(original) (raw)

## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set( echo = TRUE, warning = FALSE, message = FALSE, error = FALSE, tidy = FALSE, dev = c("png"), cache = TRUE ) ## ----preprocess.data---------------------------------------------------------- library(dreamlet) library(muscat) library(ExperimentHub) library(scater) # Download data, specifying EH2259 for the Kang, et al study eh <- ExperimentHub() sce <- eh[["EH2259"]] # only keep singlet cells with sufficient reads sce <- sce[rowSums(counts(sce) > 0) > 0, ] sce <- sce[, colData(sce)$multiplets == "singlet"] # compute QC metrics qc <- perCellQCMetrics(sce) # remove cells with few or many detected genes ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE) sce <- sce[, !ol] # set variable indicating stimulated (stim) or control (ctrl) sce$StimStatus <- sce$stim ## ----variable----------------------------------------------------------------- sce$value1 <- rnorm(ncol(sce)) sce$value2 <- rnorm(ncol(sce)) ## ----aggregate---------------------------------------------------------------- sce$id <- paste0(sce$StimStatus, sce$ind) # Create pseudobulk pb <- aggregateToPseudoBulk(sce, assay = "counts", cluster_id = "cell", sample_id = "id", verbose = FALSE ) ## ----aggr_means--------------------------------------------------------------- metadata(pb)$aggr_means ## ----processAssays, fig.height=8---------------------------------------------- form <- ~ StimStatus + value1 + value2 # Normalize and apply voom/voomWithDreamWeights res.proc <- processAssays(pb, form, min.count = 5) # run variance partitioning analysis vp.lst <- fitVarPart(res.proc, form) # Summarize variance fractions genome-wide for each cell type plotVarPart(vp.lst, label.angle = 60) # Differential expression analysis within each assay res.dl <- dreamlet(res.proc, form) # dreamlet results include coefficients for value1 and value2 res.dl ## ----session, echo=FALSE------------------------------------------------------ sessionInfo()