(original) (raw)

## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options( rmarkdown.html_vignette.check_title = FALSE ) ## ----setup-------------------------------------------------------------------- library(tidytof) library(dplyr) library(stringr) ## ----eval = FALSE------------------------------------------------------------- # if (!requireNamespace("BiocManager", quietly = TRUE)) { # install.packages("BiocManager") # } # # BiocManager::install("HDCytoData") ## ----message = FALSE, warning = FALSE----------------------------------------- citrus_raw <- HDCytoData::Bodenmiller_BCR_XL_flowSet() citrus_data <- citrus_raw |> as_tof_tbl(sep = "_") ## ----------------------------------------------------------------------------- citrus_metadata <- tibble( file_name = as.character(flowCore::pData(citrus_raw)[[1]]), sample_id = 1:length(file_name), patient = stringr::str_extract(file_name, "patient[:digit:]"), stimulation = stringr::str_extract(file_name, "(BCR-XL)|Reference") ) |> mutate( stimulation = if_else(stimulation == "Reference", "Basal", stimulation) ) citrus_metadata |> head() ## ----------------------------------------------------------------------------- citrus_data <- citrus_data |> left_join(citrus_metadata, by = "sample_id") ## ----------------------------------------------------------------------------- # preprocess the numeric columns in the citrus dataset citrus_data <- citrus_data |> mutate(cluster = str_c("cluster", population_id)) |> tof_preprocess() citrus_data |> tof_extract_proportion( cluster_col = cluster, group_cols = c(patient, stimulation) ) |> head() ## ----------------------------------------------------------------------------- citrus_data |> tof_extract_proportion( cluster_col = cluster, group_cols = c(patient, stimulation), format = "long" ) |> head() ## ----------------------------------------------------------------------------- citrus_data |> tof_extract_central_tendency( cluster_col = cluster, group_cols = c(patient, stimulation), marker_cols = any_of(c("CD45_In115", "CD4_Nd145", "CD20_Sm147")), central_tendency_function = mean ) |> head() ## ----------------------------------------------------------------------------- citrus_data |> tof_extract_central_tendency( cluster_col = cluster, group_cols = c(patient, stimulation), marker_cols = any_of(c("CD45_In115", "CD4_Nd145", "CD20_Sm147")), central_tendency_function = function(x) quantile(x = x, probs = 0.75) ) |> head() ## ----------------------------------------------------------------------------- citrus_data |> tof_extract_threshold( cluster_col = cluster, group_cols = c(patient, stimulation), marker_cols = any_of(c("CD45_In115", "CD4_Nd145", "CD20_Sm147")), threshold = 5 ) |> head() ## ----------------------------------------------------------------------------- # Earth-mover's distance citrus_data |> tof_extract_emd( cluster_col = cluster, group_cols = patient, marker_cols = any_of(c("CD45_In115", "CD4_Nd145", "CD20_Sm147")), emd_col = stimulation, reference_level = "Basal" ) |> head() ## ----------------------------------------------------------------------------- # Jensen-Shannon Divergence citrus_data |> tof_extract_jsd( cluster_col = cluster, group_cols = patient, marker_cols = any_of(c("CD45_In115", "CD4_Nd145", "CD20_Sm147")), jsd_col = stimulation, reference_level = "Basal" ) |> head() ## ----------------------------------------------------------------------------- signaling_markers <- c( "pNFkB_Nd142", "pStat5_Nd150", "pAkt_Sm152", "pStat1_Eu153", "pStat3_Gd158", "pSlp76_Dy164", "pBtk_Er166", "pErk_Er168", "pS6_Yb172", "pZap70_Gd156" ) citrus_data |> tof_extract_features( cluster_col = cluster, group_cols = patient, stimulation_col = stimulation, lineage_cols = any_of(c("CD45_In115", "CD20_Sm147", "CD33_Nd148")), signaling_cols = any_of(signaling_markers), signaling_method = "emd", basal_level = "Basal" ) |> head() ## ----------------------------------------------------------------------------- sessionInfo()