(original) (raw)
## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", crop = NULL ) ## ----warning=FALSE, message=FALSE--------------------------------------------- library("scp") library("scpdata") leduc <- leduc2022() ## ----------------------------------------------------------------------------- leduc <- leduc[, , 1:30] leduc <- selectRowData(leduc, c( "Sequence", "Leading.razor.protein", "Reverse", "Potential.contaminant", "PEP" )) ## ----message=FALSE------------------------------------------------------------ ## 1. leduc <- filterFeatures(leduc, ~ Reverse != "+" & Potential.contaminant != "+" & PEP < 0.01) ## 2. leduc <- zeroIsNA(leduc, i = names(leduc)) ## 3. leduc <- subsetByColData( leduc, leduc$SampleType %in% c("Monocyte", "Melanoma") ) ## 4. leduc <- filterNA(leduc, i = names(leduc), pNA = 0.9999) leduc <- dropEmptyAssays(leduc) ## 5. leduc <- aggregateFeatures( leduc, i = names(leduc), name = paste0("peptides_", names(leduc)), fcol = "Sequence", fun = colMedians ) ## 6. leduc <- joinAssays( leduc, i = grep("^peptides_", names(leduc)), name = "peptides" ) ## ----------------------------------------------------------------------------- reportMissingValues(leduc, "peptides", by = leduc$SampleType) ## ----------------------------------------------------------------------------- ji <- jaccardIndex(leduc, "peptides", by = leduc$SampleType) ## ----------------------------------------------------------------------------- library("ggplot2") ggplot(ji) + aes(x = jaccard) + geom_histogram() + facet_grid(~ by) ## ----------------------------------------------------------------------------- csc <- cumulativeSensitivityCurve(leduc, "peptides", by = leduc$SampleType, batch = leduc$Set, niters = 10, nsteps = 30) ## ----------------------------------------------------------------------------- (plCSC <- ggplot(csc) + aes(x = SampleSize, y = Sensitivity, colour = by) + geom_point(size = 1)) ## ----------------------------------------------------------------------------- predCSC <- predictSensitivity(csc, nSample = 1:30) plCSC + geom_line(data = predCSC) ## ----------------------------------------------------------------------------- predictSensitivity(csc, nSamples = Inf)