(original) (raw)

### R code from vignette source 'RT-PCR-Script-ddCt.Rnw' ################################################### ### code chunk number 1: setup ################################################### options(width=50) ################################################### ### code chunk number 2: ddCtInstall (eval = FALSE) ################################################### ## if (!requireNamespace("BiocManager", quietly=TRUE)) ## install.packages("BiocManager") ## BiocManager::install(ddCt) ################################################### ### code chunk number 3: specifyFiles ################################################### load.path = "." save.path = "." ################################################### ### code chunk number 4: The Data ################################################### Ct.data.file.name <- c("") sample.annotation.file.name <- NULL column.for.grouping <- NULL useOnlySamplesFromAnno <- FALSE ################################################### ### code chunk number 5: transform ################################################### #new.gene.names <- c("Gen1"="Gene A", # "Gen4"="Gene B", # "Gen5"="Gene C", # "Gen2"="HK1", # "Gen3"="HK2") new.gene.names <- NULL new.sample.names <- NULL ################################################### ### code chunk number 6: housekeeping ################################################### name.referenz.sample <- c("Sample2") name.referenz.gene <- c("Gene3") ################################################### ### code chunk number 7: threshold ################################################### Threshold.for.Ct <- 40 ################################################### ### code chunk number 8: mean/median ################################################### TYPEOFCALCULATION <- "mean" ################################################### ### code chunk number 9: eff (eval = FALSE) ################################################### ## EFFICIENCIES <- c("Gene A"=1.9,"Gene B"=1.8,"HK1"=2,"Gene C"=2,"HK2"=2) ## EFFICIENCIES.ERROR <- c("Gene A"=0.01,"Gene B"=0.1,"HK1"=0.05,"Gene C"=0.01,"HK2"=0.2) ################################################### ### code chunk number 10: effizienzen ################################################### EFFICIENCIES <- NULL ################################################### ### code chunk number 11: eff.error ################################################### EFFICIENCIES.ERROR <- NULL ################################################### ### code chunk number 12: PlotKind ################################################### TheKindOfPlot <- c("level","Ct") ################################################### ### code chunk number 13: remaining ################################################### #REMAIN names.of.the.genes.REMAIN.in.Output <- NULL names.of.the.samples.REMAIN.in.Output <- NULL #NOT names.of.the.genes.NOT.in.Output <- NULL names.of.the.samples.NOT.in.Output <- NULL ################################################### ### code chunk number 14: grouping ################################################### GROUPINGBYSAMPLES <- TRUE ################################################### ### code chunk number 15: plot0 ################################################### own.plot.for.each.object <- TRUE ################################################### ### code chunk number 16: plot1 ################################################### GroupingForPlot <- NULL GroupingColor <- c("#E41A1C","#377EB8","#4DAF4A","#984EA3","#FF7F00") ################################################### ### code chunk number 17: plot2 ################################################### CUTOFF <- NULL ################################################### ### code chunk number 18: plot3 ################################################### BREWERCOL <- c("Set3","Set1","Accent","Dark2","Spectral","PuOr","BrBG") ################################################### ### code chunk number 19: plot4 ################################################### LEGENDE <- TRUE ################################################### ### code chunk number 20: ttest1 ################################################### perform.ttest <- FALSE ################################################### ### code chunk number 21: ttest ################################################### column.for.ttest <- NULL ################################################### ### code chunk number 22: ttest3 ################################################### column.for.pairs <- NULL ## ansonsten NULL ################################################### ### code chunk number 23: ttest4 ################################################### names.of.the.samples.REMAIN.in.ttest <- names.of.the.samples.REMAIN.in.Output names.of.the.samples.NOT.in.ttest <- names.of.the.samples.NOT.in.Output ################################################### ### code chunk number 24: RT-PCR-Script-ddCt.Rnw:382-384 ################################################### names.of.the.samples.REMAIN.in.cor <- names.of.the.samples.REMAIN.in.Output names.of.the.samples.NOT.in.cor <- names.of.the.samples.NOT.in.Output ################################################### ### code chunk number 25: lib ################################################### library(Biobase) library(lattice) library(RColorBrewer) library(ddCt) ################################################### ### code chunk number 26: runastest ################################################### ## in case key parameters were not specified, the script runs in test mode testMode <- FALSE if (length(Ct.data.file.name) == 1 & Ct.data.file.name[1]=="") testMode <- TRUE if(testMode) { Ct.data.file.name <- "Experiment1.txt" load.path <- system.file("extdata", package="ddCt") name.referenz.sample <- c("Sample2") name.referenz.gene <- c("Gene3","Gene2") } ################################################### ### code chunk number 27: readData ################################################### datadir <- function(x) file.path(load.path, x) savedir <- function(x) file.path(save.path,x) file.names <- datadir(Ct.data.file.name) sho <- paste(gsub(".txt","",Ct.data.file.name),collapse="_") warningFile <- savedir(paste("warning.output",sho,".txt",sep="")) CtData <- SDMFrame(file.names) if (!is.null(Threshold.for.Ct)){ A <- Ct(CtData)>= Threshold.for.Ct coreData(CtData)$Ct[A] <- NA } if (! is.null(new.gene.names)) CtData[,2] <- new.gene.names[CtData[,2]] if (! is.null(new.sample.names)) CtData[,1] <- new.sample.names[CtData[,1]] if(! is.null(sample.annotation.file.name)){ info <- datadir(sample.annotation.file.name) sampleInformation <- read.AnnotatedDataFrame(info,header=TRUE,sep="\t", row.names=NULL) }else{ sampleInformation <- new("AnnotatedDataFrame", data=data.frame(Sample=sampleNames(CtData)), varMetadata=data.frame(labelDescription=c("unique identifier"),row.names=c("Sample"))) } if(useOnlySamplesFromAnno && !is.null(sample.annotation.file.name)){ A <- CtData[,"Sample"] %in% pData(sampleInformation)[,"Sample"] warning( paste("Es werden folgende Samples entfernt:",paste(unique(CtData[!A,"Sample"]),collapse=", "))) CtData <- CtData[A,] } if (is.null(EFFICIENCIES)){ result <- ddCtExpression(CtData, calibrationSample=name.referenz.sample, housekeepingGenes=name.referenz.gene, type=TYPEOFCALCULATION, sampleInformation=sampleInformation, warningStream=warningFile) } else{ result <- ddCtwithE(CtData, calibrationSample=name.referenz.sample, housekeepingGenes=name.referenz.gene, efficiencies=EFFICIENCIES, efficiencies.error=EFFICIENCIES.ERROR, type=TYPEOFCALCULATION, sampleInformation=sampleInformation, warningStream=warningFile) } save(result,file=savedir(paste("Result",sho,".RData",sep=""))) ################################################### ### code chunk number 28: write (HTML)Tables ################################################### htmlName <- paste("HTML",sho,sep="_") tablesName <- paste("Tables",sho,sep="_") getDir <- function(dir, ...) { if(!file.exists(dir)) { dir.create(dir,...) } return(dir) } html.path <- getDir(file.path(save.path,htmlName)) table.path <- getDir(file.path(save.path, tablesName)) if(!is.null(sample.annotation.file.name) & !is.null(column.for.grouping)) {result<- result[,order(pData(result)[,column.for.grouping])]} elistWrite(result,file=savedir(paste("allValues",sho,".csv",sep=""))) EE1 <- assayData(result)$exprs FF1 <- assayData(result)$level.err if(!is.null(GroupingForPlot)) GFP1 <- pData(result)[,GroupingForPlot] Ct <- round(assayData(result)$Ct,2) lv <- round(EE1,2) write.table(cbind(t(EE1),t(FF1)),file=file.path(table.path,"LevelPlusError.txt"),sep="\t",col.names=NA) write.table(lv,file=file.path(table.path,"level_matrix.txt"),sep = "\t", col.names = NA) write.table(Ct,file=file.path(table.path,"Ct_matrix.txt"),sep="\t", col.names = NA) write.htmltable(cbind(rownames(lv),lv),title="Level",file=file.path(html.path,"level")) write.htmltable(cbind(rownames(Ct),Ct),title="Ct",file=file.path(html.path,"Ct")) if(is.null(EFFICIENCIES)){ dCtValues <- round(assayData(result)$dCt,2) ddCtValues <- round(assayData(result)$ddCt,2) write.table(dCtValues,file=file.path(table.path,"dCt_matrix.txt"), sep="\t", col.names=NA) write.table(ddCtValues,file=file.path(table.path,"ddCt_matrix.txt"),sep="\t",col.names=NA) write.htmltable(cbind(rownames(dCtValues),dCtValues) ,title="dCt",file=file.path(html.path,"dCt")) write.htmltable(cbind(rownames(ddCtValues),ddCtValues),title="ddCt",file=file.path(html.path,"ddCt")) } ################################################### ### code chunk number 29: plot Level ################################################### for(KindOfPlot in TheKindOfPlot){ if(KindOfPlot=="level"){ EE1 <- assayData(result)$exprs FF1 <- assayData(result)$level.err theTitle <- "Level" } if(KindOfPlot=="ddCt"){ EE1 <- assayData(result)$ddCt FF1 <- assayData(result)$ddCt.err theTitle <- "ddCt" } if(KindOfPlot=="dCt"){ EE1 <- assayData(result)$dCt FF1 <- assayData(result)$dCt.err theTitle <- "dCt" } if(KindOfPlot=="Ct"){ EE1 <- assayData(result)$Ct FF1 <- assayData(result)$Ct.err theTitle <- "Ct" } ################ ## order the set ################ if (!is.null(new.gene.names)) {EE2 <- EE1[match(new.gene.names,rownames(EE1)),,drop=FALSE] FF2 <- FF1[match(new.gene.names,rownames(EE1)),,drop=FALSE] } else{ EE2 <- EE1 FF2 <- FF1 } if (!is.null(new.sample.names)) {EE <- EE2[,match(new.sample.names,colnames(EE2)),drop=FALSE] FF <- FF2[,match(new.sample.names,colnames(EE2)),drop=FALSE] if(!is.null(GroupingForPlot)) GFP<- GFP1[match(new.sample.names,colnames(EE2))] } else{ EE <- EE2 FF <- FF2 if(!is.null(GroupingForPlot)) GFP<- GFP1 } ################### ## Reducing the set ################### if (!is.null(names.of.the.genes.REMAIN.in.Output)){ Gred <- (rownames(EE) %in% names.of.the.genes.REMAIN.in.Output) }else{ Gred <- !(rownames(EE) %in% names.of.the.genes.NOT.in.Output) } if (!is.null(names.of.the.samples.REMAIN.in.Output)){ Sred <- (colnames(EE) %in% names.of.the.samples.REMAIN.in.Output) }else{ Sred <- !(colnames(EE) %in% names.of.the.samples.NOT.in.Output) } EEN <- EE[Gred,Sred,drop=FALSE] FFN <- FF[Gred,Sred,drop=FALSE] if(!is.null(GroupingForPlot)) GFPN <- as.factor(as.character(GFP[Sred])) ############ # the color ############ COLORS <- c() for (i in 1:length(BREWERCOL)) COLORS <- c(COLORS,brewer.pal(brewer.pal.info[BREWERCOL[i],]$maxcolors,BREWERCOL[i])) if(GROUPINGBYSAMPLES){ THECO <- COLORS[1:sum(Sred)] } else { THECO <- COLORS[1:sum(Gred)] } ########## # plotting ########## getFileName <- function(prefix="Ct", name) { sprintf("%s_Result_%s.pdf", prefix, sho) } if(own.plot.for.each.object){ pdf(w=15,h=15,file=savedir(paste(theTitle,"Result",sho,".pdf",sep=""))) if(GROUPINGBYSAMPLES){ for(k in 1:dim(EEN)[1]){ EENN <- EEN[k,,drop=FALSE] FFNN <- FFN[k,,drop=FALSE] barploterrbar(EENN,EENN-FFNN,EENN+FFNN,barcol=THECO,legend=LEGENDE,columnForDiffBars=GROUPINGBYSAMPLES,theCut=CUTOFF,ylab=theTitle) }}else{ for(k in 1:dim(EEN)[2]){ EENN <- EEN[,k,drop=FALSE] FFNN <- FFN[,k,drop=FALSE] barploterrbar(EENN,EENN-FFNN,EENN+FFNN,barcol=THECO,legend=LEGENDE,columnForDiffBars=GROUPINGBYSAMPLES,theCut=CUTOFF,ylab=theTitle) }} if(GROUPINGBYSAMPLES & !is.null(GroupingForPlot)){ for(k in 1:dim(EEN)[1]){ EENN <- EEN[k,,drop=FALSE] FFNN <- FFN[k,,drop=FALSE] barploterrbar(EENN,EENN-FFNN,EENN+FFNN,barcol=GroupingColor,legend=LEGENDE,columnForDiffBars=GROUPINGBYSAMPLES,theCut=CUTOFF,ylab=theTitle,las=2,names.arg=colnames(EENN),main=rownames(EENN),groups=GFPN) }} dev.off() }else{ barploterrbar(EEN,EEN-FFN,EEN+FFN,barcol=THECO,legend=LEGENDE,las=2,columnForDiffBars=GROUPINGBYSAMPLES,theCut=CUTOFF,ylab=theTitle) dev.copy(pdf,w=15,h=15,file=savedir(paste(theTitle,"Result",sho,".pdf",sep=""))) dev.off()} } result.bySample <- errBarchart(result) print(result.bySample) pdf(getFileName("errbarplot_bySample_", sho), width=15, height=15) print(result.bySample) dev.off() result.byDetector <- errBarchart(result, by="Detector") print(result.byDetector) pdf(getFileName("errbarplot_byDetector_", sho), width=15, height=15) print(result.byDetector) dev.off() ################################################### ### code chunk number 30: Korrelation ################################################### A <- name.referenz.gene if (length(A) > 1) { if (!is.null(names.of.the.samples.REMAIN.in.cor)){ corRed <- (rownames(pData(result)) %in% names.of.the.samples.REMAIN.in.cor) }else{ corRed <- !(rownames(pData(result)) %in% names.of.the.samples.NOT.in.cor) } result2 <- assayData(result[,corRed])$Ct K <- combn(1:length(A),2) U <- ncol(K) par(mfrow=c(ceiling(sqrt(U)),ceiling(sqrt(U)))) for (i in 1:U){ Gen1 <- A[K[1,i]] # der Name des ersten Housekeepinggenes Gen2 <- A[K[2,i]] # der Name des zweiten Housekeepinggenes BART <- cor(result2[Gen1,],result2[Gen2,],use="pairwise.complete.obs") if(!is.na(BART)) { plot(result2[Gen1,],result2[Gen2,],xlab=Gen1,ylab=Gen2,pch="*",col="red", main=paste("Correlation:",round(BART,3))) } else { gen1.allna <- all(is.na(result2[Gen1,])) warn <- sprintf("Correlation does not exist, since %s in all Samples are 'Undetermined'\n",ifelse(gen1.allna, Gen1, Gen2)) plot.new() text(0.5,0.5, warn) } }} else{ if (!is.null(names.of.the.samples.REMAIN.in.cor)){ corRed <- (rownames(pData(result)) %in% names.of.the.samples.REMAIN.in.cor) }else{ corRed <- !(rownames(pData(result)) %in% names.of.the.samples.NOT.in.cor) } result2 <- assayData(result[,corRed])$Ct plot(result2[A,],pch="*",col="red", main="Expression HK Gene") } ################################################### ### code chunk number 31: TTest ################################################### myFoldChange <- function(x){ x <- as.numeric(x) if(length(x) == 2 ){ resu <- 2^(x[1]-x[2]) }else if( length(x) == 1 ){ resu <- 2^x }else{ stop("unexpected situation in myFoldChange") } return(resu) } if(perform.ttest){ ttestName <- paste("tTests",sho,sep="_") ttest.path <- getDir(file.path(save.path, ttestName)) if (!is.null(names.of.the.samples.REMAIN.in.ttest)){ ttestRed <- (rownames(pData(result)) %in% names.of.the.samples.REMAIN.in.ttest) }else{ ttestRed <- !(rownames(pData(result)) %in% names.of.the.samples.NOT.in.ttest) } result3 <- result[,ttestRed] daten <- assayData(result3)$dCt # der t-Test wird immer mit den normalisierten Werten gemacht if( ! column.for.ttest %in% colnames(pData(result3)) ) stop(paste(" did not find :", column.for.ttest,": in pData ",sep="")) faktor <- as.character(pData(result3)[,column.for.ttest]) mmm <- nlevels(as.factor(faktor)) if( mmm == 1 ){ stop( " found only a single group for t-test ") }else if( mmm == 2 ){ aa <- matrix(c(1,2), ncol=1) # aa = die paarweisen Vergleiche }else{ aa <- combn(1:mmm,2) } for (k in 1:ncol(aa)){ Groups <- levels(as.factor(faktor))[aa[,k]] subs <- faktor %in% Groups datenS <- daten[,subs] faktorS <- as.factor(faktor[subs]) # hier wird gewaerleistet dass der neue Faktor genau zwei Elemente hat if( ! is.null(column.for.pairs) ){ if( ! column.for.pairs %in% colnames(pData(result)) ) stop(paste(" did not find :", column.for.pairs,": in pData ",sep="")) paarungS <- as.character(pData(result3)[,column.for.pairs]) paarungS <- paarungS[subs] wenigerRes <- 1 optTest <- "paired " }else{ wenigerRes <- 0 optTest <- "" } res <- matrix(NA,nrow=nrow(datenS),ncol=8-wenigerRes) res2 <- matrix(NA,nrow=nrow(datenS),ncol=2-wenigerRes) for (i in 1:nrow(datenS)){ a <- datenS[i,] b <- is.na(a) cc <- a[!b] d <- faktorS[!b] if( ! is.null(column.for.pairs) ){ paar <- as.character(paarungS[!b]) ## restrict to valid pair data only validPaarItems <- paar[duplicated(paar)] valid <- which( as.character(paar) %in% validPaarItems ) paar <- paar[valid] cc <- cc[valid] d <- d[valid] if(all(table(d) >1)) { sel1 <- which(as.character(d) == Groups[1]) sel2 <- which(as.character(d) == Groups[2]) stopifnot( all( paar[sel1][order(paar[sel1])] ==paar[sel2][order(paar[sel2])] ) ) group1 <- cc[sel1][order(paar[sel1])] group2 <- cc[sel2][order(paar[sel2])] ff <- t.test(x=group1, y=group2, paired=TRUE) ff2<- wilcox.test(x=group1, y=group2, paired=TRUE) }else{ ff <- NULL ff2 <- NULL } }else{ if(all(table(d)>1)) { ff <- t.test(cc~d) ff2<- wilcox.test(cc~d) }else{ ff <- NULL ff2 <- NULL } } if( !is.null(ff) ){ res[i,] <-c(signif(ff$statistic), signif(ff$p.value), ff2$statistic, signif(ff2$p.value), myFoldChange(ff$estimate), ff$parameter["df"], ff$estimate) ## 2 Stueck oder 1 Stueck (paired) res2[i,] <-c(names(ff$estimate)) ## 2 Stueck oder 1 Stueck (paired) } } AllGe <- rownames(assayData(result)$exprs) theHKGenes <- rep("",length(AllGe)) theHKGenes[AllGe %in% name.referenz.gene] <- "X" gg <- cbind(AllGe,theHKGenes,res) myColnames <- c("Name", "Housekeeping Gene", paste("statistic(", optTest,"t.test)", sep=""), paste("pvalue(", optTest,"t.test)", sep=""), paste("statistic(", optTest,"Wilcox)", sep=""), paste("pvalue(", optTest,"Wilcox)", sep=""), "foldChange", "degreeOfFreedom" ) if( ! is.null(column.for.pairs) ){ Mr1 <- res2[,1] extraName <- unique(Mr1[!is.na(Mr1)]) if( length(extraName) < 1 ){ extraName <- "fehlenUnklar" } myColnames <- c(myColnames, extraName) }else{ Mr1 <- res2[,1] Mr2 <- res2[,2] stopifnot(length(unique(Mr1[!is.na(Mr1)]))==1 & length(unique(Mr2[!is.na(Mr2)]))==1 ) myColnames <- c(myColnames, unique(Mr1[!is.na(Mr1)]), unique(Mr2[!is.na(Mr2)]) ) } colnames(gg) <- myColnames pVSpalte <- paste("pvalue(", optTest,"t.test)", sep="") gg <-gg[order(as.numeric(gg[,pVSpalte])),] SAVED <- paste("ttest",Groups[1],Groups[2],sep="") write.table(gg,file=file.path(ttest.path, paste(SAVED,"txt",sep=".")),sep="\t",row.names=FALSE) write.htmltable(gg,file=file.path(ttest.path,SAVED)) } } ################################################### ### code chunk number 32: BoxplotsHousekkepingGenes ################################################### if(perform.ttest){ if (!is.null(names.of.the.samples.REMAIN.in.ttest)){ ttestRed <- (rownames(pData(result)) %in% names.of.the.samples.REMAIN.in.ttest) }else{ ttestRed <- !(rownames(pData(result)) %in% names.of.the.samples.NOT.in.ttest) } result3 <- result[,ttestRed] daten <- assayData(result3)$Ct # es geht ja hier um die Expressionen der # Housekeeping Gene vor Normalisierung faktor <- as.character(pData(result3)[,column.for.ttest]) mmm <- levels(as.factor((faktor))) N <- length(mmm) daten2 <- daten[name.referenz.gene,,drop=FALSE] BoxPl <- list() for (i in 1:N){ BoxPl[[i]] <- t(daten2[,mmm[i]==faktor]) } res <- list() for(i in 1:length(name.referenz.gene)){ A <- lapply(BoxPl, function(x) x[,i]) names(A) <- rep(name.referenz.gene[i], N) res <- c(res,A) } theColor <- 2 + (1:N) pdf(file=savedir(paste("HKGenesPerGroup_",sho,".pdf",sep="")),w=15,h=15) boxplot(res,col=theColor,main="Ct expression of housekeeping genes per group") dev.off() } ################################################### ### code chunk number 33: hh ################################################### if(file.exists(warningFile)){ bart <- unlist(read.delim(warningFile,as.is=TRUE,header=FALSE)) fehler <- sapply(bart, function(y) gsub("simpleWarning in withCallingHandlers\\(\\{: ","",y)) } ################################################### ### code chunk number 34: fehler ################################################### if(file.exists(warningFile)) fehler ################################################### ### code chunk number 35: session ################################################### toLatex(sessionInfo())