a)d(QBD)f(process)k(with)d(state)i(space)f Fv(E)37 b Fu(=)30 b Fo(f)p Fu(\()p Fv(i;)15 b(`)p Fu(\))p Fo(j)p Fu(1)34 b Fo(\024)d Fv(i)g Fo(\024)g Fv(n)3147 2370 y Fp(`)3179 2355 y Fv(;)15 b(`)32 b Fo(\025)f Fu(0)p Fo(g)p FB(,)c(which)g(has)0 2502 y(generator)f(matrix)e Fj(Q)p FB(:)1283 2857 y Fj(Q)g Fu(=)1482 2539 y Fi(0)1482 2685 y(B)1482 2735 y(B)1482 2785 y(B)1482 2835 y(B)1482 2885 y(B)1482 2934 y(B)1482 2987 y(@)1602 2633 y Fj(L)1665 2600 y Fn(\(0\))1853 2633 y Fj(F)1919 2600 y Fn(\(0\))1597 2779 y Fj(B)1671 2746 y Fn(\(1\))1854 2779 y Fj(L)1917 2746 y Fn(\(1\))2100 2779 y Fj(F)2166 2746 y Fn(\(1\))1848 2926 y Fj(B)1922 2893 y Fn(\(2\))2101 2926 y Fj(L)2164 2893 y Fn(\(2\))2343 2926 y Fj(F)2409 2893 y Fn(\(2\))2136 3037 y FB(.)2169 3062 y(.)2201 3088 y(.)2379 3037 y(.)2412 3062 y(.)2445 3088 y(.)2545 2539 y Fi(1)2545 2685 y(C)2545 2735 y(C)2545 2785 y(C)2545 2835 y(C)2545 2885 y(C)2545 2934 y(C)2545 2987 y(A)0 3301 y FB(where)30 b Fj(L)314 3268 y Fn(\()p Fp(`)p Fn(\))432 3301 y FB(is)g(a)f Fv(n)646 3316 y Fp(`)704 3301 y Fo(\002)c Fv(n)855 3316 y Fp(`)917 3301 y FB(matrix.)49 b(W)-7 b(e)30 b(assume)h(that)f(our)h(QBD)d (process)k(has)f(a)f(repeating)i(structure:)45 b(there)31 b(e)o(xists)6 3424 y Fu(^)0 3448 y Fv(`)25 b(<)g Fo(1)e FB(such)h(that)g Fo(8)p Fv(`)h Fo(\025)837 3424 y Fu(^)831 3448 y Fv(`;)e FB(we)f(ha)n(v)o(e)j Fj(B)1311 3415 y Fn(\()p Fp(`)p Fn(\))1424 3448 y Fu(=)g Fj(B)1594 3415 y Fn(\()1623 3398 y Fb(^)1621 3415 y Fp(`)q Fn(\))1682 3448 y Fv(;)15 b Fj(L)1785 3415 y Fn(\()p Fp(`)p Fn(\))1899 3448 y Fu(=)25 b Fj(L)2058 3415 y Fn(\()2087 3398 y Fb(^)2085 3415 y Fp(`)p Fn(\))2145 3448 y Fv(;)15 b Fj(F)2251 3415 y Fn(\()p Fp(`)p Fn(\))2365 3448 y Fu(=)25 b Fj(F)2527 3415 y Fn(\()2556 3398 y Fb(^)2554 3415 y Fp(`)p Fn(\))2614 3448 y Fv(:)141 3594 y FB(W)-7 b(e)26 b(de\002ne)g(le)n(v)o(el)h Fv(`)e FB(of)i(the)f(QBD)f(as)h(denoting)j(the)d(set)h(of)f(states)h (of)g(the)f(form)g Fu(\()p Fv(i;)15 b(`)p Fu(\))27 b FB(for)g Fv(i)k Fu(=)f(1)p Fv(;)15 b(:::;)g(n)3483 3609 y Fp(`)3517 3594 y FB(.)37 b(Our)25 b(goal)0 3741 y(can)e(be)g(roughly) h(stated)g(as)f(deri)n(ving)h(the)f(passage)h(time)f(required)i(to)d (get)h(from)g(state)g Fu(\()p Fv(i;)15 b(`)p Fu(\))23 b FB(to)g(le)n(v)o(el)f Fv(`)17 b Fo(\000)f Fu(1)23 b FB(conditioned)0 3888 y(on)30 b(the)h(particular)h(state)f(\002rst)f (reached)i(in)e(le)n(v)o(el)h Fv(`)25 b Fo(\000)g Fu(1)p FB(.)48 b(More)30 b(precisely)-6 b(,)34 b Fs(we)29 b(seek)i(the)g (\002r)o(st)f(thr)m(ee)h(moments)g(of)f(the)0 4035 y(distrib)n(ution)h (of)d(the)g(time)g(r)m(equir)m(ed)h(to)f(g)o(et)g(fr)l(om)f(state)i Fu(\()p Fv(i;)15 b(`)p Fu(\))28 b Fs(to)g(state)h Fu(\()p Fv(j;)15 b(`)24 b Fo(\000)f Fu(1\))p Fs(,)29 b(given)g(that)f(state)h Fu(\()p Fv(j;)15 b(`)25 b Fo(\000)e Fu(1\))k Fs(is)h(the)0 4182 y(\002r)o(st)c(state)h(r)m(eac)o(hed)g(in)e(le)o(vel)h Fv(`)c Fo(\000)g Fu(1)46 b FB(for)24 b(an)o(y)f Fv(`)i Fo(\025)g Fu(1)p FB(,)e(and)h Fu(1)i Fo(\024)f Fv(i)g Fo(\024)g Fv(n)2254 4197 y Fp(`)2310 4182 y FB(and)f Fu(1)h Fo(\024)g Fv(j)31 b Fo(\024)25 b Fv(n)2849 4197 y Fp(`)p FH(\000)p Fn(1)2972 4182 y FB(.)0 4466 y Ft(A.1)99 b(Outline)0 4674 y FB(Our)26 b(goal)h(will)f(be)g(to)h(deri)n(v)o(e)g (the)f Fv(n)1164 4689 y Fp(`)1219 4674 y Fo(\002)c Fv(n)1367 4689 y Fp(`)p FH(\000)p Fn(1)1516 4674 y FB(matrix,)27 b Fj(Z)1866 4626 y Fn(\()p Fp(`)p Fn(\))1866 4684 y Fp(r)1954 4674 y FB(,)f(where)g Fu(\()p Fj(Z)2349 4626 y Fn(\()p Fp(`)p Fn(\))2349 4684 y Fp(r)2437 4674 y Fu(\))2472 4688 y Fp(ij)2559 4674 y FB(is)g(the)h Fv(r)2826 4641 y Fp(th)2921 4674 y FB(moment)g(of)f(the)h(distrib)n(ution)0 4821 y(of)e(time)g(required)i(to)e(go)g(from)g(state)h Fu(\()p Fv(i;)15 b(`)p Fu(\))25 b FB(to)g(state)h Fu(\()p Fv(j;)15 b(`)22 b Fo(\000)f Fu(1\))p FB(,)k(gi)n(v)o(en)h(that)f(state) h Fu(\()p Fv(j;)15 b(`)23 b Fo(\000)e Fu(1\))k FB(is)g(the)g(\002rst)g (state)g(reached)0 4967 y(in)e(le)n(v)o(el)h Fv(`)c Fo(\000)g Fu(1)j FB(when)h(starting)i(in)d Fu(\()p Fv(i;)15 b(`)p Fu(\))p FB(.)29 b(Let)227 5233 y Fv(E)299 5185 y Fn(\()p Fp(`)p Fn(\))294 5259 y Fp(ij)412 5233 y Fu(=)48 b FB(Ev)o(ent)24 b(that)g(state)g Fu(\()p Fv(j;)15 b(`)21 b Fo(\000)f Fu(1\))k FB(is)f(the)h(\002rst)f(state)i(reached)g(in)e(le)n(v)o(el)h Fv(`)c Fo(\000)g Fu(1)j FB(when)h(starting)i(in)d Fu(\()p Fv(i;)15 b(`)p Fu(\))p FB(.)1905 5596 y(25)p eop end %%Page: 26 26 TeXDict begin 26 25 bop 0 159 a FB(Let)982 305 y Fv(T)1048 257 y Fn(\()p Fp(`)p Fn(\))1035 331 y Fp(ij)1161 305 y Fu(=)25 b FB(T)m(ime)d(to)i(go)f(from)h(state)g Fu(\()p Fv(i;)15 b(`)p Fu(\))24 b FB(to)f(state)i Fu(\()p Fv(j;)15 b(`)21 b Fo(\000)f Fu(1\))q Fv(:)0 522 y FB(De\002ne)j(the)h Fv(n)454 537 y Fp(`)507 522 y Fo(\002)c Fv(n)653 537 y Fp(`)p FH(\000)p Fn(1)798 522 y FB(probability)27 b(matrix)d Fj(G)1562 489 y Fn(\()p Fp(`)p Fn(\))1650 522 y FB(,)e(where)1533 788 y Fu(\()p Fj(G)1650 750 y Fn(\()p Fp(`)p Fn(\))1738 788 y Fu(\))1773 802 y Fp(ij)1859 788 y Fu(=)j(Pr)2068 694 y Fi(\020)2117 788 y Fv(E)2189 740 y Fn(\()p Fp(`)p Fn(\))2184 814 y Fp(ij)2277 694 y Fi(\021)2342 788 y Fv(:)0 1053 y FB(The)e(matrix)h Fj(G)506 1020 y Fn(\()p Fp(`)p Fn(\))617 1053 y FB(is)f(a)g(standard)j(quantity)g(in)d(matrix)h (analytic)i(methods.)141 1200 y(No)n(w)-6 b(,)799 1466 y Fu(\()p Fj(Z)898 1428 y Fn(\()p Fp(`)p Fn(\))898 1488 y Fp(r)987 1466 y Fu(\))1022 1480 y Fp(ij)1165 1466 y Fu(=)106 b Fv(r)1386 1433 y FB(th)1483 1466 y(moment)24 b(of)f Fv(T)1968 1418 y Fn(\()p Fp(`)p Fn(\))1955 1491 y Fp(ij)2056 1466 y FB(,)f(gi)n(v)o(en)i(e)n(v)o(ent)g Fv(E)2610 1418 y Fn(\()p Fp(`)p Fn(\))2605 1491 y Fp(ij)2699 1466 y FB(.)1165 1655 y Fu(=)1319 1540 y Fi(Z)1402 1566 y FH(1)1365 1728 y Fn(0)1492 1655 y Fv(x)1544 1617 y Fp(r)1597 1655 y Fu(Pr)1710 1561 y Fi(\020)1759 1655 y Fv(T)1825 1607 y Fn(\()p Fp(`)p Fn(\))1812 1681 y Fp(ij)1938 1655 y Fu(=)h Fv(x)g Fo(j)h Fv(E)2234 1607 y Fn(\()p Fp(`)p Fn(\))2229 1681 y Fp(ij)2322 1561 y Fi(\021)2387 1655 y Fv(dx)1165 1879 y Fu(=)1319 1764 y Fi(Z)1402 1790 y FH(1)1365 1953 y Fn(0)1492 1879 y Fv(x)1544 1841 y Fp(r)1597 1879 y Fu(Pr)1710 1785 y Fi(\020)1759 1879 y Fv(T)1825 1831 y Fn(\()p Fp(`)p Fn(\))1812 1905 y Fp(ij)1938 1879 y Fu(=)f Fv(x)e FB(AND)f Fv(E)2401 1831 y Fn(\()p Fp(`)p Fn(\))2396 1905 y Fp(ij)2489 1785 y Fi(\021)2553 1879 y Fv(=)15 b Fu(Pr)2727 1785 y Fi(\020)2776 1879 y Fv(E)2848 1831 y Fn(\()p Fp(`)p Fn(\))2843 1905 y Fp(ij)2937 1785 y Fi(\021)3001 1879 y Fv(dx)1165 2106 y Fu(=)1457 2044 y(1)p 1329 2085 302 4 v 1329 2171 a(\()p Fj(G)1446 2145 y Fn(\()p Fp(`)p Fn(\))1535 2171 y Fu(\))1570 2185 y Fp(ij)1656 1991 y Fi(Z)1739 2017 y FH(1)1702 2180 y Fn(0)1829 2106 y Fv(x)1881 2068 y Fp(r)1934 2106 y Fu(Pr)2046 2012 y Fi(\020)2096 2106 y Fv(T)2162 2058 y Fn(\()p Fp(`)p Fn(\))2149 2132 y Fp(ij)2275 2106 y Fu(=)25 b Fv(x)d FB(AND)g Fv(E)2737 2058 y Fn(\()p Fp(`)p Fn(\))2732 2132 y Fp(ij)2825 2012 y Fi(\021)2890 2106 y Fv(dx)1165 2390 y Fu(=)1329 2329 y(\()p Fj(G)1446 2281 y Fn(\()p Fp(`)p Fn(\))1446 2339 y Fp(r)1535 2329 y Fu(\))1570 2343 y Fp(ij)p 1329 2369 V 1329 2455 a Fu(\()p Fj(G)1446 2429 y Fn(\()p Fp(`)p Fn(\))1535 2455 y Fu(\))1570 2469 y Fp(ij)0 2671 y FB(where)i(we)f(ha)n(v)o(e)h(de\002ned:)215 2936 y Fu(\()p Fj(G)332 2899 y Fn(\()p Fp(`)p Fn(\))332 2959 y Fp(r)420 2936 y Fu(\))455 2950 y Fp(ij)599 2936 y Fu(=)753 2821 y Fi(Z)836 2848 y FH(1)799 3010 y Fn(0)926 2936 y Fv(x)978 2899 y Fp(r)1031 2936 y Fu(Pr)1143 2842 y Fi(\020)1193 2936 y Fv(T)1259 2888 y Fn(\()p Fp(`)p Fn(\))1246 2962 y Fp(ij)1372 2936 y Fu(=)h Fv(x)d FB(AND)g Fv(E)1834 2888 y Fn(\()p Fp(`)p Fn(\))1829 2962 y Fp(ij)1922 2842 y Fi(\021)1987 2936 y Fv(dx)j Fu(=)2207 2821 y Fi(Z)2290 2848 y FH(1)2254 3010 y Fn(0)2380 2936 y Fv(x)2432 2899 y Fp(r)2506 2875 y Fv(d)p 2480 2915 100 4 v 2480 2999 a(dx)2605 2936 y Fu(Pr)2717 2842 y Fi(\020)2767 2936 y Fv(T)2833 2888 y Fn(\()p Fp(`)p Fn(\))2820 2962 y Fp(ij)2946 2936 y Fo(\024)g Fv(x)d FB(AND)g Fv(E)3408 2888 y Fn(\()p Fp(`)p Fn(\))3403 2962 y Fp(ij)3496 2842 y Fi(\021)3561 2936 y Fv(dx:)141 3373 y FB(Note)d(that)g Fu(\()p Fj(G)607 3325 y Fn(\()p Fp(`)p Fn(\))607 3384 y Fp(r)695 3373 y Fu(\))730 3387 y Fp(ij)808 3373 y FB(is)g(not)g(a)f(proper)h Fv(r)1377 3340 y Fp(th)1465 3373 y FB(moment)g(in)f(that)h(its)g (density)h(functions)h(doesn')n(t)f(inte)o(grate)h(to)d(1,)h(b)n(ut)g (rather)0 3520 y(to)k Fu(\()p Fj(G)210 3487 y Fn(\()p Fp(`)p Fn(\))298 3520 y Fu(\))333 3534 y Fp(ij)394 3520 y FB(.)28 b(The)22 b(rest)h(of)g(the)g(appendix)i(is)e(de)n(v)n(oted)h (to)f(the)g(questions)i(of)e(ho)n(w)f(to)h(determine)h(the)f(tw)o(o)g (matrices:)30 b Fj(G)3812 3472 y Fn(\()p Fp(`)p Fn(\))3812 3531 y Fp(r)0 3667 y FB(and)24 b Fj(G)236 3634 y Fn(\()p Fp(`)p Fn(\))324 3667 y FB(.)0 3951 y Ft(A.2)99 b(Pr)n(eliminaries)0 4159 y FB(This)23 b(section)j(presents)f(a)e(fe)n(w)g(preliminary)j (deri)n(v)n(ations)g(that)e(we)f(will)g(need)h(along)h(the)f(w)o(ay)-6 b(.)28 b(First,)c(we)e(will)h(require)j(a)0 4306 y(simple)e(lemma)f(re) o(garding)j(e)o(xponential)g(random)f(v)n(ariables,)g(which)f(follo)n (ws)g(from)g(their)g(memoryless)h(property)-6 b(.)0 4552 y FC(Lemma)23 b(1)46 b Fs(Let)22 b Fv(X)625 4566 y Fn(1)688 4552 y Fs(and)i Fv(X)922 4566 y Fn(2)984 4552 y Fs(be)g(independent)j (e)n(xponential)g(r)o(andom)d(variables.)32 b(Let)23 b Fv(W)37 b Fu(=)25 b Fv(min)p Fu(\()p Fv(X)3333 4566 y Fn(1)3373 4552 y Fv(;)15 b(X)3488 4566 y Fn(2)3528 4552 y Fu(\))p Fs(.)28 b(Then)856 4818 y Fu(Pr)o(\()p Fv(W)38 b(<)25 b(x)e Fs(AND)e Fv(X)1562 4832 y Fn(1)1627 4818 y Fv(<)k(X)1798 4832 y Fn(2)1838 4818 y Fu(\))h(=)f(Pr)o(\()p Fv(W)38 b(<)25 b(x)p Fu(\))c Fo(\001)f Fu(Pr\()p Fv(X)2708 4832 y Fn(1)2773 4818 y Fv(<)25 b(X)2944 4832 y Fn(2)2984 4818 y Fu(\))p Fv(:)1905 5596 y FB(26)p eop end %%Page: 27 27 TeXDict begin 27 26 bop 141 159 a FB(W)-7 b(e)31 b(de\002ne)h(the)g (transition)j(probability)g(matrix,)f Fj(P)p Fu(\()p Fv(x)p Fu(\))p FB(,)g(such)f(that)f(its)g Fu(\()p Fv(s;)15 b(t)p Fu(\))32 b FB(element,)i Fj(P)p Fu(\()p Fv(x)p Fu(\))3270 173 y Fp(st)3334 159 y FB(,)e(represents)j(the)0 305 y(probability)29 b(that)e(\(i\))g(the)f(sojourn)i(time)f(at)f (state)h Fv(s)e FB(is)h Fo(\024)k Fv(x)25 b FB(AND)g(\(ii\))h(the)h (\002rst)f(transition)j(out)e(of)f(state)h Fv(s)e FB(is)h(to)g(state)h Fv(t)p FB(.)0 452 y(By)c(Lemma)f(1,)h Fj(P)p Fu(\()p Fv(x)p Fu(\))713 466 y Fp(st)799 452 y FB(is)h(also)g(the)g(product)h (of)f(the)f(probabilities)28 b(of)23 b(e)n(v)o(ents)h(\(i\))g(and)g (\(ii\).)141 599 y(Matrix)e Fj(P)p Fu(\()p Fv(x)p Fu(\))g FB(has)g(the)g(same)f(structural)j(shape)f(as)e Fj(Q)p FB(,)g(although)j(its)d(entries)i(are)f(clearly)h(dif)n(ferent,)g(and)f (thus)h(it)e(can)0 746 y(be)28 b(represented)k(in)c(terms)h(of)f (submatrices,)k(analogous)f(to)e(those)g(in)f Fj(Q)p FB(,)g(indicating)k(backw)o(ard)e(transitions)h(between)0 892 y(consecuti)n(v)o(e)i(le)n(v)o(els,)f(local)f(transitions)i(within) e(a)f(le)n(v)o(el,)i(and)e(forw)o(ard)i(transitions)h(between)e (consecuti)n(v)o(e)i(le)n(v)o(els,)f(as)0 1039 y(follo)n(ws:)959 1376 y Fj(P)p Fu(\()p Fv(x)p Fu(\))26 b(=)1274 1058 y Fi(0)1274 1204 y(B)1274 1254 y(B)1274 1304 y(B)1274 1354 y(B)1274 1403 y(B)1274 1453 y(B)1274 1506 y(@)1388 1152 y Fa(L)1460 1115 y Fn(\(0\))1554 1152 y Fu(\()p Fv(x)p Fu(\))84 b Fa(F)1843 1115 y Fn(\(0\))1938 1152 y Fu(\()p Fv(x)p Fu(\))1389 1298 y Fa(B)1459 1262 y Fn(\(1\))1554 1298 y Fu(\()p Fv(x)p Fu(\))90 b Fa(L)1838 1262 y Fn(\(1\))1932 1298 y Fu(\()p Fv(x)p Fu(\))f Fa(F)2227 1262 y Fn(\(1\))2321 1298 y Fu(\()p Fv(x)p Fu(\))1767 1445 y Fa(B)1837 1409 y Fn(\(2\))1931 1445 y Fu(\()p Fv(x)p Fu(\))96 b Fa(L)2221 1409 y Fn(\(2\))2315 1445 y Fu(\()p Fv(x)p Fu(\))90 b Fa(F)2610 1409 y Fn(\(2\))2704 1445 y Fu(\()p Fv(x)p Fu(\))2249 1556 y FB(.)2282 1581 y(.)2315 1607 y(.)2633 1556 y(.)2665 1581 y(.)2698 1607 y(.)2868 1058 y Fi(1)2868 1204 y(C)2868 1254 y(C)2868 1304 y(C)2868 1354 y(C)2868 1403 y(C)2868 1453 y(C)2868 1506 y(A)0 1823 y FB(Observ)o(e)24 b(that)g Fa(L)555 1787 y Fn(\()p Fp(`)p Fn(\))643 1823 y Fu(\()p Fv(x)p Fu(\))f FB(is)h(an)f Fv(n)1035 1838 y Fp(`)1088 1823 y Fo(\002)d Fv(n)1234 1838 y Fp(`)1289 1823 y FB(submatrix)25 b(for)f Fv(`)h Fo(\025)g Fu(0)p FB(.)141 1970 y(Ne)o(xt,)e(we)g(de\002ne)h(the)f Fv(r)s FB(-th)h(moment)f(of)h(submatrices)i Fa(B)1983 1934 y Fn(\()p Fp(`)p Fn(\))2071 1970 y Fu(\()p Fv(x)p Fu(\))p FB(,)d Fa(L)2311 1934 y Fn(\()p Fp(`)p Fn(\))2398 1970 y Fu(\()p Fv(x)p Fu(\))p FB(,)g Fa(F)2650 1934 y Fn(\()p Fp(`)p Fn(\))2738 1970 y Fu(\()p Fv(x)p Fu(\))p FB(,)g(as)g(follo)n (ws:)152 2244 y Fa(B)222 2207 y Fn(\()p Fp(`)p Fn(\))222 2267 y Fp(r)335 2244 y Fu(=)431 2129 y Fi(Z)514 2155 y FH(1)477 2318 y Fn(0)604 2244 y Fv(x)656 2207 y Fp(r)729 2183 y Fv(d)p 703 2223 100 4 v 703 2306 a(dx)813 2244 y Fa(B)883 2207 y Fn(\()p Fp(`)p Fn(\))971 2244 y Fu(\()p Fv(x)p Fu(\))p Fv(dx)p Fu(;)198 b Fa(L)1486 2207 y Fn(\()p Fp(`)p Fn(\))1486 2267 y Fp(r)1599 2244 y Fu(=)1695 2129 y Fi(Z)1778 2155 y FH(1)1742 2318 y Fn(0)1868 2244 y Fv(x)1920 2207 y Fp(r)1994 2183 y Fv(d)p 1968 2223 V 1968 2306 a(dx)2077 2244 y Fa(L)2149 2207 y Fn(\()p Fp(`)p Fn(\))2237 2244 y Fu(\()p Fv(x)p Fu(\))p Fv(dx)p Fu(;)g Fa(F)2764 2207 y Fn(\()p Fp(`)p Fn(\))2764 2267 y Fp(r)2877 2244 y Fu(=)2973 2129 y Fi(Z)3056 2155 y FH(1)3020 2318 y Fn(0)3146 2244 y Fv(x)3198 2207 y Fp(r)3272 2183 y Fv(d)p 3246 2223 V 3246 2306 a(dx)3355 2244 y Fa(F)3439 2207 y Fn(\()p Fp(`)p Fn(\))3527 2244 y Fu(\()p Fv(x)p Fu(\))p Fv(dx)0 2510 y FB(for)23 b Fv(r)k Fu(=)e(1)p Fv(;)15 b Fu(2)p Fv(;)g Fu(3)p FB(,)24 b(and)f Fv(`)i Fo(\025)g Fu(0)p FB(,)d(where)h(an)f(inte)o(gral)i(of)f(a)e(matrix)i Fj(M)f FB(is)h(a)f(matrix)h(of)f(the)h(inte)o(grals)h(of)e(the)h (elements)h(in)e Fj(M)p FB(.)141 2656 y(W)-7 b(e)23 b(no)n(w)g (de\002ne)h(the)f(limits)h(as)g Fv(x)h Fo(!)g(1)e FB(of)g Fa(B)1642 2620 y Fn(\()p Fp(`)p Fn(\))1730 2656 y Fu(\()p Fv(x)p Fu(\))p FB(,)g Fa(L)1970 2620 y Fn(\()p Fp(`)p Fn(\))2058 2656 y Fu(\()p Fv(x)p Fu(\))p FB(,)g Fa(F)2309 2620 y Fn(\()p Fp(`)p Fn(\))2397 2656 y Fu(\()p Fv(x)p Fu(\))p FB(,)g(as)h(follo)n(ws:)567 2950 y Fa(B)637 2912 y Fn(\()p Fp(`)p Fn(\))750 2950 y Fu(=)52 b(lim)846 3000 y Fp(x)p FH(!1)1042 2950 y Fa(B)1112 2912 y Fn(\()p Fp(`)p Fn(\))1200 2950 y Fu(\()p Fv(x)p Fu(\);)198 b Fa(L)1616 2912 y Fn(\()p Fp(`)p Fn(\))1729 2950 y Fu(=)53 b(lim)1825 3000 y Fp(x)p FH(!1)2021 2950 y Fa(L)2093 2912 y Fn(\()p Fp(`)p Fn(\))2181 2950 y Fu(\()p Fv(x)p Fu(\);)198 b Fa(F)2609 2912 y Fn(\()p Fp(`)p Fn(\))2722 2950 y Fu(=)52 b(lim)2818 3000 y Fp(x)p FH(!1)3014 2950 y Fa(F)3097 2912 y Fn(\()p Fp(`)p Fn(\))3185 2950 y Fu(\()p Fv(x)p Fu(\);)0 3167 y FB(for)24 b Fv(`)h Fo(\025)g Fu(0)p FB(.)141 3314 y(If)231 3290 y Fu(^)224 3314 y Fv(`)e FB(denotes)i(the)f(le)n(v)o (el)g(where)g(the)g(QBD)d(starts)k(to)e(repeat,)i(then)f(we)f (de\002ne:)1275 3579 y Fa(B)k Fu(=)e Fa(B)1536 3542 y Fn(\()1568 3524 y(^)1563 3542 y Fp(`)q Fn(\))1715 3579 y Fa(L)g Fu(=)g Fa(L)1980 3542 y Fn(\()2012 3524 y(^)2007 3542 y Fp(`)p Fn(\))2158 3579 y Fa(F)35 b Fu(=)25 b Fa(F)2446 3542 y Fn(\()2478 3524 y(^)2473 3542 y Fp(`)p Fn(\))0 3845 y FB(and)1251 3991 y Fa(B)1321 4005 y Fp(r)1384 3991 y Fu(=)g Fa(B)1550 3954 y Fn(\()1582 3936 y(^)1577 3954 y Fp(`)p Fn(\))1550 4014 y Fp(r)1729 3991 y Fa(L)1801 4005 y Fp(r)1864 3991 y Fu(=)g Fa(L)2031 3954 y Fn(\()2063 3936 y(^)2058 3954 y Fp(`)q Fn(\))2031 4014 y Fp(r)2210 3991 y Fa(F)2293 4005 y Fp(r)2357 3991 y Fu(=)g Fa(F)2536 3954 y Fn(\()2568 3936 y(^)2563 3954 y Fp(`)p Fn(\))2536 4014 y Fp(r)2624 3991 y Fv(:)0 4271 y FC(Example)0 4479 y FB(Consider)g(the)f(QBD)d(process)26 b(sho)n(wn)e(in)f(Figure)h(11.) 141 4626 y(Let)e Fv(\015)331 4640 y Fn(1)396 4626 y Fu(=)j Fv(\025)16 b Fu(+)g Fv(\026)703 4640 y Fn(1)759 4626 y Fu(+)g Fv(\013)22 b FB(and)h Fv(\015)1126 4640 y Fn(2)1191 4626 y Fu(=)i Fv(\025)16 b Fu(+)g Fv(\026)1498 4640 y Fn(2)1553 4626 y Fu(+)g Fv(\014)5 b FB(.)28 b(Then,)23 b(the)f(corresponding)27 b(transition)e(probability)h(matrices)e(and)0 4773 y(their)g(moments)g(look)h(as)e(follo)n(ws:)899 5073 y Fa(F)982 5036 y Fn(\()p Fp(`)p Fn(\))1070 5073 y Fu(\()p Fv(x)p Fu(\))84 b(=)1429 4905 y Fi(0)1429 5054 y(@)1543 5007 y Fu(1)21 b Fo(\000)f Fv(e)1742 4974 y FH(\000)p Fp(\015)1833 4983 y Fc(1)1868 4974 y Fp(x)2157 5007 y Fu(0)1705 5153 y(0)245 b(1)21 b Fo(\000)f Fv(e)2194 5120 y FH(\000)p Fp(\015)2285 5129 y Fc(2)2320 5120 y Fp(x)2405 4905 y Fi(1)2405 5054 y(A)2493 4905 y(0)2493 5054 y(@)2632 4971 y Fp(\025)p 2617 4986 71 4 v 2617 5038 a(\015)2653 5047 y Fc(1)2804 5006 y Fu(0)2630 5153 y(0)2806 5118 y Fp(\025)p 2791 5133 V 2791 5185 a(\015)2827 5194 y Fc(2)2913 4905 y Fi(1)2913 5054 y(A)1905 5596 y FB(27)p eop end %%Page: 28 28 TeXDict begin 28 27 bop 1275 167 a 10656638 4736286 0 0 29470228 13090570 startTexFig 1275 167 a %%BeginDocument: QBD.eps %!PS-Adobe-2.0 EPSF-2.0 %%Title: QBD.eps %%Creator: fig2dev Version 3.2 Patchlevel 3d %%CreationDate: Thu Sep 25 14:21:15 2003 %%For: osogami@gs57.sp.cs.cmu.edu (Takayuki Osogami) %%BoundingBox: 0 0 448 199 %%Magnification: 1.0000 %%EndComments /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def end save newpath 0 199 moveto 0 0 lineto 448 0 lineto 448 199 lineto closepath clip newpath -58.5 307.9 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin10setmiterlimit0.060000.06000scF2psBegin 10 setmiterlimit 0.06000 0.06000 sc % % Fig objects follow % /Times-Roman ff 270.00 scf sf 3075 3000 m gs 1 -1 sc (1) col0 sh gr /Symbol ff 360.00 scf sf 2850 2925 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 5475 3075 m gs 1 -1 sc (1) col0 sh gr /Symbol ff 360.00 scf sf 5250 3000 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 7800 3075 m gs 1 -1 sc (1) col0 sh gr /Symbol ff 360.00 scf sf 7575 3000 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 3075 4950 m gs 1 -1 sc (2) col0 sh gr /Symbol ff 360.00 scf sf 2850 4875 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 5475 4950 m gs 1 -1 sc (2) col0 sh gr /Symbol ff 360.00 scf sf 5250 4875 m gs 1 -1 sc (m) col0 sh gr /Times-Roman ff 270.00 scf sf 7800 4950 m gs 1 -1 sc (2) col0 sh gr /Symbol ff 360.00 scf sf 7575 4875 m gs 1 -1 sc (m) col0 sh gr % Arc 45.000 slw gs clippath 3658 2609 m 3717 2504 l 3436 2348 l 3617 2518 l 3378 2453 l cp eoclip n 3000.0 3450.0 1125.0 -126.9 -53.1 arc gs col0 s gr gr % arrowhead 30.000 slw n 3378 2453 m 3617 2518 l 3436 2348 l col0 s % Arc 45.000 slw gs clippath 6058 2609 m 6117 2504 l 5836 2348 l 6017 2518 l 5778 2453 l cp eoclip n 5400.0 3450.0 1125.0 -126.9 -53.1 arc gs col0 s gr gr % arrowhead 30.000 slw n 5778 2453 m 6017 2518 l 5836 2348 l col0 s % Arc 45.000 slw gs clippath 8383 2534 m 8442 2429 l 8161 2273 l 8342 2443 l 8103 2378 l cp eoclip n 7725.0 3375.0 1125.0 -126.9 -53.1 arc gs col0 s gr gr % arrowhead 30.000 slw n 8103 2378 m 8342 2443 l 8161 2273 l col0 s % Arc 45.000 slw gs clippath 4741 2865 m 4682 2970 l 4963 3126 l 4783 2957 l 5021 3021 l cp eoclip n 5400.0 2025.0 1125.0 53.1 126.9 arc gs col0 s gr gr % arrowhead 30.000 slw n 5021 3021 m 4783 2957 l 4963 3126 l col0 s % Arc 45.000 slw gs clippath 7066 2865 m 7007 2970 l 7288 3126 l 7108 2957 l 7346 3021 l cp eoclip n 7725.0 2025.0 1125.0 53.1 126.9 arc gs col0 s gr gr % arrowhead 30.000 slw n 7346 3021 m 7108 2957 l 7288 3126 l col0 s % Arc 45.000 slw gs clippath 1559 3016 m 1454 2957 l 1298 3238 l 1468 3058 l 1403 3296 l cp eoclip n 2400.0 3675.0 1125.0 143.1 -143.1 arc gs col0 s gr gr % arrowhead 30.000 slw n 1403 3296 m 1468 3058 l 1298 3238 l col0 s % Arc 45.000 slw gs clippath 4365 4333 m 4470 4392 l 4626 4111 l 4457 4292 l 4521 4053 l cp eoclip n 3525.0 3675.0 1125.0 -36.9 36.9 arc gs col0 s gr gr % arrowhead 30.000 slw n 4521 4053 m 4457 4292 l 4626 4111 l col0 s % Arc 45.000 slw gs clippath 1965 4333 m 2070 4392 l 2226 4111 l 2057 4292 l 2121 4053 l cp eoclip n 1125.0 3675.0 1125.0 -36.9 36.9 arc gs col0 s gr gr % arrowhead 30.000 slw n 2121 4053 m 2057 4292 l 2226 4111 l col0 s % Arc 45.000 slw gs clippath 2341 2790 m 2282 2895 l 2563 3051 l 2383 2882 l 2621 2946 l cp eoclip n 3000.0 1950.0 1125.0 53.1 126.9 arc gs col0 s gr gr % arrowhead 30.000 slw n 2621 2946 m 2383 2882 l 2563 3051 l col0 s % Arc 45.000 slw gs clippath 4034 3016 m 3929 2957 l 3773 3238 l 3943 3058 l 3878 3296 l cp eoclip n 4875.0 3675.0 1125.0 143.1 -143.1 arc gs col0 s gr gr % arrowhead 30.000 slw n 3878 3296 m 3943 3058 l 3773 3238 l col0 s % Arc 45.000 slw gs clippath 6434 3016 m 6329 2957 l 6173 3238 l 6343 3058 l 6278 3296 l cp eoclip n 7275.0 3675.0 1125.0 143.1 -143.1 arc gs col0 s gr gr % arrowhead 30.000 slw n 6278 3296 m 6343 3058 l 6173 3238 l col0 s % Arc 45.000 slw gs clippath 6765 4333 m 6870 4392 l 7026 4111 l 6857 4292 l 6921 4053 l cp eoclip n 5925.0 3675.0 1125.0 -36.9 36.9 arc gs col0 s gr gr % arrowhead 30.000 slw n 6921 4053 m 6857 4292 l 7026 4111 l col0 s % Arc 45.000 slw gs clippath 2341 4740 m 2282 4845 l 2563 5001 l 2383 4832 l 2621 4896 l cp eoclip n 3000.0 3900.0 1125.0 53.1 126.9 arc gs col0 s gr gr % arrowhead 30.000 slw n 2621 4896 m 2383 4832 l 2563 5001 l col0 s % Arc 45.000 slw gs clippath 4741 4740 m 4682 4845 l 4963 5001 l 4783 4832 l 5021 4896 l cp eoclip n 5400.0 3900.0 1125.0 53.1 126.9 arc gs col0 s gr gr % arrowhead 30.000 slw n 5021 4896 m 4783 4832 l 4963 5001 l col0 s % Arc 45.000 slw gs clippath 8383 4484 m 8442 4379 l 8161 4223 l 8342 4393 l 8103 4328 l cp eoclip n 7725.0 5325.0 1125.0 -126.9 -53.1 arc gs col0 s gr gr % arrowhead 30.000 slw n 8103 4328 m 8342 4393 l 8161 4223 l col0 s % Arc 45.000 slw gs clippath 3658 4559 m 3717 4454 l 3436 4298 l 3617 4468 l 3378 4403 l cp eoclip n 3000.0 5400.0 1125.0 -126.9 -53.1 arc gs col0 s gr gr % arrowhead 30.000 slw n 3378 4403 m 3617 4468 l 3436 4298 l col0 s % Arc 45.000 slw gs clippath 6058 4559 m 6117 4454 l 5836 4298 l 6017 4468 l 5778 4403 l cp eoclip n 5400.0 5400.0 1125.0 -126.9 -53.1 arc gs col0 s gr gr % arrowhead 30.000 slw n 5778 4403 m 6017 4468 l 5836 4298 l col0 s % Arc 45.000 slw gs clippath 7066 4815 m 7007 4920 l 7288 5076 l 7108 4907 l 7346 4971 l cp eoclip n 7725.0 3975.0 1125.0 53.1 126.9 arc gs col0 s gr gr % arrowhead 30.000 slw n 7346 4971 m 7108 4907 l 7288 5076 l col0 s % Ellipse n 1800 2700 600 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 4200 2700 600 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 6600 2700 600 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 1800 4650 600 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 4200 4650 600 300 0 360 DrawEllipse gs col0 s gr % Ellipse n 6600 4650 600 300 0 360 DrawEllipse gs col0 s gr /Symbol ff 360.00 scf sf 7650 2100 m gs 1 -1 sc (l) col0 sh gr /Symbol ff 360.00 scf sf 2925 2175 m gs 1 -1 sc (l) col0 sh gr /Symbol ff 360.00 scf sf 5325 2175 m gs 1 -1 sc (l) col0 sh gr /Symbol ff 360.00 scf sf 1950 3750 m gs 1 -1 sc (a) col0 sh gr /Symbol ff 360.00 scf sf 975 3750 m gs 1 -1 sc (b) col0 sh gr /Symbol ff 360.00 scf sf 3450 3750 m gs 1 -1 sc (b) col0 sh gr /Symbol ff 360.00 scf sf 6750 3750 m gs 1 -1 sc (a) col0 sh gr /Symbol ff 360.00 scf sf 5850 3750 m gs 1 -1 sc (b) col0 sh gr /Times-Roman ff 360.00 scf sf 3975 4800 m gs 1 -1 sc (1,2) col0 sh gr /Times-Roman ff 360.00 scf sf 1575 4800 m gs 1 -1 sc (0,2) col0 sh gr /Symbol ff 360.00 scf sf 5325 4200 m gs 1 -1 sc (l) col0 sh gr /Symbol ff 360.00 scf sf 7650 4125 m gs 1 -1 sc (l) col0 sh gr /Symbol ff 360.00 scf sf 2925 4200 m gs 1 -1 sc (l) col0 sh gr /Times-Roman ff 360.00 scf sf 6375 2850 m gs 1 -1 sc (2,1) col0 sh gr /Times-Roman ff 360.00 scf sf 3975 2850 m gs 1 -1 sc (1,1) col0 sh gr /Times-Roman ff 360.00 scf sf 1575 2850 m gs 1 -1 sc (0,1) col0 sh gr /Times-Roman ff 360.00 scf sf 6375 4800 m gs 1 -1 sc (2,1) col0 sh gr /Symbol ff 360.00 scf sf 4350 3750 m gs 1 -1 sc (a) col0 sh gr F2psBegin10setmiterlimit0.060000.06000scF2psEnd rs %%EndDocument endTexFig 1192 963 a FB(Figure)24 b(11:)29 b(An)23 b(e)o(xample)h(of)g(a)f(QBD)f (process)910 1513 y Fa(L)982 1476 y Fn(\()p Fp(`)p Fn(\))1070 1513 y Fu(\()p Fv(x)p Fu(\))84 b(=)1429 1345 y Fi(0)1429 1494 y(@)1543 1447 y Fu(1)21 b Fo(\000)f Fv(e)1742 1414 y FH(\000)p Fp(\015)1833 1423 y Fc(1)1868 1414 y Fp(x)2157 1447 y Fu(0)1705 1594 y(0)245 b(1)21 b Fo(\000)f Fv(e)2194 1561 y FH(\000)p Fp(\015)2285 1570 y Fc(2)2320 1561 y Fp(x)2405 1345 y Fi(1)2405 1494 y(A)2493 1345 y(0)2493 1494 y(@)2630 1447 y Fu(0)2804 1411 y Fp(\013)p 2791 1426 71 4 v 2791 1478 a(\015)2827 1487 y Fc(1)2631 1553 y Fp(\014)p 2617 1572 V 2617 1625 a(\015)2653 1634 y Fc(2)2804 1594 y Fu(0)2913 1345 y Fi(1)2913 1494 y(A)912 1846 y Fa(B)982 1808 y Fn(\()p Fp(`)p Fn(\))1070 1846 y Fu(\()p Fv(x)p Fu(\))84 b(=)1429 1677 y Fi(0)1429 1826 y(@)1543 1779 y Fu(1)21 b Fo(\000)f Fv(e)1742 1746 y FH(\000)p Fp(\015)1833 1755 y Fc(1)1868 1746 y Fp(x)2157 1779 y Fu(0)1705 1926 y(0)245 b(1)21 b Fo(\000)f Fv(e)2194 1893 y FH(\000)p Fp(\015)2285 1902 y Fc(2)2320 1893 y Fp(x)2405 1677 y Fi(1)2405 1826 y(A)2493 1677 y(0)2493 1826 y(@)2617 1738 y Fp(\026)2659 1747 y Fc(1)p 2617 1758 78 4 v 2620 1810 a Fp(\015)2656 1819 y Fc(1)2813 1779 y Fu(0)2633 1926 y(0)2797 1885 y Fp(\026)2839 1894 y Fc(2)p 2797 1905 V 2800 1957 a Fp(\015)2836 1966 y Fc(2)2926 1677 y Fi(1)2926 1826 y(A)0 2161 y FB(and)581 2343 y Fa(F)665 2305 y Fn(\()p Fp(`)p Fn(\))778 2343 y Fu(=)874 2174 y Fi(0)874 2323 y(@)1013 2240 y Fp(\025)p 998 2255 71 4 v 998 2307 a(\015)1034 2316 y Fc(1)1184 2276 y Fu(0)1010 2423 y(0)1186 2387 y Fp(\025)p 1172 2402 V 1172 2454 a(\015)1208 2463 y Fc(2)1294 2174 y Fi(1)1294 2323 y(A)1564 2343 y Fa(L)1635 2305 y Fn(\()p Fp(`)p Fn(\))1748 2343 y Fu(=)1844 2174 y Fi(0)1844 2323 y(@)1981 2276 y Fu(0)2155 2240 y Fp(\013)p 2142 2255 V 2142 2307 a(\015)2178 2316 y Fc(1)1982 2382 y Fp(\014)p 1968 2402 V 1968 2454 a(\015)2004 2463 y Fc(2)2155 2423 y Fu(0)2265 2174 y Fi(1)2265 2323 y(A)2534 2343 y Fa(B)2604 2305 y Fn(\()p Fp(`)p Fn(\))2718 2343 y Fu(=)2813 2174 y Fi(0)2813 2323 y(@)2938 2235 y Fp(\026)2980 2244 y Fc(1)p 2938 2255 78 4 v 2941 2307 a Fp(\015)2977 2316 y Fc(1)3133 2276 y Fu(0)2953 2423 y(0)3118 2382 y Fp(\026)3160 2391 y Fc(2)p 3118 2402 V 3121 2454 a Fp(\015)3157 2463 y Fc(2)3246 2174 y Fi(1)3246 2323 y(A)0 2610 y FB(and)1234 2917 y Fa(F)1317 2880 y Fn(\()p Fp(`)p Fn(\))1317 2940 y Fp(r)1488 2917 y Fu(=)1642 2749 y Fi(0)1642 2898 y(@)1777 2805 y Fp(r)r Fn(!)p 1766 2820 75 4 v 1766 2872 a Fp(\015)1806 2849 y Fm(r)1802 2895 y Fc(1)1958 2841 y Fu(0)1781 2997 y(0)1954 2962 y Fp(r)r Fn(!)p 1944 2977 V 1944 3029 a Fp(\015)1984 3006 y Fm(r)1980 3051 y Fc(2)2070 2749 y Fi(1)2070 2898 y(A)2158 2749 y(0)2158 2898 y(@)2297 2815 y Fp(\025)p 2282 2830 71 4 v 2282 2882 a(\015)2318 2891 y Fc(1)2469 2850 y Fu(0)2295 2997 y(0)2471 2962 y Fp(\025)p 2456 2977 V 2456 3029 a(\015)2492 3038 y Fc(2)2578 2749 y Fi(1)2578 2898 y(A)1245 3264 y Fa(L)1317 3226 y Fn(\()p Fp(`)p Fn(\))1317 3286 y Fp(r)1488 3264 y Fu(=)1642 3095 y Fi(0)1642 3244 y(@)1777 3151 y Fp(r)r Fn(!)p 1766 3166 75 4 v 1766 3219 a Fp(\015)1806 3196 y Fm(r)1802 3241 y Fc(1)1958 3187 y Fu(0)1781 3344 y(0)1954 3308 y Fp(r)r Fn(!)p 1944 3323 V 1944 3375 a Fp(\015)1984 3352 y Fm(r)1980 3398 y Fc(2)2070 3095 y Fi(1)2070 3244 y(A)2158 3095 y(0)2158 3244 y(@)2295 3197 y Fu(0)2469 3161 y Fp(\013)p 2456 3176 71 4 v 2456 3228 a(\015)2492 3237 y Fc(1)2296 3303 y Fp(\014)p 2282 3323 V 2282 3375 a(\015)2318 3384 y Fc(2)2469 3344 y Fu(0)2578 3095 y Fi(1)2578 3244 y(A)1247 3610 y Fa(B)1317 3573 y Fn(\()p Fp(`)p Fn(\))1317 3633 y Fp(r)1488 3610 y Fu(=)1642 3441 y Fi(0)1642 3591 y(@)1777 3498 y Fp(r)r Fn(!)p 1766 3513 75 4 v 1766 3565 a Fp(\015)1806 3542 y Fm(r)1802 3588 y Fc(1)1958 3534 y Fu(0)1781 3690 y(0)1954 3654 y Fp(r)r Fn(!)p 1944 3669 V 1944 3722 a Fp(\015)1984 3699 y Fm(r)1980 3744 y Fc(2)2070 3441 y Fi(1)2070 3591 y(A)2158 3441 y(0)2158 3591 y(@)2282 3503 y Fp(\026)2324 3512 y Fc(1)p 2282 3522 78 4 v 2285 3575 a Fp(\015)2321 3584 y Fc(1)2478 3543 y Fu(0)2298 3690 y(0)2462 3650 y Fp(\026)2504 3659 y Fc(2)p 2462 3669 V 2465 3722 a Fp(\015)2501 3731 y Fc(2)2591 3441 y Fi(1)2591 3591 y(A)0 3934 y FB(for)k Fv(`)h Fo(\025)g Fu(1)p FB(.)0 4218 y Ft(A.3)99 b(Wher)n(e)26 b(we')n(r)n(e)g(going)0 4426 y FB(W)-7 b(e)21 b(will)g(use)i(the)f(matrices)h(introduced)i(abo) o(v)o(e)d(to)g(deri)n(v)o(e)g Fj(G)1969 4393 y Fn(\()p Fp(`)p Fn(\))2078 4426 y FB(and)h Fj(G)2313 4379 y Fn(\()p Fp(`)p Fn(\))2313 4437 y Fp(r)2422 4426 y FB(for)f Fv(r)28 b Fu(=)d(1)p Fv(;)15 b Fu(2)p Fv(;)g Fu(3)p FB(.)29 b(In)22 b(Section)h(A.4,)d(we)h(deri)n(v)o(e)0 4573 y(the)j(repeating)i(part,)e (where)f Fv(`)j Fo(\025)1092 4549 y Fu(^)1086 4573 y Fv(`)c FB(for)i(these)g(matrices.)30 b(Speci\002cally)25 b(we)e(de\002ne)1378 4839 y Fj(G)j Fu(=)f Fj(G)1664 4801 y Fn(\()1696 4784 y(^)1691 4801 y Fp(`)p Fn(\))1865 4839 y FB(and)115 b Fj(G)2192 4853 y Fp(r)2256 4839 y Fu(=)25 b Fj(G)2434 4801 y Fn(\()2466 4784 y(^)2461 4801 y Fp(`)p Fn(\))2434 4861 y Fp(r)0 5104 y FB(and)20 b(proceed)i(to)e(deri)n(v)o (e)g Fj(G)f FB(and)i Fj(G)1123 5118 y Fp(r)1161 5104 y FB(.)26 b(In)20 b(Section)h(A.5)d(we)h(deri)n(v)o(e)i(the)f (nonrepeating)k(part,)c Fj(G)3006 5071 y Fn(\()p Fp(`)p Fn(\))3113 5104 y FB(and)h Fj(G)3346 5056 y Fn(\()p Fp(`)p Fn(\))3346 5115 y Fp(r)3453 5104 y FB(for)f Fv(`)25 b(<)3743 5080 y Fu(^)3737 5104 y Fv(`)p FB(.)h(In)0 5251 y(deri)n(ving)d(the)f (non-repeating)j(parts,)d(we)f(will)g(mak)o(e)g(use)h(of)f(the)g (repeating)j(parts,)f Fj(G)d FB(and)i Fj(G)2988 5265 y Fp(r)3026 5251 y FB(,)f(deri)n(v)o(ed)h(in)f(Section)h(A.4.)1905 5596 y(28)p eop end %%Page: 29 29 TeXDict begin 29 28 bop 0 159 a Ft(A.4)99 b(Moments)26 b(of)e(passage)h(time)g(in)g(the)h(r)n(epeating)g(part)0 367 y FB(The)h(quantity)i Fj(G)j Fu(=)g Fj(G)791 334 y Fn(\()823 316 y(^)818 334 y Fp(`)p Fn(\))905 367 y FB(is)27 b(a)g(standard)i(quantity)h(in)d(matrix)h(analytic)h(methods,) g(and)f(the)f(reference)i([16)r(])d(pro)o(vides)0 513 y(man)o(y)33 b(methods)h(by)f(which)g(this)h(matrix)f(can)g(be)g (computed.)59 b(Belo)n(w)32 b(we)g(describe)j(the)e(most)g(straighforw) o(ard)j(\(b)n(ut)0 660 y(slo)n(w\))23 b(algorithm)j(for)d(generating)k Fj(G)p FB(.)h(The)23 b(idea)h(is)g(to)f(simply)h(iterate)h(the)f(follo) n(wing)h(equation)h(until)e(it)g(con)l(v)o(er)n(ges:)1501 954 y Fj(G)i Fu(=)f Fa(B)d Fu(+)e Fa(L)p Fj(G)g Fu(+)g Fa(F)9 b Fj(GG)1396 b FB(\(2\))141 1171 y(The)28 b(intuition)j(behind)f (Equation)f(\(2\))g(should)h(be)e(clear:)40 b(Recall)28 b(that)h(the)g Fu(\()p Fv(i;)15 b(j)5 b Fu(\))2778 1138 y Fp(th)2878 1171 y FB(entry)29 b(of)f Fj(G)3277 1138 y Fn(\()p Fp(`)p Fn(\))3393 1171 y FB(represents)j(the)0 1318 y(probability)26 b(that)e(state)g Fu(\()p Fv(j;)15 b(`)k Fo(\000)f Fu(1\))23 b FB(is)g(the)g(\002rst)g(state)g(reached)i (in)e(le)n(v)o(el)g Fv(`)18 b Fo(\000)g Fu(1)p FB(,)23 b(gi)n(v)o(en)g(that)h(we)e(start)i(in)f(state)h Fu(\()p Fv(i;)15 b(`)p Fu(\))p FB(.)29 b(No)n(w)0 1464 y(the)19 b(right)i(hand)f(side)f(of)h(Equation)g(\(2\))g(represents)h(this)f (same)f(probability)k(by)c(conditioning)k(on)c(whether)h(the)g(\002rst) f(mo)o(v)o(e)0 1611 y(is)26 b(a)g(backw)o(ards)i(transition,)h(a)c (local)i(transition,)j(or)c(a)f(forw)o(ards)j(transition.)39 b(More)26 b(speci\002cally)-6 b(,)29 b Fa(B)3282 1563 y Fn(\()p Fp(`)p Fn(\))3282 1637 y Fp(ij)3395 1611 y FB(represents)g(the)0 1758 y(probability)e(that)d(the)g(\002rst)f(mo)o (v)o(e)g(lea)n(ving)j(state)e Fu(\()p Fv(i;)15 b(`)p Fu(\))24 b FB(is)g(to)f(state)i Fu(\()p Fv(j;)15 b(`)21 b Fo(\000)f Fu(1\))p FB(.)29 b(The)24 b(quantity)-6 b(,)25 b Fa(L)3117 1722 y Fn(\()p Fp(`)p Fn(\))3205 1758 y Fj(G)3287 1725 y Fn(\()p Fp(`)p Fn(\))3398 1758 y FB(represents)h(the)0 1905 y(probability)g(that)d(the)g(\002rst)f(transition)k(out)d(of)f (state)i Fu(\()p Fv(i;)15 b(`)p Fu(\))23 b FB(is)f(to)h(state)h Fu(\()p Fv(v)s(;)15 b(`)p Fu(\))23 b FB(for)g(some)f Fv(v)k FB(multiplied)e(by)f(the)g(probability)0 2051 y(that)33 b(the)g(the)g(\002rst)f(state)i(reached)h(in)d(le)n(v)o(el)h Fv(`)27 b Fo(\000)g Fu(1)32 b FB(is)g Fu(\()p Fv(j;)15 b(`)29 b Fo(\000)d Fu(1\))33 b FB(when)g(we)f(start)h(in)g(state)g Fu(\()p Fv(v)s(;)15 b(`)p Fu(\))p FB(,)35 b(summed)e(o)o(v)o(er)g(all)0 2198 y(possible)d Fv(v)38 b Fu(=)33 b(1)15 b Fv(:)g(:)g(:)i(n)748 2213 y Fp(`)781 2198 y FB(.)41 b(Finally)-6 b(,)30 b(the)f(quantity)-6 b(,)31 b Fa(F)1714 2162 y Fn(\()p Fp(`)p Fn(\))1801 2198 y Fj(G)1883 2165 y Fn(\()p Fp(`)p Fn(+1\))2062 2198 y Fj(G)2144 2165 y Fn(\()p Fp(`)p Fn(\))2259 2198 y FB(represents)g(the)e (product)h(of)e(three)h(terms:)39 b(\(i\))28 b(the)0 2345 y(probability)i(that)d(the)g(\002rst)f(transition)k(from)c Fu(\()p Fv(i;)15 b(`)p Fu(\))28 b FB(is)e(to)h(some)g(state)g Fu(\()p Fv(v)2342 2359 y Fn(1)2382 2345 y Fv(;)15 b(`)23 b Fu(+)f(1\))27 b FB(in)f(le)n(v)o(el)h Fv(`)c Fu(+)f(1)p FB(,)27 b(\(ii\))g(the)g(probability)0 2492 y(that)e(from)f(state)h Fu(\()p Fv(v)629 2506 y Fn(1)669 2492 y Fv(;)15 b(`)21 b Fu(+)g(1\))j FB(the)h(\002rst)f(state)h(reached)h(in)f(le)n(v)o(el)f Fv(`)g FB(is)g(some)g Fu(\()p Fv(v)2491 2506 y Fn(2)2531 2492 y Fv(;)15 b(`)p Fu(\))p FB(,)24 b(and)h(\(iii\))g(the)g (probability)i(that)e(from)0 2639 y(state)30 b Fu(\()p Fv(v)274 2653 y Fn(2)314 2639 y Fv(;)15 b(`)p Fu(\))30 b FB(the)g(\002rst)f(state)h(reached)i(in)d(le)n(v)o(el)h Fv(`)25 b Fo(\000)f Fu(1)30 b FB(is)f(state)h Fu(\()p Fv(j;)15 b(`)26 b Fo(\000)f Fu(1\))p FB(,)31 b(where)f(the)g(product)h (is)f(summed)f(o)o(v)o(er)h(all)0 2785 y(possible)e Fv(v)367 2799 y Fn(1)436 2785 y Fu(=)i(1)15 b Fv(:)g(:)g(:)i(n)774 2800 y Fp(`)p Fn(+1)896 2785 y FB(,)26 b Fv(v)989 2799 y Fn(2)1058 2785 y Fu(=)j(1)15 b Fv(:)g(:)g(:)i(n)1395 2800 y Fp(`)1428 2785 y FB(.)35 b(Since)26 b(we)f(are)h(in)g(the)g (repeating)j(re)o(gion,)e(all)f(the)h(superscripts)i(are)d(equal)0 2932 y(to)100 2908 y Fu(^)93 2932 y Fv(`)p FB(,)d(and)h(can)g(be)f (dropped)j(by)e(our)f(notation.)141 3079 y(Matrices)h Fj(G)563 3093 y Fp(r)623 3079 y FB(for)f Fv(r)28 b Fu(=)d(1)p Fv(;)15 b Fu(2)p Fv(;)g Fu(3)24 b FB(are)e(deri)n(v)o(ed)i(in)f(a)f (similar)h(manner)l(,)h(by)f(using)h Fj(G)e FB(which)h(we)f(ha)n(v)o(e) h(already)h(deri)n(v)o(ed.)0 3226 y(Matrix)g Fj(G)352 3240 y Fn(1)415 3226 y FB(is)f(obtained)j(by)d(iterating:)860 3491 y Fj(G)942 3505 y Fn(1)1006 3491 y Fu(=)i Fa(B)1172 3505 y Fn(1)1232 3491 y Fu(+)20 b Fa(L)1395 3505 y Fn(1)1434 3491 y Fj(G)g Fu(+)g Fa(L)p Fj(G)1781 3505 y Fn(1)1841 3491 y Fu(+)g Fa(F)2015 3505 y Fn(1)2054 3491 y Fj(GG)h Fu(+)f Fa(F)9 b Fj(G)2495 3505 y Fn(1)2535 3491 y Fj(G)20 b Fu(+)g Fa(F)9 b Fj(GG)2975 3505 y Fn(1)3015 3491 y Fv(:)754 b FB(\(3\))0 3757 y(Similarly)-6 b(,)24 b(matrix)g Fj(G)720 3771 y Fn(2)782 3757 y FB(is)g(obtained)i(by)d(iterating:)566 4022 y Fj(G)648 4036 y Fn(2)770 4022 y Fu(=)83 b Fa(B)994 4036 y Fn(2)1054 4022 y Fu(+)20 b Fa(L)1216 4036 y Fn(2)1256 4022 y Fj(G)g Fu(+)g(2)p Fa(L)1566 4036 y Fn(1)1606 4022 y Fj(G)1688 4036 y Fn(1)1747 4022 y Fu(+)g Fa(L)p Fj(G)1992 4036 y Fn(2)924 4194 y Fu(+)p Fa(F)1078 4208 y Fn(2)1117 4194 y Fj(GG)h Fu(+)f(2)p Fa(F)1522 4208 y Fn(1)1561 4194 y Fu(\()p Fj(G)1678 4208 y Fn(1)1718 4194 y Fj(G)h Fu(+)e Fj(GG)2075 4208 y Fn(1)2115 4194 y Fu(\))i(+)f Fa(F)9 b Fu(\()p Fj(G)2462 4208 y Fn(2)2502 4194 y Fj(G)20 b Fu(+)g(2)p Fj(G)2822 4208 y Fn(1)2862 4194 y Fj(G)2944 4208 y Fn(1)3004 4194 y Fu(+)g Fj(GG)3259 4208 y Fn(2)3299 4194 y Fu(\))460 b FB(\(4\))0 4459 y(and)24 b(matrix)g Fj(G)496 4473 y Fn(3)558 4459 y FB(is)g(obtained)i(by)d(iterating:)525 4725 y Fj(G)607 4739 y Fn(3)730 4725 y Fu(=)83 b Fa(B)954 4739 y Fn(3)1013 4725 y Fu(+)20 b Fa(L)1176 4739 y Fn(3)1215 4725 y Fj(G)h Fu(+)f(3)p Fa(L)1526 4739 y Fn(2)1565 4725 y Fj(G)1647 4739 y Fn(1)1707 4725 y Fu(+)g(3)p Fa(L)1915 4739 y Fn(1)1954 4725 y Fj(G)2036 4739 y Fn(2)2096 4725 y Fu(+)g Fa(L)p Fj(G)2341 4739 y Fn(3)884 4897 y Fu(+)p Fa(F)1038 4911 y Fn(3)1077 4897 y Fj(GG)h Fu(+)e(3)p Fa(F)1481 4911 y Fn(2)1521 4897 y Fu(\()p Fj(G)1638 4911 y Fn(1)1678 4897 y Fj(G)h Fu(+)g Fj(GG)2035 4911 y Fn(1)2075 4897 y Fu(\))g(+)g(3)p Fa(F)2340 4911 y Fb(1)2386 4897 y Fu(\()p Fj(G)2503 4911 y Fn(2)2542 4897 y Fj(G)h Fu(+)f(2)p Fj(G)2863 4911 y Fn(1)2903 4897 y Fj(G)2985 4911 y Fn(1)3045 4897 y Fu(+)g Fj(GG)3300 4911 y Fn(2)3339 4897 y Fu(\))974 5068 y(+)p Fa(F)9 b Fu(\()p Fj(G)1245 5082 y Fn(3)1285 5068 y Fj(G)21 b Fu(+)f(3)p Fj(G)1606 5082 y Fn(2)1646 5068 y Fj(G)1728 5082 y Fn(1)1788 5068 y Fu(+)g(3)p Fj(G)2006 5082 y Fn(1)2046 5068 y Fj(G)2128 5082 y Fn(2)2187 5068 y Fu(+)g Fj(GG)2442 5082 y Fn(3)2482 5068 y Fu(\))p Fv(:)1252 b FB(\(5\))141 5334 y(W)-7 b(e)27 b(no)n(w)g(gi)n(v)o(e)g(intuition)j (behind)f(e)o(xpressions)h(\(3\)-\(5\).)42 b(The)27 b(right)i(hand)f (side)g(of)f(\(3\))h(can)g(be)f(di)n(vided)i(into)f(three)1905 5596 y(29)p eop end %%Page: 30 30 TeXDict begin 30 29 bop 0 159 a FB(parts:)29 b Fs(P)-7 b(art)23 b(0)p 229 173 223 4 v 1 w FB(:)28 b Fa(B)575 173 y Fn(1)614 159 y FB(,)21 b Fs(P)-7 b(art)23 b(1)p 658 173 V 1 w FB(:)k Fa(L)1005 173 y Fn(1)1045 159 y Fj(G)14 b Fu(+)g Fa(L)p Fj(G)1380 173 y Fn(1)1419 159 y FB(,)22 b(and)g Fs(P)-7 b(art)23 b(2)p 1616 173 V 1 w FB(:)k Fa(F)1975 173 y Fn(1)2014 159 y Fj(GG)14 b Fu(+)g Fa(F)c Fj(G)2443 173 y Fn(1)2483 159 y Fj(G)k Fu(+)g Fa(F)9 b Fj(GG)2911 173 y Fn(1)2951 159 y FB(.)28 b(F)o(or)21 b Fv(h)k Fu(=)g(0)p Fv(;)15 b Fu(1)p Fv(;)g Fu(2)p FB(,)24 b(the)e Fu(\()p Fv(i;)15 b(j)5 b Fu(\))0 305 y FB(element)23 b(of)f Fs(P)-7 b(art)22 b Fv(h)g FB(gi)n(v)o(es)g(\223the)h(\002rst)f (moment)h(of)f(the)g(distrib)n(ution)k(of)c Fv(T)2352 257 y Fn(\()p Fp(`)p Fn(\))2339 331 y Fp(ij)2461 305 y FB(gi)n(v)o(en)h(that)g(the)f(\002rst)g(transition)j(out)d(of)g (state)0 452 y Fu(\()p Fv(i;)15 b(`)p Fu(\))22 b FB(is)g(to)g(le)n(v)o (el)g Fv(`)14 b Fu(+)g Fv(h)g Fo(\000)g Fu(1)23 b FB(and)f Fv(E)1149 404 y Fn(\()p Fp(`)p Fn(\))1144 478 y Fp(ij)1238 452 y FB(\224)f(multiplied)j(by)e(\223the)h(probability)i(that)d(the)h (\002rst)e(transition)k(out)d(of)g(state)h Fu(\()p Fv(i;)15 b(`)p Fu(\))22 b FB(is)0 599 y(to)f(le)n(v)o(el)g Fv(`)10 b Fu(+)g Fv(h)g Fo(\000)g Fu(1)20 b FB(and)i Fv(E)845 551 y Fn(\()p Fp(`)p Fn(\))840 625 y Fp(ij)933 599 y FB(.)-6 b(\224)27 b Fs(P)-7 b(art)20 b(1)h FB(consists)i(of)d(tw)o(o)h (terms.)28 b(The)20 b(\002rst)h(term,)g Fa(L)2672 613 y Fn(1)2712 599 y Fj(G)p FB(,)f(is)h(the)g(contrib)n(ution)k(of)20 b(the)h(time)0 746 y(to)27 b(the)g(\002rst)f(transition,)k(and)d(the)g (second)i(term,)e Fa(L)p Fj(G)1737 760 y Fn(1)1776 746 y FB(,)g(is)f(the)h(contrib)n(ution)k(of)c(the)g(time)f(it)h(tak)o(es)h (to)e(reach)i Fu(\()p Fv(j;)15 b(`)24 b Fo(\000)e Fu(1\))0 892 y FB(after)i(the)g(\002rst)e(transition.)32 b(Similarly)-6 b(,)24 b Fs(P)-7 b(art)22 b(2)h FB(consists)j(of)d(three)h(terms.)29 b(The)23 b(\002rst)g(term,)f Fa(F)2992 906 y Fn(1)3031 892 y Fj(GG)p FB(,)h(is)g(the)g(contrib)n(ution)0 1039 y(of)k(the)h(time)f(to)g(the)h(\002rst)f(transition,)j(the)e(second)h (term,)f Fa(F)9 b Fj(G)2023 1053 y Fn(1)2062 1039 y Fj(G)p FB(,)28 b(is)f(the)g(contrib)n(ution)32 b(of)27 b(the)g(time)g(it)g (tak)o(es)i(to)e(come)0 1186 y(back)h(from)g(le)n(v)o(el)f Fv(`)c Fu(+)g(1)k FB(to)g(le)n(v)o(el)h Fv(`)e FB(after)j(the)e (\002rst)g(transition,)k(and)d(the)g(third)g(term,)g Fa(F)9 b Fj(GG)3040 1200 y Fn(1)3080 1186 y FB(,)27 b(is)g(the)h (contrib)n(ution)j(of)0 1333 y(the)24 b(time)f(it)g(tak)o(es)i(to)f(go) f(from)h(le)n(v)o(el)f Fv(`)g FB(to)g(le)n(v)o(el)h Fv(`)c Fo(\000)g Fu(1)p FB(.)141 1480 y(The)30 b(right)h(hand)g(sides)h(of)e (\(4\))g(and)h(\(5\))f(can)h(similarly)h(be)e(di)n(vided)i(into)f (three)g(parts:)44 b Fs(P)-7 b(art)30 b(0)f FB(consists)k(of)d(terms)0 1626 y(containing)f Fa(B)d FB(or)g Fa(B)674 1640 y Fp(r)712 1626 y FB(;)g Fs(P)-7 b(art)25 b(1)g FB(consists)j(of)d(terms)h (containing)j Fa(L)24 b FB(or)i Fa(L)2329 1640 y Fp(r)2367 1626 y FB(;)g Fs(P)-7 b(art)26 b(2)f FB(consists)i(of)f(terms)g (containing)i Fa(F)34 b FB(or)0 1773 y Fa(F)83 1787 y Fp(r)121 1773 y FB(.)k(The)26 b(three)i(parts)g(of)f(\(4\))g(and)g (\(5\))g(can)g(be)g(interpreted)j(e)o(xactly)e(the)f(same)g(w)o(ay)g (as)g(the)g(three)h(parts)f(of)g(\(3\))g(e)o(xcept)0 1920 y(that)e(\223the)g(\002rst)f(moment\224)i(in)e(\(3\))h(must)f(be)h (replaced)i(by)d(\223the)h(second)i(moment\224)e(and)g(\223the)g(third) g(moment\224)h(in)e(\(4\))h(and)0 2067 y(\(5\),)30 b(respecti)n(v)o (ely)-6 b(.)48 b(The)28 b(three)i(terms)f(in)g Fs(P)-7 b(art)28 b(1)h FB(of)f(\(4\))i(can)f(be)g(interpreted)j(as)c(follo)n (ws.)46 b(Let)28 b Fv(X)35 b FB(be)29 b(the)g(time)g(to)g(the)0 2213 y(\002rst)g(transition)i(and)f(let)f Fv(Y)48 b FB(be)29 b(the)g(time)g(it)g(tak)o(es)h(from)f(le)n(v)o(el)g Fv(`)f FB(to)h(le)n(v)o(el)h Fv(`)24 b Fo(\000)g Fu(1)p FB(.)45 b(Then,)30 b(the)f(second)i(moment)e(of)g(the)0 2360 y(distrib)n(ution)e(of)d(these)g(tw)o(o)f(times)h(is)982 2626 y Fv(E)5 b Fu([\()p Fv(X)28 b Fu(+)20 b Fv(Y)g Fu(\))1416 2588 y Fn(2)1456 2626 y Fu(])26 b(=)f Fv(E)5 b Fu([\()p Fv(X)i Fu(\))1852 2588 y Fn(2)1893 2626 y Fu(])20 b(+)g(2)p Fv(E)5 b Fu([)p Fv(X)i Fu(])p Fv(E)e Fu([)p Fv(Y)23 b Fu(])d(+)g Fv(E)5 b Fu([\()p Fv(Y)21 b Fu(\))2828 2588 y Fn(2)2868 2626 y Fu(])p Fv(;)0 2891 y FB(since)27 b Fv(X)32 b FB(and)26 b Fv(Y)45 b FB(are)26 b(independent.)39 b(Roughly)27 b(speaking,)h Fa(L)1992 2905 y Fn(2)2031 2891 y Fj(G)e FB(corresponds)j(to)c Fv(E)5 b Fu([\()p Fv(X)i Fu(\))2947 2858 y Fn(2)2989 2891 y Fu(])p FB(,)25 b Fu(2)p Fa(L)3179 2905 y Fn(1)3219 2891 y Fj(G)3301 2905 y Fn(1)3365 2891 y FB(corresponds)k(to)0 3038 y Fu(2)p Fv(E)5 b Fu([)p Fv(X)i Fu(])p Fv(E)e Fu([)p Fv(Y)22 b Fu(])p FB(,)h(and)h Fa(L)p Fj(G)800 3052 y Fn(2)862 3038 y FB(corresponds)j(to)d Fv(E)5 b Fu([\()p Fv(Y)20 b Fu(\))1658 3005 y Fn(2)1698 3038 y Fu(])p FB(.)28 b(The)23 b(other)i(terms)f(can)g(be)f(interpreted)k(in)c(the)h(same)g(w)o(ay)-6 b(.)0 3322 y Ft(A.5)99 b(Extension)26 b(to)f(nonr)n(epeating)h(part)0 3530 y FB(F)o(or)d Fv(`)i(<)313 3506 y Fu(^)307 3530 y Fv(`)p FB(,)d Fj(G)472 3497 y Fn(\()p Fp(`)p Fn(\))583 3530 y FB(is)h(calculated)j(recursi)n(v)o(ely)g(as)e(follo)n(ws:)1091 3796 y Fj(G)1173 3758 y Fn(\()p Fp(`)p Fn(\))1344 3796 y Fu(=)83 b Fa(B)1568 3758 y Fn(\()p Fp(`)p Fn(\))1676 3796 y Fu(+)20 b Fa(L)1839 3758 y Fn(\()p Fp(`)p Fn(\))1926 3796 y Fj(G)2008 3758 y Fn(\()p Fp(`)p Fn(\))2117 3796 y Fu(+)g Fa(F)2291 3758 y Fn(\()p Fp(`)p Fn(\))2379 3796 y Fj(G)2461 3758 y Fn(\()p Fp(`)p Fn(+1\))2639 3796 y Fj(G)2721 3758 y Fn(\()p Fp(`)p Fn(\))1344 3967 y Fu(=)1498 3873 y Fi(\020)1547 3967 y Fj(I)g Fo(\000)g Fa(L)1770 3930 y Fn(\()p Fp(`)p Fn(\))1878 3967 y Fo(\000)g Fa(F)2052 3930 y Fn(\()p Fp(`)p Fn(\))2140 3967 y Fj(G)2222 3930 y Fn(\()p Fp(`)p Fn(+1\))2400 3873 y Fi(\021)2450 3896 y FH(\000)p Fn(1)2559 3967 y Fa(B)2629 3930 y Fn(\()p Fp(`)p Fn(\))2717 3967 y Fv(:)0 4233 y FB(The)j(intuition)j(for)e(the)g (abo)o(v)o(e)g(formulation)i(is)d(the)h(same)f(as)h(in)f(the)h(pre)n (vious)i(section.)141 4380 y(F)o(or)d Fv(`)i(<)454 4356 y Fu(^)448 4380 y Fv(`)p FB(,)d Fj(G)613 4332 y Fn(\()p Fp(`)p Fn(\))613 4390 y Fp(r)724 4380 y FB(is)h(calculated)k(recursi)n (v)o(ely:)154 4792 y Fj(G)236 4744 y Fn(\()p Fp(`)p Fn(\))236 4817 y(1)408 4792 y Fu(=)82 b Fa(B)631 4744 y Fn(\()p Fp(`)p Fn(\))631 4817 y(1)739 4792 y Fu(+)20 b Fa(L)902 4744 y Fn(\()p Fp(`)p Fn(\))902 4817 y(1)990 4792 y Fj(G)1072 4754 y Fn(\()p Fp(`)p Fn(\))1180 4792 y Fu(+)g Fa(L)1343 4754 y Fn(\()p Fp(`)p Fn(\))1431 4792 y Fj(G)1513 4744 y Fn(\()p Fp(`)p Fn(\))1513 4817 y(1)1621 4792 y Fu(+)g Fa(F)1795 4744 y Fn(\()p Fp(`)p Fn(\))1795 4817 y(1)1883 4792 y Fj(G)1965 4754 y Fn(\()p Fp(`)p Fn(+1\))2143 4792 y Fj(G)2225 4754 y Fn(\()p Fp(`)p Fn(\))2333 4792 y Fu(+)g Fa(F)2507 4754 y Fn(\()p Fp(`)p Fn(\))2595 4792 y Fj(G)2677 4744 y Fn(\()p Fp(`)p Fn(+1\))2677 4817 y(1)2856 4792 y Fj(G)2938 4754 y Fn(\()p Fp(`)p Fn(\))3046 4792 y Fu(+)g Fa(F)3220 4754 y Fn(\()p Fp(`)p Fn(\))3308 4792 y Fj(G)3390 4754 y Fn(\()p Fp(`)p Fn(+1\))3568 4792 y Fj(G)3650 4744 y Fn(\()p Fp(`)p Fn(\))3650 4817 y(1)408 4964 y Fu(=)561 4870 y Fi(\020)611 4964 y Fj(I)g Fo(\000)g Fa(L)833 4926 y Fn(\()p Fp(`)p Fn(\))941 4964 y Fo(\000)g Fa(F)1116 4926 y Fn(\()p Fp(`)p Fn(\))1203 4964 y Fj(G)1285 4926 y Fn(\()p Fp(`)p Fn(+1\))1464 4870 y Fi(\021)1513 4893 y FH(\000)p Fn(1)1623 4870 y Fi(\020)1672 4964 y Fa(B)1742 4916 y Fn(\()p Fp(`)p Fn(\))1742 4988 y(1)1850 4964 y Fu(+)g Fa(L)2013 4916 y Fn(\()p Fp(`)p Fn(\))2013 4988 y(1)2101 4964 y Fj(G)2183 4926 y Fn(\()p Fp(`)p Fn(\))2291 4964 y Fu(+)g Fa(F)2465 4916 y Fn(\()p Fp(`)p Fn(\))2465 4988 y(1)2553 4964 y Fj(G)2635 4926 y Fn(\()p Fp(`)p Fn(+1\))2813 4964 y Fj(G)2895 4926 y Fn(\()p Fp(`)p Fn(\))3004 4964 y Fu(+)g Fa(F)3178 4926 y Fn(\()p Fp(`)p Fn(\))3266 4964 y Fj(G)3348 4916 y Fn(\()p Fp(`)p Fn(+1\))3348 4988 y(1)3526 4964 y Fj(G)3608 4926 y Fn(\()p Fp(`)p Fn(\))3696 4870 y Fi(\021)1905 5596 y FB(30)p eop end %%Page: 31 31 TeXDict begin 31 30 bop 3 424 a Fj(G)85 376 y Fn(\()p Fp(`)p Fn(\))85 449 y(2)256 424 y Fu(=)83 b Fa(B)480 376 y Fn(\()p Fp(`)p Fn(\))480 449 y(2)588 424 y Fu(+)20 b Fa(L)751 376 y Fn(\()p Fp(`)p Fn(\))751 449 y(2)838 424 y Fj(G)920 386 y Fn(\()p Fp(`)p Fn(\))1029 424 y Fu(+)g(2)p Fa(L)1237 376 y Fn(\()p Fp(`)p Fn(\))1237 449 y(1)1325 424 y Fj(G)1407 376 y Fn(\()p Fp(`)p Fn(\))1407 449 y(1)1515 424 y Fu(+)g Fa(L)1677 386 y Fn(\()p Fp(`)p Fn(\))1765 424 y Fj(G)1847 376 y Fn(\()p Fp(`)p Fn(\))1847 449 y(2)410 596 y Fu(+)p Fa(F)564 548 y Fn(\()p Fp(`)p Fn(\))564 620 y(2)652 596 y Fj(G)734 558 y Fn(\()p Fp(`)p Fn(+1\))912 596 y Fj(G)994 558 y Fn(\()p Fp(`)p Fn(\))1102 596 y Fu(+)g(2)p Fa(F)1322 548 y Fn(\()p Fp(`)p Fn(\))1322 620 y(1)1410 596 y Fu(\()p Fj(G)1527 548 y Fn(\()p Fp(`)p Fn(+1\))1527 620 y(1)1705 596 y Fj(G)1787 558 y Fn(\()p Fp(`)p Fn(\))1896 596 y Fu(+)f Fj(G)2068 558 y Fn(\()p Fp(`)p Fn(+1\))2247 596 y Fj(G)2329 548 y Fn(\()p Fp(`)p Fn(\))2329 620 y(1)2417 596 y Fu(\))410 767 y(+)p Fa(F)564 730 y Fn(\()p Fp(`)p Fn(\))652 767 y Fu(\()p Fj(G)769 719 y Fn(\()p Fp(`)p Fn(+1\))769 792 y(2)947 767 y Fj(G)1029 730 y Fn(\()p Fp(`)p Fn(\))1138 767 y Fu(+)g(2)p Fj(G)1355 719 y Fn(\()p Fp(`)p Fn(+1\))1355 792 y(1)1534 767 y Fj(G)1616 719 y Fn(\()p Fp(`)p Fn(\))1616 792 y(1)1724 767 y Fu(+)h Fj(G)1897 730 y Fn(\()p Fp(`)p Fn(+1\))2076 767 y Fj(G)2158 719 y Fn(\()p Fp(`)p Fn(\))2158 792 y(2)2246 767 y Fu(\))256 939 y(=)410 845 y Fi(\020)459 939 y Fj(I)g Fo(\000)g Fa(L)682 902 y Fn(\()p Fp(`)p Fn(\))790 939 y Fo(\000)g Fa(F)964 902 y Fn(\()p Fp(`)p Fn(\))1052 939 y Fj(G)1134 902 y Fn(\()p Fp(`)p Fn(+1\))1312 845 y Fi(\021)1362 868 y FH(\000)p Fn(1)410 1028 y Fi(\020)459 1122 y Fa(B)530 1074 y Fn(\()p Fp(`)p Fn(\))530 1147 y(2)638 1122 y Fu(+)f Fa(L)800 1074 y Fn(\()p Fp(`)p Fn(\))800 1147 y(2)888 1122 y Fj(G)970 1084 y Fn(\()p Fp(`)p Fn(\))1078 1122 y Fu(+)h(2)p Fa(L)1286 1074 y Fn(\()p Fp(`)p Fn(\))1286 1147 y(1)1374 1122 y Fj(G)1456 1074 y Fn(\()p Fp(`)p Fn(\))1456 1147 y(1)410 1305 y Fu(+)25 b Fa(F)589 1257 y Fn(\()p Fp(`)p Fn(\))589 1330 y(2)677 1305 y Fj(G)759 1267 y Fn(\()p Fp(`)p Fn(+1\))937 1305 y Fj(G)1019 1267 y Fn(\()p Fp(`)p Fn(\))1127 1305 y Fu(+)20 b(2)p Fa(F)1347 1257 y Fn(\()p Fp(`)p Fn(\))1347 1330 y(1)1435 1305 y Fu(\()p Fj(G)1552 1257 y Fn(\()p Fp(`)p Fn(+1\))1552 1330 y(1)1730 1305 y Fj(G)1812 1267 y Fn(\()p Fp(`)p Fn(\))1921 1305 y Fu(+)g Fj(G)2094 1267 y Fn(\()p Fp(`)p Fn(+1\))2272 1305 y Fj(G)2354 1257 y Fn(\()p Fp(`)p Fn(\))2354 1330 y(1)2442 1305 y Fu(\))g(+)g Fa(F)2672 1267 y Fn(\()p Fp(`)p Fn(\))2759 1305 y Fu(\()p Fj(G)2876 1257 y Fn(\()p Fp(`)p Fn(+1\))2876 1330 y(2)3055 1305 y Fj(G)3137 1267 y Fn(\()p Fp(`)p Fn(\))3245 1305 y Fu(+)g(2)p Fj(G)3463 1257 y Fn(\()p Fp(`)p Fn(+1\))3463 1330 y(1)3642 1305 y Fj(G)3724 1257 y Fn(\()p Fp(`)p Fn(\))3724 1330 y(1)3812 1305 y Fu(\))3847 1211 y Fi(\021)103 1836 y Fj(G)185 1788 y Fn(\()p Fp(`)p Fn(\))185 1861 y(3)356 1836 y Fu(=)83 b Fa(B)580 1788 y Fn(\()p Fp(`)p Fn(\))580 1861 y(3)688 1836 y Fu(+)20 b Fa(L)851 1788 y Fn(\()p Fp(`)p Fn(\))851 1861 y(3)939 1836 y Fj(G)1021 1798 y Fn(\()p Fp(`)p Fn(\))1129 1836 y Fu(+)g(3)p Fa(L)1337 1788 y Fn(\()p Fp(`)p Fn(\))1337 1861 y(2)1425 1836 y Fj(G)1507 1788 y Fn(\()p Fp(`)p Fn(\))1507 1861 y(1)1615 1836 y Fu(+)g(3)p Fa(L)1823 1788 y Fn(\()p Fp(`)p Fn(\))1823 1861 y(1)1911 1836 y Fj(G)1993 1788 y Fn(\()p Fp(`)p Fn(\))1993 1861 y(2)2101 1836 y Fu(+)g Fa(L)2264 1798 y Fn(\()p Fp(`)p Fn(\))2352 1836 y Fj(G)2434 1788 y Fn(\()p Fp(`)p Fn(\))2434 1861 y(3)2542 1836 y Fu(+)g Fa(F)2716 1788 y Fn(\()p Fp(`)p Fn(\))2716 1861 y(3)2804 1836 y Fj(G)2886 1798 y Fn(\()p Fp(`)p Fn(+1\))3064 1836 y Fj(G)3146 1798 y Fn(\()p Fp(`)p Fn(\))510 2008 y Fu(+3)p Fa(F)709 1960 y Fn(\()p Fp(`)p Fn(\))709 2032 y(2)797 2008 y Fu(\()p Fj(G)914 1960 y Fn(\()p Fp(`)p Fn(+1\))914 2032 y(1)1093 2008 y Fj(G)1175 1970 y Fn(\()p Fp(`)p Fn(\))1283 2008 y Fu(+)g Fj(G)1456 1970 y Fn(\()p Fp(`)p Fn(+1\))1634 2008 y Fj(G)1716 1960 y Fn(\()p Fp(`)p Fn(\))1716 2032 y(1)1804 2008 y Fu(\))h(+)f(3)p Fa(F)2080 1960 y Fn(\()p Fp(`)p Fn(\))2080 2032 y(1)2167 2008 y Fu(\()p Fj(G)2284 1960 y Fn(\()p Fp(`)p Fn(+1\))2284 2032 y(2)2463 2008 y Fj(G)2545 1970 y Fn(\()p Fp(`)p Fn(\))2653 2008 y Fu(+)g(2)p Fj(G)2871 1960 y Fn(\()p Fp(`)p Fn(+1\))2871 2032 y(1)3050 2008 y Fj(G)3132 1960 y Fn(\()p Fp(`)p Fn(\))3132 2032 y(1)3240 2008 y Fu(+)g Fj(G)3413 1970 y Fn(\()p Fp(`)p Fn(+1\))3591 2008 y Fj(G)3673 1960 y Fn(\()p Fp(`)p Fn(\))3673 2032 y(2)3761 2008 y Fu(\))510 2179 y(+)p Fa(F)664 2142 y Fn(\()p Fp(`)p Fn(\))752 2179 y Fu(\()p Fj(G)869 2131 y Fn(\()p Fp(`)p Fn(+1\))869 2204 y(3)1047 2179 y Fj(G)1129 2142 y Fn(\()p Fp(`)p Fn(\))1238 2179 y Fu(+)g(3)p Fj(G)1456 2131 y Fn(\()p Fp(`)p Fn(+1\))1456 2204 y(2)1634 2179 y Fj(G)1716 2131 y Fn(\()p Fp(`)p Fn(\))1716 2204 y(1)1825 2179 y Fu(+)g(3)p Fj(G)2043 2131 y Fn(\()p Fp(`)p Fn(+1\))2043 2204 y(1)2221 2179 y Fj(G)2303 2131 y Fn(\()p Fp(`)p Fn(\))2303 2204 y(2)2411 2179 y Fu(+)g Fj(G)2584 2142 y Fn(\()p Fp(`)p Fn(+1\))2763 2179 y Fj(G)2845 2131 y Fn(\()p Fp(`)p Fn(\))2845 2204 y(3)2933 2179 y Fu(\))p Fv(:)356 2351 y Fu(=)510 2257 y Fi(\020)560 2351 y Fj(I)g Fo(\000)f Fa(L)782 2313 y Fn(\()p Fp(`)p Fn(\))890 2351 y Fo(\000)h Fa(F)1064 2313 y Fn(\()p Fp(`)p Fn(\))1152 2351 y Fj(G)1234 2313 y Fn(\()p Fp(`)p Fn(+1\))1412 2257 y Fi(\021)1462 2280 y FH(\000)p Fn(1)510 2440 y Fi(\020)560 2534 y Fa(B)630 2486 y Fn(\()p Fp(`)p Fn(\))630 2559 y(3)738 2534 y Fu(+)g Fa(L)900 2486 y Fn(\()p Fp(`)p Fn(\))900 2559 y(3)988 2534 y Fj(G)1070 2496 y Fn(\()p Fp(`)p Fn(\))1178 2534 y Fu(+)g(3)p Fa(L)1386 2486 y Fn(\()p Fp(`)p Fn(\))1386 2559 y(2)1474 2534 y Fj(G)1556 2486 y Fn(\()p Fp(`)p Fn(\))1556 2559 y(1)1665 2534 y Fu(+)g(3)p Fa(L)1873 2486 y Fn(\()p Fp(`)p Fn(\))1873 2559 y(1)1960 2534 y Fj(G)2042 2486 y Fn(\()p Fp(`)p Fn(\))2042 2559 y(2)2161 2534 y Fu(+)g Fa(F)2335 2486 y Fn(\()p Fp(`)p Fn(\))2335 2559 y(3)2423 2534 y Fj(G)2505 2496 y Fn(\()p Fp(`)p Fn(+1\))2683 2534 y Fj(G)2765 2496 y Fn(\()p Fp(`)p Fn(\))510 2717 y Fu(+3)p Fa(F)709 2669 y Fn(\()p Fp(`)p Fn(\))709 2742 y(2)797 2717 y Fu(\()p Fj(G)914 2669 y Fn(\()p Fp(`)p Fn(+1\))914 2742 y(1)1093 2717 y Fj(G)1175 2679 y Fn(\()p Fp(`)p Fn(\))1283 2717 y Fu(+)g Fj(G)1456 2679 y Fn(\()p Fp(`)p Fn(+1\))1634 2717 y Fj(G)1716 2669 y Fn(\()p Fp(`)p Fn(\))1716 2742 y(1)1804 2717 y Fu(\))h(+)f(3)p Fa(F)2080 2669 y Fn(\()p Fp(`)p Fn(\))2080 2742 y(1)2167 2717 y Fu(\()p Fj(G)2284 2669 y Fn(\()p Fp(`)p Fn(+1\))2284 2742 y(2)2463 2717 y Fj(G)2545 2679 y Fn(\()p Fp(`)p Fn(\))2653 2717 y Fu(+)g(2)p Fj(G)2871 2669 y Fn(\()p Fp(`)p Fn(+1\))2871 2742 y(1)3050 2717 y Fj(G)3132 2669 y Fn(\()p Fp(`)p Fn(\))3132 2742 y(1)3240 2717 y Fu(+)g Fj(G)3413 2679 y Fn(\()p Fp(`)p Fn(+1\))3591 2717 y Fj(G)3673 2669 y Fn(\()p Fp(`)p Fn(\))3673 2742 y(2)3761 2717 y Fu(\))520 2889 y(+)p Fa(F)674 2851 y Fn(\()p Fp(`)p Fn(\))762 2889 y Fu(\()p Fj(G)879 2841 y Fn(\()p Fp(`)p Fn(+1\))879 2913 y(3)1057 2889 y Fj(G)1139 2851 y Fn(\()p Fp(`)p Fn(\))1248 2889 y Fu(+)g(3)p Fj(G)1466 2841 y Fn(\()p Fp(`)p Fn(+1\))1466 2913 y(2)1644 2889 y Fj(G)1726 2841 y Fn(\()p Fp(`)p Fn(\))1726 2913 y(1)1835 2889 y Fu(+)f(3)p Fj(G)2052 2841 y Fn(\()p Fp(`)p Fn(+1\))2052 2913 y(1)2231 2889 y Fj(G)2313 2841 y Fn(\()p Fp(`)p Fn(\))2313 2913 y(2)2401 2889 y Fu(\))2436 2794 y Fi(\021)2501 2889 y Fv(:)0 3173 y Ft(A.6)99 b(Generalization)25 b(allo)o(wed)0 3381 y FB(Finally)-6 b(,)30 b(we)e(mention)h(some)g(generalizations)k (that)c(Neuts')g(algorithm)h(allo)n(ws.)43 b(\(1\))29 b(W)-7 b(e)27 b(restricted)k(ourselv)o(es)g(to)d(the)0 3528 y(\002rst)20 b(three)h(moments,)g(b)n(ut)f(this)h(approach)h(can)f (be)f(generalized)j(to)d(an)o(y)g(higher)i(moments.)28 b(\(2\))20 b(W)-7 b(e)19 b(restricted)k(ourselv)o(es)0 3674 y(to)f(the)g(\002rst)g(passage)h(time)f(from)g(le)n(v)o(el)g Fv(`)f FB(to)h(le)n(v)o(el)g Fv(`)14 b Fo(\000)g Fu(1)p FB(,)21 b(b)n(ut)i(this)f(can)h(be)f(generalized)j(to)c(the)i(passage)g (time)f(from)g(le)n(v)o(el)0 3821 y Fv(`)28 b FB(to)h(le)n(v)o(el)g Fv(`)24 b Fo(\000)g Fv(i)p FB(.)44 b(\(3\))29 b(W)-7 b(e)28 b(restricted)j(ourselv)o(es)g(to)e(QBD)e(processes,)32 b(b)n(ut)e(this)f(can)g(be)g(generalized)j(to)d(M/G/1)f(type)0 3968 y(semi-Mark)o(o)o(v)j(processes.)50 b(\(4\))30 b(W)-7 b(e)29 b(restricted)j(ourselv)o(es)g(to)e(the)g(moments)g(of)f(the)h (distrib)n(ution)k(of)29 b(the)h(duration)i(of)0 4115 y(b)n(usy)c(periods,)i(b)n(ut)e(this)f(can)h(be)f(generalized)j(to)d (the)h(moments)f(of)g(the)h(joint)g(distrib)n(ution)j(of)c(the)g (duration)i(of)e(a)g(b)n(usy)0 4261 y(period)e(and)f(the)g(number)g(of) g(transitions)i(during)f(the)f(b)n(usy)h(period.)1905 5596 y(31)p eop end %%Trailer userdict /end-hook known{end-hook}if %%EOF