(original) (raw)
%!PS-Adobe-2.0 %%Creator: dvipsk 5.58f Copyright 1986, 1994 Radical Eye Software %%Title: driver1.dvi %%Pages: 17 %%PageOrder: Ascend %%BoundingBox: 0 0 612 792 %%EndComments %DVIPSCommandLine: dvips -o FourierTransform.ps driver1 %DVIPSParameters: dpi=300, comments removed %DVIPSSource: TeX output 1996.09.13:1714 %%BeginProcSet: tex.pro /TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N /X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72 mul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1} ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[matrix currentmatrix{dup dup round sub abs 0.00001 lt{round}if} forall round exch round exch]setmatrix}N /@landscape{/isls true N}B /@manualfeed{statusdict /manualfeed true put}B /@copies{/#copies X}B /FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{ /nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N string /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N end dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{ /sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0] N df-tail}B /E{pop nn dup definefont setfont}B /ch-width{ch-data dup length 5 sub get}B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{ 128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub get 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data dup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N /rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup /base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx 0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff setcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff .1 sub]{ch-image}imagemask restore}B /D{/cc X dup type /stringtype ne{]} if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup length 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{ cc 1 add D}B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin 0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore userdict /eop-hook known{eop-hook}if showpage}N /@start{userdict /start-hook known{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X /IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for 65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0 0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V {}B /RV statusdict begin /product where{pop product dup length 7 ge{0 7 getinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false} ifelse}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale rulex ruley false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR rulex ruley scale 1 1 false RMat{BDot}imagemask grestore}}ifelse B /QV{gsave newpath transform round exch round exch itransform moveto rulex 0 rlineto 0 ruley neg rlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail {dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail}B /c{-4 M} B /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{3 M}B /k{ 4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{ p 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{3 2 roll p a}B /bos{/SS save N}B /eos{SS restore}B end %%EndProcSet %%BeginProcSet: special.pro TeXDict begin /SDict 200 dict N SDict begin /@SpecialDefaults{/hs 612 N /vs 792 N /ho 0 N /vo 0 N /hsc 1 N /vsc 1 N /ang 0 N /CLIP 0 N /rwiSeen false N /rhiSeen false N /letter{}N /note{}N /a4{}N /legal{}N}B /@scaleunit 100 N /@hscale{@scaleunit div /hsc X}B /@vscale{@scaleunit div /vsc X}B /@hsize{/hs X /CLIP 1 N}B /@vsize{/vs X /CLIP 1 N}B /@clip{ /CLIP 2 N}B /@hoffset{/ho X}B /@voffset{/vo X}B /@angle{/ang X}B /@rwi{ 10 div /rwi X /rwiSeen true N}B /@rhi{10 div /rhi X /rhiSeen true N}B /@llx{/llx X}B /@lly{/lly X}B /@urx{/urx X}B /@ury{/ury X}B /magscale true def end /@MacSetUp{userdict /md known{userdict /md get type /dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup length 20 add dict copy def}if end md begin /letter{}N /note{}N /legal{} N /od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{itransform lineto} }{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{ itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{ closepath}}pathforall newpath counttomark array astore /gc xdf pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}if}N /txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N /cp {pop pop showpage pm restore}N end}if}if}N /normalscale{Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale}if 0 setgray} N /psfts{S 65781.76 div N}N /startTexFig{/psf$SavedState save N userdict maxlength dict begin /magscale true def normalscale currentpoint TR /psf$ury psfts /psf$urx psfts /psf$lly psfts /psf$llx psfts /psf$y psfts /psf$x psfts currentpoint /psf$cy X /psf$cx X /psf$sx psf$x psf$urx psf$llx sub div N /psf$sy psf$y psf$ury psf$lly sub div N psf$sx psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub TR /showpage{}N /erasepage{}N /copypage{}N /p 3 def @MacSetUp}N /doclip{ psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath moveto}N /endTexFig{end psf$SavedState restore}N /@beginspecial{SDict begin /SpecialSave save N gsave normalscale currentpoint TR @SpecialDefaults count /ocount X /dcount countdictstack N}N /@setspecial {CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR }{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury lineto closepath clip}if /showpage{}N /erasepage{}N /copypage{}N newpath }N /@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{ end}repeat grestore SpecialSave restore end}N /@defspecial{SDict begin} N /@fedspecial{end}B /li{lineto}B /rl{rlineto}B /rc{rcurveto}B /np{ /SaveX currentpoint /SaveY X N 1 setlinecap newpath}N /st{stroke SaveX SaveY moveto}N /fil{fill SaveX SaveY moveto}N /ellipse{/endangle X /startangle X /yrad X /xrad X /savematrix matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end %%EndProcSet TeXDict begin 40258431 52099146 1000 300 300 (driver1.dvi) @start /Fa 1 79 df<07E01FC000E0060001700400017004000138040001380400021C 0800021C0800020E0800020E0800040710000407100004039000040390000801E0000801 E0000800E0000800E00018004000FE0040001A147F931A>78 D E /Fb 37 122 df<0001FF0000001FFFC000007F81E00000FC01E00001F807F00003F807F0 0007F007F00007F007F00007F007F00007F007F00007F001C00007F000000007F0000000 07F000000007F03FF800FFFFFFF800FFFFFFF800FFFFFFF80007F003F80007F003F80007 F003F80007F003F80007F003F80007F003F80007F003F80007F003F80007F003F80007F0 03F80007F003F80007F003F80007F003F80007F003F80007F003F80007F003F80007F003 F80007F003F80007F003F80007F003F80007F003F8007FFF3FFF807FFF3FFF807FFF3FFF 80212A7FA925>12 D<1C007F007F00FF80FF80FF807F007F001C0009097B8813>46 D<000E00001E00007E0007FE00FFFE00FFFE00F8FE0000FE0000FE0000FE0000FE0000FE 0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE 0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE 00FFFFFEFFFFFEFFFFFE17277BA622>49 D<00FF800007FFF0000FFFFC001E03FE003800 FF807C007F80FE003FC0FF001FC0FF001FE0FF001FE0FF001FE07E001FE03C001FE00000 1FE000001FC000003FC000003F8000007F0000007E000000FC000001F8000003F0000003 E00000078000000F0000001E0000003800E0007000E000E000E001C001C0038001C00600 01C00FFFFFC01FFFFFC03FFFFFC07FFFFFC0FFFFFF80FFFFFF80FFFFFF801B277DA622> I<007F800003FFF00007FFFC000F81FE001F00FF003F807F003F807F803F807F803F807F 801F807F801F007F8000007F000000FF000000FE000001FC000001F8000007F00000FF80 0000FFC0000001F8000000FE0000007F0000007F8000003FC000003FC000003FE000003F E03C003FE07E003FE0FF003FE0FF003FE0FF003FC0FF003FC0FE007F807C00FF003F01FE 001FFFFC0007FFF00000FF80001B277DA622>I<00000F0000000F0000001F0000003F00 00007F000000FF000001FF000001FF000003BF0000073F00000E3F00001C3F00003C3F00 00383F0000703F0000E03F0001C03F0003803F0007803F0007003F000E003F001C003F00 38003F0070003F00F0003F00FFFFFFF8FFFFFFF8FFFFFFF800007F0000007F0000007F00 00007F0000007F0000007F0000007F0000007F00001FFFF8001FFFF8001FFFF81D277EA6 22>I<0007F800003FFE0000FFFF0001FC078003F00FC007E01FC00FC01FC01F801FC01F 801FC03F800F803F0000007F0000007F0000007F000000FF020000FF1FF000FF3FFC00FF 603E00FFC03F00FF801F80FF801FC0FF801FC0FF001FC0FF001FE0FF001FE0FF001FE07F 001FE07F001FE07F001FE07F001FE03F001FE03F001FC01F801FC01F801F800FC03F0007 E07E0003FFFC0001FFF800003FC0001B277DA622>54 D<380000003E0000003FFFFFF03F FFFFF03FFFFFF07FFFFFE07FFFFFC07FFFFFC07FFFFF8070000F0070001E0070003C00E0 003800E0007800E000F0000001E0000003C0000003800000078000000F0000000F000000 1F0000001E0000003E0000003E0000007E0000007E0000007C000000FC000000FC000000 FC000000FC000001FC000001FC000001FC000001FC000001FC000001FC000001FC000001 FC0000007000001C297CA822>I<00007FE0030003FFFC07001FFFFF0F007FF00FDF00FF 8001FF01FE0000FF03FC00007F07F000003F0FF000001F1FE000001F1FE000000F3FC000 000F3FC00000077FC00000077F800000077F80000000FF80000000FF80000000FF800000 00FF80000000FF80000000FF80000000FF80000000FF80000000FF800000007F80000000 7F800000007FC00000073FC00000073FC00000071FE00000071FE000000E0FF000000E07 F000001C03FC00003C01FE00007800FF8001F0007FF007C0001FFFFF800003FFFE000000 7FF00028297CA831>67 DI70 D77 D80 D82 D<00FF806003FFF0E00FFFF9E01F80FFE0 3F001FE03E0007E07C0003E07C0003E0FC0001E0FC0001E0FC0000E0FE0000E0FE0000E0 FF000000FFC000007FFC00007FFFE0003FFFF8001FFFFE001FFFFF0007FFFF8003FFFFC0 00FFFFC0000FFFE000007FE000001FF000000FF0000007F0E00003F0E00003F0E00003F0 E00003F0F00003E0F00003E0F80007E0FC0007C0FF000F80FFE03F80F3FFFE00E1FFFC00 C01FF0001C297CA825>I<7FFFFFFFFF807FFFFFFFFF807FFFFFFFFF807F807F807F807C 007F800F8078007F80078078007F80078070007F800380F0007F8003C0F0007F8003C0E0 007F8001C0E0007F8001C0E0007F8001C0E0007F8001C0E0007F8001C000007F80000000 007F80000000007F80000000007F80000000007F80000000007F80000000007F80000000 007F80000000007F80000000007F80000000007F80000000007F80000000007F80000000 007F80000000007F80000000007F80000000007F80000000007F80000000007F80000000 007F80000000007F80000000007F80000000FFFFFFC00000FFFFFFC00000FFFFFFC0002A 287EA72F>I<03FF80000FFFF0001F01FC003F80FE003F807F003F803F003F803F801F00 3F8000003F8000003F8000003F800000FF80007FFF8003FFBF800FF03F801F803F803F00 3F807E003F80FC003F80FC003F80FC003F80FC003F80FE007F807E00DFC03F839FFC1FFF 0FFC03FC03FC1E1B7E9A21>97 D<003FF00001FFFC0003F03E000FC07F001F807F003F00 7F003F007F007F003E007E0000007E000000FE000000FE000000FE000000FE000000FE00 0000FE000000FE0000007E0000007E0000007F0000003F0003803F8003801F8007000FE0 0E0003F83C0001FFF800003FC000191B7E9A1E>99 D<00007FF000007FF000007FF00000 07F0000007F0000007F0000007F0000007F0000007F0000007F0000007F0000007F00000 07F0000007F0000007F0003F87F001FFF7F007F03FF00FC00FF01F8007F03F0007F03F00 07F07E0007F07E0007F07E0007F0FE0007F0FE0007F0FE0007F0FE0007F0FE0007F0FE00 07F0FE0007F0FE0007F07E0007F07E0007F03F0007F03F0007F01F800FF00FC01FF007E0 7FFF01FFE7FF007F87FF202A7EA925>I<003FC00001FFF00007E07C000FC03E001F801F 003F001F803F000F807F000F807E000FC0FE000FC0FE0007C0FE0007C0FFFFFFC0FFFFFF C0FE000000FE000000FE000000FE0000007E0000007F0000003F0001C03F8001C01F8003 C00FC0078003F01F0000FFFC00003FE0001A1B7E9A1F>I<0007F8003FFC007E3E01FC7F 03F87F03F07F07F07F07F03E07F00007F00007F00007F00007F00007F00007F000FFFFC0 FFFFC0FFFFC007F00007F00007F00007F00007F00007F00007F00007F00007F00007F000 07F00007F00007F00007F00007F00007F00007F00007F00007F00007F00007F0007FFF80 7FFF807FFF80182A7EA915>I<00FF81F003FFE7F80FC1FE1C1F007C7C3F007E7C3E003E 107E003F007E003F007E003F007E003F007E003F007E003F003E003E003F007E001F007C 000FC1F8001BFFE00038FF80003800000038000000380000003C0000003FFFF8003FFFFF 001FFFFFC01FFFFFE00FFFFFF01FFFFFF03C0007F07C0001F8F80000F8F80000F8F80000 F8F80000F87C0001F07C0001F03F0007E00FC01F8007FFFF00007FF0001E287E9A22>I< FFE00000FFE00000FFE000000FE000000FE000000FE000000FE000000FE000000FE00000 0FE000000FE000000FE000000FE000000FE000000FE000000FE0FE000FE3FF800FE70FC0 0FEC0FE00FF807E00FF807F00FF007F00FF007F00FE007F00FE007F00FE007F00FE007F0 0FE007F00FE007F00FE007F00FE007F00FE007F00FE007F00FE007F00FE007F00FE007F0 0FE007F00FE007F00FE007F0FFFE3FFFFFFE3FFFFFFE3FFF202A7DA925>I<07001FC03F E03FE03FE03FE03FE01FC007000000000000000000000000000000FFE0FFE0FFE00FE00F E00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00F E00FE0FFFEFFFEFFFE0F2B7EAA12>I107 DIII<003FE00001FFFC0003F07E000FC01F801F 800FC03F0007E03F0007E07E0003F07E0003F07E0003F0FE0003F8FE0003F8FE0003F8FE 0003F8FE0003F8FE0003F8FE0003F8FE0003F87E0003F07E0003F03F0007E03F0007E01F 800FC00FC01F8007F07F0001FFFC00003FE0001D1B7E9A22>II<003F807001FFE0F003F079F00FE01DF01F800FF03F800FF03F0007 F07F0007F07F0007F07E0007F0FE0007F0FE0007F0FE0007F0FE0007F0FE0007F0FE0007 F0FE0007F0FE0007F07F0007F07F0007F03F0007F03F8007F01F800FF00FC01FF007F077 F001FFE7F0007F87F0000007F0000007F0000007F0000007F0000007F0000007F0000007 F0000007F0000007F000007FFF00007FFF00007FFF20277E9A23>II<03FE300FFFF03E03F07800F07000F0F00070F00070F80070FE0000FF E0007FFF007FFFC03FFFE01FFFF007FFF800FFF80007FC0000FCE0007CE0003CF0003CF0 0038F80038FC0070FF01E0F7FFC0C1FF00161B7E9A1B>I<00E00000E00000E00000E000 01E00001E00001E00003E00003E00007E0000FE0001FFFE0FFFFE0FFFFE00FE0000FE000 0FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE070 0FE0700FE0700FE0700FE0700FE0700FE07007F0E003F0C001FF80007F0014267FA51A> III121 D E /Fc 3 113 df0 D<0F001E003BC06180606080404031 0040801A0020800E0020800E0020800E0020800B0020401180404020C0C030C07B800F00 1E001B0D7E8C21>49 D<000000C0000001C0000001800000038000000300000007000000 060000000E0000000C0000001C00000018000000380000003000000070000000E0003000 C000D801C000180180000C0380000C0300000607000006060000030E0000030C0000019C 00000198000000F8000000F0000000700000006000001A1E7F811B>112 D E /Fd 11 121 df<001000001000001000001F8000F08001CF000380000780000F0000 0F00000F00000F00000E00000F000007FC0003840006FC00080000180000300000200000 600000600000E00000E00000E000007000007C00003F80001FE00003F80000FC00001E00 000E00000C0001080000F0001125809C12>24 D<08000C10001E10001E20001E20000640 000640080240180280180480180480300C803008C03018C0F030FFFFF07F9FE07F1FC03E 0F00171280911A>33 D<70F8F8F87005057D840C>58 D<01FFFFF0003E00F0003C003000 3C0020003C0020003C00200078002000780020007808200078080000F0100000F0100000 F0300000FFF00001E0200001E0200001E0200001E0200003C0400003C0000003C0000003 C00000078000000780000007800000078000000F800000FFF800001C1C7E9B1B>70 D<0003F00000700000700000E00000E00000E00000E00001C00001C00001C00001C000F3 80030B800E07801C07803C0700380700780700780700F00E00F00E00F00E00F00E00F01C 40E01C40701C40703C4030CC800F0700141D7F9C16>100 D<0001E0000630000E78000E F0001C60001C00001C00001C00001C0000380000380003FFC00038000038000070000070 0000700000700000700000E00000E00000E00000E00000E00001C00001C00001C00001C0 0001C000018000038000038000630000F30000F60000E4000078000015257E9C14>102 D<0078C001C5C00383C00703C00F03800E03801E03801E03803C07003C07003C07003C07 003C0E00380E00380E001C1E000C7C00079C00001C00001C00003800603800F03000F070 00E1C0007F0000121A809114>I<0007000F000F00060000000000000000000000000078 009C010C020C021C041C001C001C0038003800380038007000700070007000E000E000E0 00E001C061C0F180F300E6007C001024809B11>106 D<0FC00001C00001C00003800003 80000380000380000700000700000700000700000E07000E08800E11C00E23C01C47801C 83001D00001E00003FC00038E000387000387000707100707100707100707200E0320060 1C00121D7E9C16>I<00C001C001C001C00380038003800380FFF00700070007000E000E 000E000E001C001C001C001C00382038203840384018800F000C1A80990F>116 D<07878008C84010F0C020F1E020E3C040E18000E00000E00001C00001C00001C00001C0 00638080F38080F38100E5810084C60078780013127E9118>120 D E /Fe 11 119 df<00F803040E0C1C1E183C301870007000E000E000E000E000E000E0 046008601030600F800F127C9113>99 D<0007E00000E00000E00001C00001C00001C000 01C000038000038000038000038001E7000717000C0F00180F00380E00300E00700E0070 0E00E01C00E01C00E01C00E01C00E03900E03900E03900607900319A001E0C00131D7C9C 15>I<00F807040C0418023804300470087FF0E000E000E000E000E00060046008301030 600F800F127C9113>I<018003C0038003000000000000000000000000001C0026004700 47008E008E000E001C001C001C0038003800710071007100720072003C000A1C7C9B0D> 105 D<1F800380038007000700070007000E000E000E000E001C001C001C001C00380038 00380038007000700070007000E200E200E200E40064003800091D7D9C0B>108 D<383E004CC3004D03804E03809E03809C03801C03801C0380380700380700380700380E 00700E40700E40701C40701C80E00C8060070012127C9117>110 D<00F800030C000E06001C0300180300300300700380700380E00700E00700E00700E00E 00E00E00E01C0060180060300030E0000F800011127C9115>I<1C3C26C24706470F8E1E 8E0C0E000E001C001C001C001C0038003800380038007000300010127C9112>114 D<03000700070007000E000E000E000E00FFE01C001C001C003800380038003800700070 0070007000E080E080E100E100660038000B1A7C990E>116 D<1C01802E03804E03804E 03808E07008E07001C07001C0700380E00380E00380E00380E00301C80301C80301C8038 3C80184D000F860011127C9116>I<1C062E0E4E064E068E028E021C021C023804380438 043808300830083010382018400F800F127C9113>I E /Ff 8 57 df<06001E00EE000E000E000E000E000E000E000E000E000E000E000E000E000E000E00 0E00FFE00B137D9211>49 D<1F0021C040E0C070E070E0700070006000E000C001800300 06000C10081010303FE07FE0FFE00C137E9211>I<1FC020707038703820380038007000 E00FC0007000380018001C401CE01CE018403820701FC00E137F9211>I<006000E000E0 01E002E006E00CE008E010E020E060E0C0E0FFFC00E000E000E000E000E007FC0E137F92 11>I<60607FC07F8044004000400040004F0070C040E0006000700070E070E070C06040 E021C01F000C137E9211>I<03E00E101838303870006000E000E7C0E870F038E018E01C E01CE01C601C70183038186007C00E137F9211>I<40007FFC7FF87FF0C0308020804000 800100010003000200060006000E000E000E000E000E0004000E147E9311>I<0FC01070 20186018601870183C303F600F800FE031F06078C01CC00CC00CC00C601830300FC00E13 7F9211>I E /Fg 2 50 df<1F00318060C04040C060C060C060C060C060C060C060C060 404060C031801F000B107F8F0F>48 D<187898181818181818181818181818FF08107E8F 0F>I E /Fh 2 111 df<3C000C000C00180018001800187031B03270346038007F006180 61906190C1A0C0C00C117E9010>107 D<71F09A189C1898181818303030303032306260 6460380F0B7E8A13>110 D E /Fi 3 50 df0 D<000006000000060000000600000003000000030000000180000000C000000060FFFFFF FCFFFFFFFC00000060000000C00000018000000300000003000000060000000600000006 001E127E9023>33 D<0FC007C01FF01C6030783010403C4008C01EC004800F8004800700 04800380048007C004800DE00C4008F0082030783018E03FE00F800FC01E0E7E8D23>49 D E /Fj 1 108 df<1FC0001FC0000780000780000780000F00000F00000F00000F0780 1E0FC01E39C01E63C01EC3C03D83803F00003FE0003DF0007878407878C07878C0787980 F03F00601E0012177F9615>107 D E /Fk 9 117 df<0300000E0700001F0700003F0E00 003F1C00003F1C00001F3800001F3801C00F7003E00E7007E00E7007E00E7007E01E7007 C01CF00FC03CF00F8078780F81F87FFFFFF07FFFFFE07FFFFFC03FFBFF801FF1FE0007C0 F80020167F9524>33 D<00000038000000007C000000007C00000000FC00000001FC0000 0001FC00000003FC00000007FC00000007FE0000000FFE0000001EFE0000001CFE000000 38FE00000078FE00000070FE000000E0FF000000E0FF000001C07F000003C07F00000380 7F000007007F00000F007F00000E007F80001FFFFF80003FFFFF80003FFFFF800070003F 800070003F8000E0003F8001C0003FC001C0003FC00380001FC07FF803FFFCFFF803FFFC FFF803FFFC26237EA22B>65 D<00FFFFFFC000FFFFFFF000FFFFFFFC000FE003FC000FE0 00FE000FC000FE000FC000FF001FC000FF001FC000FE001F8000FE001F8001FE003F8001 FC003F8003F8003F0007F0003F001FE0007FFFFF80007FFFFF80007E001FE0007E0007F0 00FE0007F800FE0003F800FC0003FC00FC0003FC01FC0003FC01FC0003F801F80007F801 F80007F803F8000FF003F8001FE003F0003FE003F000FF80FFFFFFFF00FFFFFFFC00FFFF FFE00028227EA12B>I<00001FF0060001FFFC1C0007FFFE3C001FF80F7C003FC003FC00 FF0001F801FC0001F803F80000F807F00000F80FF00000F00FE00000F01FC00000703FC0 0000F03FC00000E07F800000007F800000007F80000000FF00000000FF00000000FF0000 0000FF00000000FF00000000FE00000000FE00000380FE00000380FE00000700FE000007 00FF00000E007F00001C007F00003C003F800078001FE001F0000FF807C00007FFFF8000 01FFFE0000001FF0000027247DA229>I<00FFFFFFFC00FFFFFFFC00FFFFFFFC000FF001 FC000FF0007C000FE0007C000FE00038001FE00038001FE00038001FC07038001FC07038 003FC0F078003FC0E070003F81E000003F83E000007FFFE000007FFFE000007FFFC00000 7F03C00000FF03C00000FF03800000FE03800000FE03800001FE03800001FE00000001FC 00000001FC00000003FC00000003FC00000003F800000003F8000000FFFFE00000FFFFE0 0000FFFFE0000026227EA122>70 D<00001F8000003FE0000079F00000F3F00001F3F000 01F3E00003F1C00003F0000003F0000003F0000007E0000007E0000007E00003FFFFC003 FFFFC003FFFFC0000FC000000FC000000FC000000FC000001F8000001F8000001F800000 1F8000001F8000001F8000003F0000003F0000003F0000003F0000003F0000007E000000 7E0000007E0000007E0000007C000000FC000000FC00003CF800007CF800007EF00000FC F000007DE000007FC000001F0000001C2D7DA21C>102 D<00001C00003E00007E00007E 00007C000038000000000000000000000000000000000000000000000000000FC0003FF0 0079F800E1F801C1F801C1F80381F80381F80003F00003F00003F00003F00007E00007E0 0007E00007E0000FC0000FC0000FC0000FC0001F80001F80001F80001F80003F003C3F00 7C3F007E7E00FCFC007DF8007FE0003F8000172E81A317>106 D<0FFC00000FFC00000F F8000001F8000001F8000003F8000003F0000003F0000003F0000007F0000007E0000007 E0000007E000000FE01E000FC07F000FC0E3800FC387801FC60F801F8C1F801F981F801F B01F003FE00E003FE000003FFE00003FFF80007F1FC0007E0FC0007E07E3807E07E380FE 0FC700FC0FC700FC07C600FC07CE00F803FC007000F00019237EA21E>I<00700000F800 01F80001F80001F80001F80003F00003F00003F00003F000FFFF80FFFF80FFFF8007E000 0FC0000FC0000FC0000FC0001F80001F80001F80001F80003F00003F00003F03803F0700 7E07007E0E007E1C003E38001FF00007C00011207F9F15>116 D E /Fl 38 122 df<00180030006000C001C00380078007000F001E001E003E003C003C00 7C007C007C007800F800F800F800F800F800F800F800F800F800F800F800F800F8007800 7C007C007C003C003C003E001E001E000F0007000780038001C000C00060003000180D31 7BA416>40 DI<00180000780001F800FFF800FFF80001F80001F80001F80001F80001F80001F800 01F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F800 01F80001F80001F80001F80001F80001F80001F8007FFFE07FFFE013207C9F1C>49 D<03FC000FFF003C1FC07007E07C07F0FE03F0FE03F8FE03F8FE01F87C01F83803F80003 F80003F00003F00007E00007C0000F80001F00003E0000380000700000E01801C0180380 180700180E00380FFFF01FFFF03FFFF07FFFF0FFFFF0FFFFF015207D9F1C>I<01FE0007 FFC00F07E01E03F03F03F03F01F83F81F83F01F81F03F80C03F00003F00003E00007C000 1F8001FE0001FF000007C00001F00001F80000FC0000FC0000FE7C00FE7C00FEFE00FEFE 00FEFE00FC7C01FC7801F83C07F00FFFC003FE0017207E9F1C>I<0000E00001E00003E0 0003E00007E0000FE0001FE0001FE00037E00077E000E7E001C7E00187E00307E00707E0 0E07E00C07E01807E03807E07007E0E007E0FFFFFFFFFFFF0007E00007E00007E00007E0 0007E00007E00007E000FFFF00FFFF18207E9F1C>I<3000203E01E03FFFC03FFF803FFF 003FFE003FF80033C00030000030000030000030000031FC0037FF003E0FC03807E03003 E00003F00003F00003F80003F83803F87C03F8FC03F8FC03F8FC03F0F803F06007E03007 C03C1F800FFF0003F80015207D9F1C>I<001F8000FFE003E07007C0F00F01F81F01F83E 01F83E01F87E00F07C00007C0000FC0800FC7FC0FCFFE0FD80F0FF00F8FE007CFE007CFC 007EFC007EFC007EFC007E7C007E7C007E7C007E3C007C3E007C1E00F80F00F00783E003 FFC000FF0017207E9F1C>I<6000007800007FFFFE7FFFFE7FFFFC7FFFF87FFFF87FFFF0 E00060E000C0C00180C00300C00300000600000C00001C00001800003800007800007800 00F00000F00000F00001F00001F00001F00003F00003F00003F00003F00003F00003F000 03F00001E00017227DA11C>I<00FE0003FFC00703E00E00F01C00F01C00783C00783E00 783F00783F80783FE0F01FF9E01FFFC00FFF8007FFC003FFE007FFF01E7FF83C1FFC7807 FC7801FEF000FEF0003EF0001EF0001EF0001EF8001C7800383C00381F00F00FFFC001FF 0017207E9F1C>I<000070000000007000000000F800000000F800000000F800000001FC 00000001FC00000003FE00000003FE00000003FE000000067F000000067F0000000C7F80 00000C3F8000000C3F800000181FC00000181FC00000301FE00000300FE00000700FF000 006007F000006007F00000C007F80000FFFFF80001FFFFFC00018001FC00018001FC0003 0001FE00030000FE00070000FF000600007F000600007F00FFE007FFF8FFE007FFF82522 7EA12A>65 D<0003FE0080001FFF818000FF01E38001F8003F8003E0001F8007C0000F80 0F800007801F800007803F000003803F000003807F000001807E000001807E00000180FE 00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00000000FE00 0000007E000000007E000001807F000001803F000001803F000003801F800003000F8000 030007C000060003F0000C0001F800380000FF00F000001FFFC0000003FE000021227DA1 28>67 D69 DI80 D<01FE0207FF861F01FE3C007E7C001E78000E78000EF80006F80006FC0006FC0000 FF0000FFE0007FFF007FFFC03FFFF01FFFF80FFFFC03FFFE003FFE0003FE00007F00003F 00003FC0001FC0001FC0001FE0001EE0001EF0003CFC003CFF00F8C7FFE080FF8018227D A11F>83 D<7FFFFFFF807FFFFFFF807E03F80F807803F807807003F803806003F80180E0 03F801C0E003F801C0C003F800C0C003F800C0C003F800C0C003F800C00003F800000003 F800000003F800000003F800000003F800000003F800000003F800000003F800000003F8 00000003F800000003F800000003F800000003F800000003F800000003F800000003F800 000003F800000003F800000003F800000003F8000001FFFFF00001FFFFF00022227EA127 >I91 D93 D<0FFE003FFF807E07E07E03F07E01F07E01F83C01F80001F80001F8003FF803FFF81FC1 F83F01F87E01F8FC01F8FC01F8FC01F8FC01F87E02F87E0CF81FF8FF07E03F18167E951B >97 DI<00FF8007FFE00F83F01F03F03E03F07E03F07C01E07C0000FC0000FC0000 FC0000FC0000FC0000FC00007C00007E00007E00003E00181F00300FC06007FFC000FF00 15167E9519>I<0001FF000001FF0000003F0000003F0000003F0000003F0000003F0000 003F0000003F0000003F0000003F0000003F0000003F0001FC3F0007FFBF000F81FF001F 007F003E003F007E003F007C003F00FC003F00FC003F00FC003F00FC003F00FC003F00FC 003F00FC003F00FC003F007C003F007C003F003E003F001F00FF000F83FF0007FF3FE001 FC3FE01B237EA21F>I<00FE0007FF800F87C01E01E03E01F07C00F07C00F8FC00F8FC00 F8FFFFF8FFFFF8FC0000FC0000FC00007C00007C00007E00003E00181F00300FC07003FF C000FF0015167E951A>I<01FE0F0007FFBF800F87C7801F03E7801E01E0003E01F0003E 01F0003E01F0003E01F0003E01F0001E01E0001F03E0000F87C0000FFF800009FE000018 000000180000001C0000001FFFE0001FFFF8000FFFFE0007FFFF001FFFFF007C003F8078 001F80F8000F80F8000F80F8000F807C001F007E003F001F80FC000FFFF80001FFC00019 217F951C>103 D<0E001F003F803F803F801F000E000000000000000000000000000000 FF80FF801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F80 1F801F80FFF0FFF00C247FA30F>105 D108 DII<00FE0007FFC00F83E01E00F03E00F87C007C7C007C7C007CFC007EFC007E FC007EFC007EFC007EFC007EFC007E7C007C7C007C3E00F81F01F00F83E007FFC000FE00 17167E951C>II<00FE 030007FF07000FC1CF001F00DF003F007F007E003F007E003F007C003F00FC003F00FC00 3F00FC003F00FC003F00FC003F00FC003F00FC003F007E003F007E003F003E007F001F00 FF000FC1FF0007FF3F0000FC3F0000003F0000003F0000003F0000003F0000003F000000 3F0000003F0000003F000001FFE00001FFE01B207E951E>II<07F3001FFF00780F0070 0700F00300F00300F80000FF0000FFF0007FFC003FFE001FFF0007FF00003F80C00F80C0 0780E00780E00780F00700FC1E00EFFC00C7F00011167E9516>I<00C00000C00000C000 00C00001C00001C00003C00007C0000FC0001FC000FFFF00FFFF000FC0000FC0000FC000 0FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC1800FC1800FC1800FC180 0FC18007C18007E30003FE0000FC0011207F9F16>II120 DI E /Fm 8 107 df0 D<00C00000E00000C00000C00040 C080E0C1C0F8C7C07CCF801EDE0003F00000C00003F0001EDE007CCF80F8C7C0E0C1C040 C08000C00000C00000E00000C00012157D9619>3 D<0000000C0000003C000000F00000 03C000000F0000003C000000F0000007C000001F00000078000001E00000078000001E00 000078000000E0000000780000001E0000000780000001E0000000780000001F00000007 C0000000F00000003C0000000F00000003C0000000F00000003C0000000C000000000000 0000000000000000000000000000000000000000000000000000FFFFFFFCFFFFFFFC1E27 7C9F27>20 D<03F80001F80007FE000FFE001E3F801C03003807C03001802003E0600080 4001F0C000404000F9800040C0007F00002080003F00002080003E00002080001F000020 80000F80002080001F80002080001FC00060400033E00040400061F000402000C0F80080 3001807C03801807003F8F000FFE000FFC0003F00003F8002B157D9432>49 D<00000300000300000700000600000E00000C00001C0000180000380000300000700000 600000E00000C00001C0000180000380000300000700000600000E00000C00001C000018 0000180000380000300000700000600000E00000C00001C0000180000380000300000700 000600000E00000C00001C0000180000380000300000700000600000E00000C00000C000 00183079A300>54 D98 D<003000300030003000300030003000300030003000300030003000 300030003000300030003000300030003000300030003000300030003000300030003000 300030003000300030003000300030003000300030003000300030003000300030FFF0FF F00C327FA416>I106 D E /Fn 14 62 df<0102040C1818303070606060E0E0E0E0E0E0E0E0E0E06060607030 3018180C04020108227D980E>40 D<8040203018180C0C0E060606070707070707070707 070606060E0C0C18183020408008227E980E>I<00300000300000300000300000300000 3000003000003000003000003000003000FFFFFCFFFFFC00300000300000300000300000 300000300000300000300000300000300000300016187E931B>43 D<07C018303018701C600C600CE00EE00EE00EE00EE00EE00EE00EE00EE00E600C600C70 1C30181C7007C00F157F9412>48 D<06000E00FE000E000E000E000E000E000E000E000E 000E000E000E000E000E000E000E000E000E00FFE00B157D9412>I<0F8030E040708070 C038E038403800780070007000E000C00180030006000C08180810183FF07FF0FFF00D15 7E9412>I<0FE030706038703C701C003C00380030006007C000700038001C001E001EE0 1EE01EC01C403830700FC00F157F9412>I<00300030007000F001F00170027004700870 1870107020704070C070FFFE0070007000700070007003FE0F157F9412>I<60307FE07F C07F8040004000400040004F8070E040700030003800384038E038E0388030406020C01F 000D157E9412>I<01F00608080C181C301C70006000E000E3E0EC30F018F00CE00EE00E E00E600E600E300C3018183007C00F157F9412>I<40007FFE7FFC7FF8C0088010802000 40008000800100030003000200060006000E000E000E000E000E0004000F167E9512>I< 07E018302018600C600C700C78183E101F6007C00FF018F8607C601EC00EC006C006C004 600C38300FE00F157F9412>I<07C0183030186018E00CE00CE00EE00EE00E601E301E18 6E0F8E000E000C001C70187018603020E01F800F157F9412>I61 D E /Fo 11 114 df<0000180000300000600000E00000C0000180000380000700000600 000E00000C00001C0000380000380000700000700000E00000E00001E00001C00001C000 0380000380000380000780000700000700000F00000E00000E00001E00001E00001E0000 1C00001C00003C00003C00003C00003C0000380000780000780000780000780000780000 780000780000780000700000F00000F00000F00000F00000F00000F00000F00000F00000 F00000F00000F00000F00000F00000F00000F00000F00000F00000F00000F00000F00000 F00000F00000F00000F00000F00000F00000700000780000780000780000780000780000 7800007800007800003800003C00003C00003C00003C00001C00001C00001E00001E0000 1E00000E00000E00000F000007000007000007800003800003800003800001C00001C000 01E00000E00000E000007000007000003800003800001C00000C00000E00000600000700 0003800001800000C00000E0000060000030000018157C768121>32 DI<0018007800F001E003C007800F001F00 1E003E003C007C007C007800F800F800F800F800F800F800F800F800F800F800F800F800 F800F800F800F800F800F800F800F800F800F800F8000D25707E25>56 D58 D<007C007C007C007C007C007C007C007C007C007C007C007C00 7C007C007C007C007C007C007C007C007C007C007C007C00F800F800F800F001F001E003 E003C0078007000E001C003800F000C000F00038001C000E000700078003C003E001E001 F000F000F800F800F8007C007C007C007C007C007C007C007C007C007C007C007C007C00 7C007C007C007C007C007C007C007C007C007C007C0E4D798025>60 D62 D80 D<0000F000018C00030E0003 1E00061E00060C000E00000E00000E00000E00000E00000E00001E00001E00001E00001E 00001C00001C00001C00003C00003C00003C00003C00003C00003C00003C00003C000038 000038000038000078000078000078000078000070000070000070000070000070000060 00606000F0E000F0C000E080006100001E0000172E7E7F14>82 D88 D<000000038000000006600000000C700000000CF00000001CF00000 001860000000380000000038000000003800000000700000000070000000007000000000 7000000000F000000000E000000000E000000000E000000001E000000001E000000001E0 00000001C000000003C000000003C000000003C000000003C00000000780000000078000 0000078000000007800000000F800000000F800000000F800000000F000000000F000000 001F000000001F000000001F000000001F000000001E000000003E000000003E00000000 3E000000003E000000007C000000007C000000007C000000007C000000007C000000007C 00000000F800000000F800000000F800000000F800000000F000000001F000000001F000 000001F000000001F000000001E000000001E000000003E000000003E000000003E00000 0003C000000003C000000003C000000003C0000000078000000007800000000780000000 078000000007000000000F000000000F000000000F000000000E000000000E000000000E 000000001E000000001C000000001C000000001C00000000380000000038000000003800 000000700000006070000000F060000000F0C0000000E1C000000063800000001E000000 00245C7E7F17>90 D<00000000060000000006000000000E000000000C000000000C0000 00001C000000001800000000180000000038000000003000000000300000000070000000 0060000000006000000000E000000000C000000000C000000001C0000000018000000001 800000000380000000030000000003000000000700000000060000000006000000000E00 0000000C000000000C000000001C00000000180000000018000000003800000000300000 0000300000000070000000006000000000600004000060000E0000E0001E0000C0003E00 00C0003E0001C0004F000180008F000180000F0003800007800300000780030000078007 000003C006000003C006000003C00E000003C00C000001E00C000001E01C000001E01800 0000F018000000F038000000F030000000F0300000007870000000786000000078600000 003CE00000003CC00000003CC00000001FC00000001F800000001F800000001F80000000 0F000000000F000000000F00000000060000000006000000274B7C812A>113 D E /Fp 21 117 df<00F00198030C060C0C0C1C0C180C380C380C701C701C7FFC701CE0 38E038E030E070E060E0E060C0618023001E000E177F9610>18 D<0FFFC01FFFE03FFFC0 6108008318000318000218000618000618000E18000C18001C1C001C1C00180800130E7F 8D14>25 D<00040000080000080000080000080000100000100000100000100001FC0007 23001C21803820C07040E0E040E0E040E0E040E0E081C0E08180E08300608600391C000F E000010000010000020000020000020000020000131D7F9615>30 D<1000602000F040007040003080602080602080C02080C06080C04081C0C0E7E780FFFF 007E7E00383C00140E7F8D16>33 D<0FE03838701C600CE00EE00EE00EE00EE00EE00E60 0C701C38380FE00F0E7F8D12>48 D<0200FE000E000E000E000E000E000E000E000E000E 000E000E00FFE00B0E7D8D12>I<3FC040F0E078E03840380078007000E0018006080808 1FF07FF0FFF00D0E7E8D12>I<0018001800380030003000700060006000E000C001C001 8001800380030003000700060006000E000C000C001C0018003800300030007000600060 00E000C000C0000D217E9812>61 D<0000C00000C00001C00001C00003C00005C00005E0 0008E00018E00010E00020E00020E00040E00080E00080E001FFF0010070020070040070 040070080070180070FE03FE17177F961A>65 D<07FFF800E01E00E00F00E00700E00701 C00701C00F01C00F01C01E03803C03FFF003FFF003803C07001C07001E07001E07001E0E 003C0E003C0E00780E00F01C01E0FFFF0018177F961B>I<07F007F800F000C000B80080 00B80080009C0080011C0100011E0100010E0100010E0100020702000207020002038200 020382000401C4000401C4000400E4000400E40008007800080078000800380008003800 18001000FE0010001D177F961C>78 D<03E00E10183830387000E000E000E000C000C000 C008601030601F800D0E7F8D0F>99 D<000E001B0037007600700070007000E000E007FE 00E000E001E001C001C001C001C001C003800380038003800300070007006600E600CC00 7800101D7E9611>102 D<1F80000700000700000700000700000E00000E00000E00000E 00001C78001D8E001E06001C0600380E00380E00380E00380E00701C00701C8070388070 3900E01900600E0011177F9614>104 D<0300038003000000000000000000000000001C 002E004E004E008E001C001C001C00380039007100720032001C0009177F960C>I<000C 001C000800000000000000000000000000E0033004380438087000700070007000E000E0 00E000E001C001C001C001C06380E300C6007C000E1D80960E>I<1F8007000700070007 000E000E000E000E001C0E1C331C471C863B003C003F8039C070E070E270E270E2E06460 3810177F9612>I<383C1F004CC723804F0341804E0381809C0703801C0703801C070380 1C070380380E0700380E0720380E0E20380E0E40701C0640300C03801B0E7F8D1F>109 D<383C004CC7004F03004E03009C07001C07001C07001C0700380E00380E40381C40381C 80700C80300700120E7F8D15>I<07C00C201870187038003F801FC00FE000E06060E060 C0C0C1803F000C0E7E8D10>115 D<060007000E000E000E000E00FFC01C001C001C0038 00380038003800700070807080710072003C000A147F930D>I E /Fq 3 14 df0 D<0300030003000300C30CE31C7338 1FE0078007801FE07338E31CC30C03000300030003000E127D9215>3 D<0001FC0000000FFF8000003E03E00000F000780001C0001C000380000E000700000700 0E000003801C000001C018000000C038000000E030000000607000000070600000003060 00000030E000000038C000000018C000000018C000000018C000000018C000000018C000 000018C000000018E0000000386000000030600000003070000000703000000060380000 00E018000000C01C000001C00E0000038007000007000380000E0001C0001C0000F00078 00003E03E000000FFF80000001FC000025277E9D2A>13 D E /Fr 53 122 df<007E0001C1800301800703C00E03C00E01800E00000E00000E00000E00000E 0000FFFFC00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E 01C00E01C00E01C00E01C00E01C00E01C07F87F8151D809C17>12 D<003F07E00001C09C18000380F018000701F03C000E01E03C000E00E018000E00E00000 0E00E000000E00E000000E00E000000E00E00000FFFFFFFC000E00E01C000E00E01C000E 00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00 E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C007FC7FC FF80211D809C23>14 D<70F8FCFC740404040808102040060D7D9C0C>39 D<00800100020006000C000C00180018003000300030006000600060006000E000E000E0 00E000E000E000E000E000E000E000E000E0006000600060006000300030003000180018 000C000C000600020001000080092A7C9E10>I<8000400020003000180018000C000C00 060006000600030003000300030003800380038003800380038003800380038003800380 038003000300030003000600060006000C000C00180018003000200040008000092A7E9E 10>I<70F0F8F8780808081010202040050D7D840C>44 DI<70F8 F8F87005057D840C>I<010007003F00C700070007000700070007000700070007000700 07000700070007000700070007000700070007000700070007000700FFF80D1C7C9B15> 49 D<07E01870203C201C781E781E781E381E001C001C00380030006007C00030001C00 1C000E000F000F700FF80FF80FF80FF00E401C201C183007C0101D7E9B15>51 D<300C3FF83FF03FC020002000200020002000200023E02C303018301C200E000E000F00 0F000F600FF00FF00FF00F800E401E401C2038187007C0101D7E9B15>53 D<03C00C301818381C700C700EF00EF00EF00FF00FF00FF00FF00F700F701F381F181F0C 2F07CF000E000E000E301C781C78187038207010C00F80101D7E9B15>57 D<70F8F8F870000000000000000070F8F8F87005127D910C>I<7FFFFFC0FFFFFFE00000 000000000000000000000000000000000000000000000000000000000000FFFFFFE07FFF FFC01B0C7E8F20>61 D<000600000006000000060000000F0000000F0000000F00000017 8000001780000037C0000023C0000023C0000043E0000041E0000041E0000080F0000080 F0000080F000010078000100780001FFF80002003C0002003C0002003C0004001E000400 1E000C001F000C000F001E001F00FF00FFF01C1D7F9C1F>65 D<001F808000E061800180 1980070007800E0003801C0003801C00018038000180780000807800008070000080F000 0000F0000000F0000000F0000000F0000000F0000000F0000000F0000000700000807800 008078000080380000801C0001001C0001000E000200070004000180080000E03000001F C000191E7E9C1E>67 DI70 D<001F808000E0618001801980070007800E0003801C0003801C000180380001 80780000807800008070000080F0000000F0000000F0000000F0000000F0000000F00000 00F000FFF0F0000F80700007807800078078000780380007801C0007801C0007800E0007 8007000B800180118000E06080001F80001C1E7E9C21>III75 D77 DI80 D<07E0801C1980300580300380600180E00180E00080E00080E00080F00000F80000 7C00007FC0003FF8001FFE0007FF0000FF80000F800007C00003C00001C08001C08001C0 8001C0C00180C00180E00300D00200CC0C0083F800121E7E9C17>83 D<7FFFFFC0700F01C0600F00C0400F0040400F0040C00F0020800F0020800F0020800F00 20000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F00 00000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000001F80 0003FFFC001B1C7F9B1E>I91 D93 D<0FE0001838003C1C003C0E00180E00000E00000E0001FE000F8E003C0E00780E00 700E00F00E20F00E20F00E20701E203827400FC38013127F9115>97 DI<03F80E0C1C1E381E780C7000F0 00F000F000F000F000F0007000780238021C040E1803E00F127F9112>I<001F80000380 00038000038000038000038000038000038000038000038000038003F3800E0B801C0780 380380780380700380F00380F00380F00380F00380F00380F00380700380780380380380 1C07800E1B8003E3F0141D7F9C17>I<07E00C301818381C701E700EF00EFFFEF000F000 F000F00070007002380218040E1803E00F127F9112>I<00F8018C071E061E0E0C0E000E 000E000E000E000E00FFE00E000E000E000E000E000E000E000E000E000E000E000E000E 000E000E000E007FE00F1D809C0D>I<00038007E4C00C38C0381C80381C00781E00781E 00781E00781E00381C00381C001C300037E0002000003000003000003FF8001FFF001FFF 803003806001C0C000C0C000C0C000C06001803003001C0E0007F800121C7F9215>II<38007C007C007C0038000000000000 00000000000000FC001C001C001C001C001C001C001C001C001C001C001C001C001C001C 001C001C00FF80091D7F9C0C>I107 DIII<03F0000E1C00180600380700700380700380F003C0F003C0F003 C0F003C0F003C0F003C07003807003803807001C0E000E1C0003F00012127F9115>II<03E0800E19801C0580380780780380780380F00380F00380 F00380F00380F00380F003807003807803803807801C07800E1B8003E380000380000380 000380000380000380000380000380001FF0141A7F9116>II<1F902070 4030C010C010E010F8007F803FE00FF000F880388018C018C018E010D0608FC00D127F91 10>I<04000400040004000C000C001C003C00FFE01C001C001C001C001C001C001C001C 001C001C101C101C101C101C100C100E2003C00C1A7F9910>IIIII< FF07E03C03801C01001C01000E02000E02000F060007040007040003880003880003C800 01D00001D00000E00000E00000E000004000004000008000008000F08000F10000F30000 660000380000131A7F9116>I E /Fs 45 122 df<000F80003FF00040F000406000C000 00C00000C00000C000006000006000007000007000003800003800001C00003E0000CE00 038F000607000C07001C0780380780380380700380700380700380E00300E00700E00700 E00600600E00600C00300C003018001C300007C00014247EA316>14 D<000F000031800060C000E0C001C0E00180E00380E00700E00700E00F00E00E00E01E00 E01E00E01C01E03C01E03C01E03FFFE07FFFC07FFFC07803C07803C0700780F00780F007 00F00F00F00E00F00E00E01C00601C0060380070300070600030C0001180000F00001323 7EA217>18 D<0FFFFF1FFFFF3FFFFF704180404100808100808100008100018300010300 0103000303000303000603000603000E03000E03000C03801C03801C038018018018157E 941C>25 D<00001000000020000000200000002000000020000000400000004000000040 00000040000000800000008000000080000000800000010000000FE00000711C0001C106 00030203000E0203801C020180180201C0380401C0700401C0700401C0700401C0E00803 80E0080380E00807006008070070100E0030101C00301038001C10E0000623800001FE00 000020000000200000004000000040000000400000004000000080000000800000008000 00008000001A2D7EA21D>30 D<04000070080000F0080000F81000007810000038200000 18200000184003001040030010400600104006001040060020C0040020C00C0040C00C00 C0C01E0180E07607807FE7FF007FE7FE003F83FC001F01F0001D1580941E>33 D<70F8F8F87005057C840E>58 D<70F8FCFC7404040404080810102040060F7C840E>I< 0000001800000078000001E00000078000001E00000078000003E000000F8000003C0000 00F0000003C000000F0000003C000000F0000000F00000003C0000000F00000003C00000 00F00000003C0000000F80000003E0000000780000001E0000000780000001E000000078 000000181D1C7C9926>I<00018000018000038000030000030000070000060000060000 0E00000C00000C00001C0000180000180000180000380000300000300000700000600000 600000E00000C00000C00001C00001800001800003800003000003000007000006000006 00000E00000C00000C00000C00001C000018000018000038000030000030000070000060 0000600000E00000C00000C0000011317DA418>II<00000080 000000018000000001C000000003C000000007C000000007C00000000BC00000000BC000 000013C000000033C000000023C000000043E000000043E000000081E000000101E00000 0101E000000201E000000201E000000401E000000801E000000801E000001001F000001F FFF000003FFFF000004000F000004000F000008000F000008000F000010000F000020000 F000020000F80004000078001E0000F800FF8007FF80FF800FFF8021237EA225>65 D<00FFFFF00000FFFFFE00000F001F00000F000F80001E000F80001E000780001E0007C0 001E0007C0003C000780003C000F80003C000F80003C001F000078001E000078003C0000 7800F800007803E00000FFFFC00000F000F00000F000780000F0007C0001E0003C0001E0 003C0001E0003E0001E0003E0003C0007C0003C0007C0003C0007C0003C000F800078000 F000078001F000078007E00007800F8000FFFFFF0000FFFFF8000022227DA125>I<0000 7F00800003FFC100000FC0E300001E003700007C001F0000F0001E0001E0000E0003C000 0E000780000E000F800004000F000004001F000004003E000004003E000008007C000000 007C000000007C00000000F800000000F800000000F800000000F800000000F800000000 F000000000F000002000F000002000F000004000F000004000F800008000780001800078 000100003C000200001E000C00000F0018000007C070000003FFC00000007E0000002124 7DA223>I<00FFFFFF8000FFFFFF80000F000780000F000380001E000180001E00018000 1E000100001E000100003C000100003C000100003C010100003C01010000780200000078 020000007806000000780E000000FFFC000000FFFC000000F00C000000F00C000001E008 000001E008000001E008000001E008000003C000000003C000000003C000000003C00000 000780000000078000000007800000000780000000FFFC000000FFFC00000021227DA120 >70 D<00FF800003FE00FF800007FE000F80000BC0000F80000BC00013C00017800013C0 0017800013C00027800013C00047800023C0004F000023C0008F000023C0008F000023C0 010F000043C0021E000041E0021E000041E0041E000041E0081E000081E0083C000081E0 103C000081E0103C000081E0203C000101E04078000100F04078000100F08078000100F1 0078000200F100F0000200F200F0000200F200F0000200F400F0000400F801E0000400F8 01E00004007001E0001E007001E000FFC0603FFE00FFC0403FFE002F227DA12F>77 D<00FF8007FE00FF8007FE000F8000E0000BC000C00013C000800013C000800011E00080 0011E000800021F001000020F001000020F001000020780100004078020000407C020000 403C020000403C020000801E040000801E040000801E040000800F040001000F08000100 0F880001000788000100078800020003D000020003D000020003F000020001F000040001 E000040000E000040000E0001E0000E000FFC0004000FFC000400027227DA127>I<0000 7F00000381C0000E00E0003C00780070003800E0003C01C0001E03C0001E0780001E0F00 001F0F00001F1E00001F3E00001F3E00001F7C00001F7C00001F7C00001FF800003EF800 003EF800003EF800003CF800007CF000007CF00000F8F00000F8F00001F0F00001E0F000 03E0F80003C07800078078000F003C001E001C0038000E00F0000783C00000FE00002024 7DA225>I<00FFFFE000FFFFF8000F007C000F001E001E001F001E000F001E000F001E00 0F003C001F003C001F003C001F003C001E0078003E0078003C00780078007800F000F003 C000FFFF0000F0000000F0000001E0000001E0000001E0000001E0000003C0000003C000 0003C0000003C0000007800000078000000780000007800000FFF80000FFF8000020227D A11F>I<00007F00000381C0000E00E0003C00780070003800E0003C01E0001E03C0001E 0780001E0F80001F0F00001F1E00001F3E00001F3E00001F7C00001F7C00001F7C00001F F800003EF800003EF800003EF800003CF800007CF000007CF00000F8F00000F8F00000F0 F00001E0F00003E0F81E03C07821078078408F003C409E001C40B8000E40F00007C3C020 00FE8020000080600001C0400001C0C00001E1800001FF800001FF000000FF000000FE00 00007800202D7DA227>I<0003F810000FFC20001E0E60003803E0007001E000E000C000 C000C001C000C001C000C0038000800380008003C0000003C0000003C0000001F0000001 FE000000FFE000007FF000001FF8000001FC0000003C0000001C0000001E0000001E0000 001E0020001C0020001C0020001C00200038006000380070007000700060007801C000EE 038000C7FF000081FC00001C247DA21E>83 D<1FFFFFFE1FFFFFFE1E01E01E3801E00630 03C0062003C0066003C0044003C00440078004800780048007800480078004000F000000 0F0000000F0000000F0000001E0000001E0000001E0000001E0000003C0000003C000000 3C0000003C00000078000000780000007800000078000000F0000000F0000000F0000001 F000007FFFC0007FFFC0001F227EA11D>I87 D<007FF803FF007FF803FF0007C000F000 03C000C00003E001800001E003000001E006000001F004000000F008000000F810000000 78200000007C400000007C800000003D000000003E000000001E000000001F000000001F 000000002F000000006F80000000C78000000187C000000103C000000203E000000403E0 00000801E000001001F000002000F000004000F800008000780001800078000780007C00 FFE003FFC0FFE003FFC028227FA128>I<00786001C4E00302E00601C00E01C01C01C03C 01C0380380780380780380780380F00700F00700F00700F00708F00E10700E10701E1030 262018C6200F03C015157E941A>97 D<03C0003F80003F80000380000380000700000700 000700000700000E00000E00000E00000E00001C00001C7C001D86001E03003C03803803 803803C03803C07003C07003C07003C07003C0E00780E00780E00780E00F00E00E00601C 00601C0030300018E0000F800012237EA215>I<003F0000E0800380C00701C00E03C01C 03C03C00003C0000780000780000780000F00000F00000F00000F0000070004070004030 01803802001C1C0007E00012157E9415>I<00001E0000FC0001FC00001C00001C000038 0000380000380000380000700000700000700000700000E00078E001C4E00302E00601C0 0E01C01C01C03C01C0380380780380780380780380F00700F00700F00700F00708F00E10 700E10701E1030262018C6200F03C017237EA219>I<007E000381000700800E00801C00 80380080780100700600FFF800F00000F00000E00000E00000E00000E00000E00080E000 807003003004001838000FC00011157D9417>I<00001E00000063800000C7800001C780 0001C3000001800000038000000380000003800000038000000700000007000000070000 0007000000FFF80000FFF800000E0000000E0000000E0000000E0000000E0000001C0000 001C0000001C0000001C0000001C00000038000000380000003800000038000000380000 007000000070000000700000007000000060000000E0000000E0000000C0000000C00000 71C00000F1800000F1000000620000003C000000192D7EA218>I<000F8600384E00602E 00E03C01C01C03801C07801C0700380F00380F00380F00381E00701E00701E00701E0070 1E00E00E00E00E01E00602E0030DC001F1C00001C00001C0000380000380000380700700 F00600F00C006038003FE000171F809417>I<00F00007E0000FE00000E00000E00001C0 0001C00001C00001C000038000038000038000038000070000070F800730C00740600E80 700F00700E00700E00701C00E01C00E01C00E01C00E03801C03801C03803803803827003 84700704700708700308E003106001E017237EA21C>I<00E000E001E000C00000000000 000000000000000000000000001E0023004380438083808700870007000E000E000E001C 001C001C003820384070407080308031001E000B227EA111>I<0000700000F00000F000 0060000000000000000000000000000000000000000000000000000000000F0000318000 41C00081C00081C00101C00101C000038000038000038000038000070000070000070000 0700000E00000E00000E00000E00001C00001C00001C00001C0000380000380000380070 7000F06000F0C0006380003E0000142C81A114>I<00F0000FE0000FE00000E00000E000 01C00001C00001C00001C00003800003800003800003800007000007007807018407021C 0E0C3C0E103C0E20180E40001C80001F00001FE0001C3800381C00381C00380E00380E08 701C10701C10701C10700C20E006206003C016237EA219>I<01E00FC01FC001C001C003 8003800380038007000700070007000E000E000E000E001C001C001C001C003800380038 0038007000700070007080E100E100E100620062003C000B237EA20F>I<3C07E01F0046 1830618047201880C087401D00E087801E00E087801C00E087001C00E00E003801C00E00 3801C00E003801C00E003801C01C007003801C007003801C007007001C007007043800E0 07083800E00E083800E00E083800E006107001C006203000C003C026157E942B>I<3C07 C04618604720308740388780388700388700380E00700E00700E00700E00701C00E01C00 E01C01C01C01C13801C23803823803843801847001883000F018157E941D>I<003E0000 C1800380C00700E00E00E01C00F03C00F03C00F07800F07800F07800F0F001E0F001E0F0 01C0F003C0700380700700700600381C001C380007E00014157E9417>I<03C0F004631C 04740E08780E08700708700708700F00E00F00E00F00E00F00E00F01C01E01C01E01C01E 01C03C03803803803803C07003C0E0072180071E000700000700000E00000E00000E0000 0E00001C00001C0000FFC000FF8000181F819418>I<3C0F004630C04741C08783C08783 C08701808700000E00000E00000E00000E00001C00001C00001C00001C00003800003800 0038000038000070000030000012157E9416>114 D<007E000081000300800201800603 8006030006000007000007F00003FC0001FF00003F00000780000380700380F00300F003 00E002004004003018000FE00011157E9417>I<006000E000E000E000E001C001C001C0 01C00380FFFCFFFC038007000700070007000E000E000E000E001C001C001C001C083810 38103820184018C00F000E1F7F9E12>I<1E00181C2300383C4380383E4380701E838070 0E83807006870070060700E0040E00E0040E00E0040E00E0041C01C0081C01C0081C01C0 081C01C0101C01C0101C01C0201C03C0400C04C0400708618001F03E001F157E9423> 119 D<01E0F006310C081A1C101A3C201C3C201C18201C00003800003800003800003800 00700000700000700000700860E010F0E010F0E020E170404230803C1F0016157E941C> I<1E00182300384380384380708380708700708700700700E00E00E00E00E00E00E01C01 C01C01C01C01C01C01C01C03801C03801C07800C0B800E170003E700000700000700000E 00600E00F01C00F01800E0300080600041C0003F0000151F7E9418>I E /Ft 81 124 df<000060000000006000000000F000000000F000000001F80000000178 000000027C000000023C000000043E000000041E000000081F000000080F000000100F80 000010078000002007C000002003C000004003E000004001E000008001F000008000F000 010000F80001000078000200007C000200003C000400003E000400001E000800001F0008 00000F001000000F80100000078020000007C020000003C07FFFFFFFE07FFFFFFFE0FFFF FFFFF024237EA229>1 D<001FC1F00070371800C03E3C01807C3C0380783C0700380007 00380007003800070038000700380007003800070038000700380007003800FFFFFFC0FF FFFFC0070038000700380007003800070038000700380007003800070038000700380007 00380007003800070038000700380007003800070038000700380007003800070038007F E1FFC07FE1FFC01E2380A21C>11 D<001FC0000070200000C01000018038000380780007 0078000700300007000000070000000700000007000000070000000700000007000000FF FFF800FFFFF8000700780007003800070038000700380007003800070038000700380007 003800070038000700380007003800070038000700380007003800070038000700380007 0038007FE1FF807FE1FF80192380A21B>I<001FD8000070380000C07800018078000380 780007003800070038000700380007003800070038000700380007003800070038000700 3800FFFFF800FFFFF8000700380007003800070038000700380007003800070038000700 380007003800070038000700380007003800070038000700380007003800070038000700 3800070038007FF3FF807FF3FF80192380A21B>I<000FC07F00007031C08000E00B0040 01801E00E003803E01E007003C01E007001C00C007001C000007001C000007001C000007 001C000007001C000007001C000007001C0000FFFFFFFFE0FFFFFFFFE007001C01E00700 1C00E007001C00E007001C00E007001C00E007001C00E007001C00E007001C00E007001C 00E007001C00E007001C00E007001C00E007001C00E007001C00E007001C00E007001C00 E007001C00E07FF1FFCFFE7FF1FFCFFE272380A229>I<7038F87CFC7EFC7E743A040204 02040204020804080410081008201040200F0F7EA218>34 D<003C000000006200000000 C20000000181000000018100000003810000000381000000038100000003810000000382 00000003820000000384000000038800000001C800000001D000000001E001FF8001E001 FF8000E0007C0001E00030000170002000027000400004380040000838008000181C0080 00301E010000700E0200007007020000F007840000F003880000F001D80000F001F00100 F800F001007800F803007C01BC06003E0F1F0E000FFC07FC0003F001F00021257EA326> 38 D<70F8FCFC7404040404080810102040060F7CA20E>I<002000400080010003000600 04000C000C00180018003000300030007000600060006000E000E000E000E000E000E000 E000E000E000E000E000E000E000E0006000600060007000300030003000180018000C00 0C0004000600030001000080004000200B327CA413>I<800040002000100018000C0004 00060006000300030001800180018001C000C000C000C000E000E000E000E000E000E000 E000E000E000E000E000E000E000E000C000C000C001C001800180018003000300060006 0004000C00180010002000400080000B327DA413>I<0001800000018000000180000001 800000018000000180000001800000018000000180000001800000018000000180000001 8000000180000001800000018000FFFFFFFEFFFFFFFE0001800000018000000180000001 800000018000000180000001800000018000000180000001800000018000000180000001 80000001800000018000000180001F227D9C26>43 D<70F8FCFC74040404040808101020 40060F7C840E>II<70F8F8F87005057C840E>I<000180000180 000380000300000300000700000600000600000E00000C00000C00001C00001800001800 00180000380000300000300000700000600000600000E00000C00000C00001C000018000 0180000380000300000300000700000600000600000E00000C00000C00000C00001C0000 180000180000380000300000300000700000600000600000E00000C00000C0000011317D A418>I<01F000071C000C06001803003803803803807001C07001C07001C07001C0F001 E0F001E0F001E0F001E0F001E0F001E0F001E0F001E0F001E0F001E0F001E0F001E0F001 E0F001E07001C07001C07001C07803C03803803803801C07000C0600071C0001F0001322 7EA018>I<008003800F80FF80F380038003800380038003800380038003800380038003 80038003800380038003800380038003800380038003800380038003800380FFFEFFFE0F 217CA018>I<03F0000FFC00181F00200F806007C04003C08003E0F003E0F801E0F801E0 F801E02003E00003E00003C00003C0000780000700000E00001C00003800003000006000 00C0000180000300000600200C00200800201000602000407FFFC0FFFFC0FFFFC013217E A018>I<03F0000FFC001C1F003007806007807807C07807C07803C03807C00007C00007 80000780000F00000E0000380003F000001C00000F000007800007C00003C00003E00003 E02003E07003E0F803E0F803E0F003C04007C0400780300F001C1E000FFC0003F0001322 7EA018>I<000300000300000700000F00000F0000170000370000270000470000C70000 87000107000307000207000407000C0700080700100700300700200700400700C00700FF FFF8FFFFF8000700000700000700000700000700000700000700007FF0007FF015217FA0 18>I<1000801E07001FFF001FFE001FF80017E000100000100000100000100000100000 10000011F800120E001C07001803801003800001C00001C00001E00001E00001E00001E0 7001E0F001E0F001E0E001C0C003C04003806003803007001C1E000FFC0003F00013227E A018>I<007E0001FF0003C1800701C00E03C01C03C01C01803800003800007800007000 00700000F0F800F30C00F40600F40300F80380F801C0F001C0F001E0F001E0F001E0F001 E0F001E07001E07001E07001E03801C03803C01803801C07000E0E0007FC0001F0001322 7EA018>I<4000006000007FFFE07FFFE07FFFC0400040C0008080010080010080020000 040000040000080000100000100000200000200000600000400000C00000C00001C00001 800001800003800003800003800003800007800007800007800007800007800007800003 000013237DA118>I<01F00007FC000C0F001803803001806000C06000C06000C06000C0 7000C07801803E01003F02001FC4000FF80003F80001FC00067E00083F00100F803007C0 6003C06000E0C000E0C00060C00060C00060C000606000C06000C03801801E07000FFE00 03F00013227EA018>I<01F00007FC000E0E001C0700380380780380700380F001C0F001 C0F001C0F001E0F001E0F001E0F001E0F001E07001E07003E03803E01805E00C05E00619 E003E1E00001C00001C00003C0000380000380300380780700780E00701C003038001FF0 000FC00013227EA018>I<70F8F8F870000000000000000000000070F8F8F87005157C94 0E>I61 D<00018000000180000001800000 03C0000003C0000003C0000005E0000005E0000009F0000008F0000008F0000010780000 1078000010780000203C0000203C0000203C0000401E0000401E0000C01F0000800F0000 800F0001FFFF8001FFFF8001000780020003C0020003C0020003C0040001E0040001E004 0001E00C0000F01E0001F0FF800FFFFF800FFF20237EA225>65 DI<0007E010003FF83000FC 0E3001E0037003C001F0078000F00F0000701E0000701E0000303C0000303C0000307C00 00107800001078000010F8000000F8000000F8000000F8000000F8000000F8000000F800 0000F800000078000000780000107C0000103C0000103C0000101E0000201E0000200F00 00400780004003C0008001E0030000FC0E00003FFC000007E0001C247DA223>IIII<0007F008003F FC1800FC061801F0013803C000F8078000780F0000381E0000381E0000183C0000183C00 00187C0000087C00000878000008F8000000F8000000F8000000F8000000F8000000F800 0000F8000000F8001FFF78001FFF7C0000787C0000783C0000783C0000781E0000781F00 00780F0000780780007803C000B801F001B800FC0718003FFC080007F00020247DA226> II< FFFCFFFC0780078007800780078007800780078007800780078007800780078007800780 07800780078007800780078007800780078007800780078007800780FFFCFFFC0E227EA1 12>I<03FFE003FFE0000F00000F00000F00000F00000F00000F00000F00000F00000F00 000F00000F00000F00000F00000F00000F00000F00000F00000F00000F00000F00000F00 000F00000F00000F00700F00F80F00F80F00F80E00F01E00401C0020380018700007C000 13237EA119>IIIII<000FE00000783C0000E00E0003C00780078003C00F0001E00E0000E01E0000F03C0000 783C0000787C00007C7C00007C7800003C7800003CF800003EF800003EF800003EF80000 3EF800003EF800003EF800003EF800003EF800003E7800003C7C00007C7C00007C3C0000 783E0000F81E0000F00F0001E00F0001E0078003C003C0078000E00E0000783C00000FE0 001F247DA226>II82 D<03F0200FFC601C0E603803E07000E07000E0E00060E00060E000 20E00020E00020F00000F000007800007F00003FF0001FFE000FFF0003FF80003FC00007 E00001E00000F00000F0000070800070800070800070800070C00060C000E0E000C0F801 C0CE0380C7FF0081FC0014247DA21B>I<7FFFFFF87FFFFFF87807807860078018400780 0840078008C007800CC007800C8007800480078004800780048007800400078000000780 000007800000078000000780000007800000078000000780000007800000078000000780 000007800000078000000780000007800000078000000780000007800000078000000780 0001FFFE0001FFFE001E227EA123>IIII89 D<7FFFFE7FFFFE7E003C78003C70007860 00F0C000F0C001E0C001E08003C0800780800780000F00000F00001E00003C00003C0000 780000780000F00001E00101E00103C00103C0010780010F00030F00031E00021E00063C 000E78001E78007EFFFFFEFFFFFE18227DA11E>II<0804100820102010402040208040804080408040B85CFC7EFC7E7C3E381C0F 0F7AA218>II<1FE000303800780C0078 0E0030070000070000070000070000FF0007C7001E07003C0700780700700700F00708F0 0708F00708F00F087817083C23900FC1E015157E9418>97 D<0E0000FE0000FE00001E00 000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E1F000E61 C00E80600F00300E00380E003C0E001C0E001E0E001E0E001E0E001E0E001E0E001E0E00 1E0E001C0E003C0E00380F00700C80600C41C0083F0017237FA21B>I<01FE000703000C 07801C0780380300780000700000F00000F00000F00000F00000F00000F00000F0000070 00007800403800401C00800C010007060001F80012157E9416>I<0000E0000FE0000FE0 0001E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E001F8E0 0704E00C02E01C01E03800E07800E07000E0F000E0F000E0F000E0F000E0F000E0F000E0 F000E07000E07800E03800E01801E00C02F0070CFE01F0FE17237EA21B>I<01FC000707 000C03801C01C03801C07801E07000E0F000E0FFFFE0F00000F00000F00000F00000F000 007000007800203800201C00400E008007030000FC0013157F9416>I<003E0000E30001 C780038780030780070000070000070000070000070000070000070000070000070000FF F800FFF80007000007000007000007000007000007000007000007000007000007000007 00000700000700000700000700000700000700007FF0007FF000112380A20F>I<000070 03F1980E1E181C0E183807003807007807807807807807807807803807003807001C0E00 1E1C0033F0002000002000003000003800003FFE001FFFC00FFFE03000F0600030C00018 C00018C00018C000186000306000303800E00E038003FE0015217F9518>I<0E0000FE00 00FE00001E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00 000E1F800E60C00E80E00F00700F00700E00700E00700E00700E00700E00700E00700E00 700E00700E00700E00700E00700E00700E00700E0070FFE7FFFFE7FF18237FA21B>I<1C 003E003E003E001C00000000000000000000000000000000000E007E007E001E000E000E 000E000E000E000E000E000E000E000E000E000E000E000E000E00FFC0FFC00A227FA10E >I<00E001F001F001F000E000000000000000000000000000000000007007F007F000F0 007000700070007000700070007000700070007000700070007000700070007000700070 00700070007000706070F0E0F0C061803F000C2C83A10F>I<0E0000FE0000FE00001E00 000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E03FC0E03 FC0E01E00E01800E02000E04000E08000E10000E38000EF8000F1C000E1E000E0E000E07 000E07800E03C00E01C00E01E00E01F0FFE3FEFFE3FE17237FA21A>I<0E00FE00FE001E 000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E 000E000E000E000E000E000E000E000E000E000E000E00FFE0FFE00B237FA20E>I<0E1F C07F00FE60E18380FE807201C01F003C00E00F003C00E00E003800E00E003800E00E0038 00E00E003800E00E003800E00E003800E00E003800E00E003800E00E003800E00E003800 E00E003800E00E003800E00E003800E00E003800E0FFE3FF8FFEFFE3FF8FFE27157F942A >I<0E1F80FE60C0FE80E01F00700F00700E00700E00700E00700E00700E00700E00700E 00700E00700E00700E00700E00700E00700E00700E0070FFE7FFFFE7FF18157F941B>I< 01FC000707000C01801800C03800E0700070700070F00078F00078F00078F00078F00078 F00078F000787000707800F03800E01C01C00E038007070001FC0015157F9418>I<0E1F 00FE61C0FE80600F00700E00380E003C0E003C0E001E0E001E0E001E0E001E0E001E0E00 1E0E001E0E003C0E003C0E00380F00700E80E00E41C00E3F000E00000E00000E00000E00 000E00000E00000E00000E0000FFE000FFE000171F7F941B>I<01F8200704600E02601C 01603801E07800E07800E0F000E0F000E0F000E0F000E0F000E0F000E0F000E07800E078 00E03801E01C01E00C02E0070CE001F0E00000E00000E00000E00000E00000E00000E000 00E00000E0000FFE000FFE171F7E941A>I<0E3CFE46FE8F1F0F0F060F000E000E000E00 0E000E000E000E000E000E000E000E000E000E00FFF0FFF010157F9413>I<0F88307860 18C018C008C008E008F0007F003FE00FF001F8003C801C800C800CC00CC008E018D0308F C00E157E9413>I<020002000200020002000600060006000E001E003FFCFFFC0E000E00 0E000E000E000E000E000E000E000E000E040E040E040E040E040E040708030801F00E1F 7F9E13>I<0E0070FE07F0FE07F01E00F00E00700E00700E00700E00700E00700E00700E 00700E00700E00700E00700E00700E00700E00F00E00F006017803827F00FC7F18157F94 1B>IIIII<3FFFC0380380300780200700600E00401C00403C004038000070 0000E00001E00001C0000380400700400F00400E00C01C0080380080780180700780FFFF 8012157F9416>II E /Fu 36 121 df<0000E0000001E0000007E0 00003FE0001FFFE000FFFFE000FFFFE000E03FE000003FE000003FE000003FE000003FE0 00003FE000003FE000003FE000003FE000003FE000003FE000003FE000003FE000003FE0 00003FE000003FE000003FE000003FE000003FE000003FE000003FE000003FE000003FE0 00003FE000003FE000003FE000003FE000003FE000003FE000003FE000003FE000003FE0 00003FE000003FE000003FE000003FE000003FE0007FFFFFF07FFFFFF07FFFFFF01C2F7A AE28>49 D<003FE00001FFFC0007FFFF000FC0FFC01E003FE03C001FF07C000FF87F000F F8FF8007FCFFC007FCFFC007FEFFC007FEFFC007FEFFC003FE7F8003FE3F0007FE000007 FE000007FE000007FC00000FFC00000FF800001FF800001FF000003FE000003FC000007F 800000FF000001FC000001F8000003F0000007E000000F800E001F000E003E000E007C00 1E00F8001C01F0001C03E0003C07FFFFFC07FFFFFC0FFFFFFC1FFFFFFC3FFFFFFC7FFFFF F8FFFFFFF8FFFFFFF8FFFFFFF81F2F7CAE28>I<000FF80000007FFF000001FFFFC00007 F01FF0000F800FF8001F0007FC001FC007FC003FE007FE003FF003FE003FF003FE003FF0 03FE003FF003FE003FF007FE001FE007FE000FC007FC00030007FC0000000FF80000000F F00000001FE00000003FC0000000FF8000003FFE0000003FF80000003FFF800000001FE0 0000000FF000000007FC00000003FE00000003FE00000003FF00000001FF000E0001FF80 3F8001FF807FC001FF80FFE001FF80FFE001FF80FFE001FF80FFE001FF80FFE001FF00FF E003FF007FC003FF007F0003FE003C0007FC001F000FF8000FE01FF00003FFFFC00000FF FF0000001FF8000021307DAE28>I<000000F000000001F000000003F000000007F00000 0007F00000000FF00000001FF00000003FF00000003FF00000007FF0000000FFF0000001 EFF0000003CFF00000038FF00000078FF000000F0FF000001E0FF000001C0FF000003C0F F00000780FF00000F00FF00001E00FF00001C00FF00003C00FF00007800FF0000F000FF0 000E000FF0001E000FF0003C000FF00078000FF000F0000FF000FFFFFFFFE0FFFFFFFFE0 FFFFFFFFE000001FF00000001FF00000001FF00000001FF00000001FF00000001FF00000 001FF00000001FF00000001FF000001FFFFFE0001FFFFFE0001FFFFFE0232E7EAD28>I< 0C0000300FC007F00FFFFFF00FFFFFE00FFFFFC00FFFFF800FFFFF000FFFFC000FFFF000 0FFF80000E0000000E0000000E0000000E0000000E0000000E0000000E0000000E000000 0E0FF0000E7FFE000FFFFF800FF03FC00F801FE00F000FF00E000FF80E000FF8000007FC 000007FC000007FE000007FE000007FE1C0007FE7F0007FEFF8007FEFFC007FEFFC007FE FFC007FEFFC007FCFF8007FCFF000FFC7C000FF878000FF03C001FF01E003FE00FC0FF80 07FFFF0001FFFC00003FC0001F307CAE28>I<0000FF00000007FFE000001FFFF000007F 80F80000FE003C0001FC00FE0003F801FE0007F003FE000FE003FE001FE003FE001FE003 FE003FC001FC003FC000F8003FC00000007FC00000007F800000007F804000007F83FF00 00FF8FFFC000FF9FFFE000FFBC07F800FFF003FC00FFF001FC00FFE001FE00FFE001FF00 FFC000FF00FFC000FF00FFC000FF80FF8000FF80FF8000FF80FF8000FF80FF8000FF807F 8000FF807F8000FF807F8000FF807F8000FF807F8000FF803FC000FF003FC000FF001FC0 00FF001FC001FE000FE001FE000FF003FC0007F007F80003FC0FF00000FFFFC000003FFF 00000007F8000021307DAE28>I<38000000003E000000003FFFFFFFC03FFFFFFFC03FFF FFFFC03FFFFFFF807FFFFFFF007FFFFFFF007FFFFFFE007FFFFFFC007FFFFFF800780000 F000700000E000700001E000F00003C000E000078000E0000F0000E0000E000000001E00 0000003C0000000078000000007800000000F000000001F000000001F000000003E00000 0003E000000007E000000007E00000000FE00000000FE00000001FC00000001FC0000000 1FC00000003FC00000003FC00000003FC00000003FC00000007FC00000007FC00000007F C00000007FC00000007FC00000007FC00000007FC00000007FC00000007FC00000003F80 0000000E00000022317CAF28>I<0000007800000000000078000000000000FC00000000 0000FC000000000000FC000000000001FE000000000001FE000000000003FF0000000000 03FF000000000007FF800000000007FF800000000007FF80000000000FFFC0000000000E FFC0000000001EFFE0000000001C7FE0000000001C7FE000000000387FF000000000383F F000000000783FF800000000701FF800000000701FF800000000E01FFC00000000E00FFC 00000001E00FFE00000001C007FE00000001C007FE000000038007FF000000038003FF00 0000078003FF800000070001FF8000000F0001FFC000000FFFFFFFC000000FFFFFFFC000 001FFFFFFFE000001C00007FE000003C00007FF000003800003FF000003800003FF00000 7000003FF800007000001FF80000F000001FFC0000E000000FFC0000E000000FFC0001C0 00000FFE0003E0000007FE00FFFF0003FFFFFCFFFF0003FFFFFCFFFF0003FFFFFC36317D B03D>65 D<000003FF80018000003FFFF003800001FFFFFC07800007FF003F0F80001FF8 00079F80003FE00003FF8000FF800000FF8001FF0000007F8003FE0000003F8007FC0000 003F800FFC0000001F800FF80000000F801FF00000000F801FF000000007803FF0000000 07803FE000000007807FE000000003807FE000000003807FE000000003807FC000000000 00FFC00000000000FFC00000000000FFC00000000000FFC00000000000FFC00000000000 FFC00000000000FFC00000000000FFC00000000000FFC00000000000FFC00000000000FF C000000000007FC000000000007FE000000000007FE000000003807FE000000003803FE0 00000003803FF000000003801FF000000007801FF000000007000FF800000007000FFC00 00000F0007FC0000001E0003FE0000001C0001FF0000003C0000FF800000F800003FE000 01F000001FF80007C0000007FF003F80000001FFFFFE000000003FFFF80000000003FF80 000031337CB13A>67 DI< FFFFFFFFFFF0FFFFFFFFFFF0FFFFFFFFFFF000FFC0003FF000FFC00007F800FFC00003F8 00FFC00000F800FFC00000F800FFC000007800FFC000007800FFC000003800FFC0000038 00FFC000003800FFC000001C00FFC007001C00FFC007001C00FFC007001C00FFC0070000 00FFC007000000FFC00F000000FFC01F000000FFC03F000000FFFFFF000000FFFFFF0000 00FFFFFF000000FFC03F000000FFC01F000000FFC00F000000FFC007000000FFC0070000 00FFC007000700FFC007000700FFC007000700FFC000000E00FFC000000E00FFC000000E 00FFC000000E00FFC000001E00FFC000001E00FFC000001C00FFC000003C00FFC000007C 00FFC00000FC00FFC00001FC00FFC00007FC00FFC0003FFCFFFFFFFFFFF8FFFFFFFFFFF8 FFFFFFFFFFF830317EB035>II73 D78 D82 D<001FF0018000FFFF038003FFFFC78007F00FEF800FC001FF801F80007F803F00003F80 7F00001F807E00000F807E00000F80FE00000780FE00000780FE00000780FF00000380FF 00000380FF80000380FFC0000000FFE00000007FFE0000007FFFE000007FFFFF00003FFF FFE0001FFFFFF8001FFFFFFC000FFFFFFE0003FFFFFF0001FFFFFF80007FFFFFC0000FFF FFC000007FFFE0000007FFE0000000FFF00000003FF00000001FF00000001FF0E000000F F0E000000FF0E0000007F0E0000007F0F0000007F0F0000007E0F0000007E0F800000FE0 FC00000FC0FE00001FC0FF00001F80FFC0003F00FBFC00FE00F0FFFFF800E03FFFE000C0 03FF800024337CB12D>I<7FFFFFFFFFFF007FFFFFFFFFFF007FFFFFFFFFFF007FC00FFC 01FF007E000FFC003F007C000FFC001F0078000FFC000F0078000FFC000F0070000FFC00 0700F0000FFC000780F0000FFC000780F0000FFC000380E0000FFC000380E0000FFC0003 80E0000FFC000380E0000FFC000380E0000FFC00038000000FFC00000000000FFC000000 00000FFC00000000000FFC00000000000FFC00000000000FFC00000000000FFC00000000 000FFC00000000000FFC00000000000FFC00000000000FFC00000000000FFC0000000000 0FFC00000000000FFC00000000000FFC00000000000FFC00000000000FFC00000000000F FC00000000000FFC00000000000FFC00000000000FFC00000000000FFC00000000000FFC 00000000000FFC00000000000FFC00000000000FFC00000000000FFC00000000000FFC00 0000007FFFFFFF8000007FFFFFFF8000007FFFFFFF800031307DAF38>I<007FF0000003 FFFF00000FFFFFC0001FE03FE0001FF00FF0001FF007F8001FF007F8001FF003FC000FE0 03FC0007C003FC00010003FC00000003FC00000003FC000001FFFC00003FFFFC0001FFE3 FC0007FC03FC001FF003FC003FE003FC007FC003FC007F8003FC00FF8003FC00FF0003FC 00FF0003FC00FF0003FC00FF8007FC00FF800FFC007FC01FFC003FE07DFE001FFFF9FFF0 07FFE0FFF000FF003FF024207E9F27>97 D<01F8000000FFF8000000FFF8000000FFF800 00000FF800000007F800000007F800000007F800000007F800000007F800000007F80000 0007F800000007F800000007F800000007F800000007F800000007F800000007F8000000 07F81FF00007F8FFFC0007FBFFFF0007FFE07FC007FF001FE007FE000FF007FC000FF807 F80007F807F80007FC07F80003FC07F80003FC07F80003FE07F80003FE07F80003FE07F8 0003FE07F80003FE07F80003FE07F80003FE07F80003FE07F80003FE07F80003FE07F800 03FC07F80007FC07F80007F807F80007F807FC000FF007FE001FF007FF003FE007E7C07F 8007C3FFFF000780FFFC0007001FE00027327EB12D>I<000FFE00007FFFC001FFFFF003 FC07F80FF00FF81FE00FF81FE00FF83FC00FF87FC007F07FC003E07F800080FF800000FF 800000FF800000FF800000FF800000FF800000FF800000FF800000FF800000FF8000007F C000007FC000007FC0001C3FE0001C1FE0003C1FF000780FF800F003FE03E001FFFFC000 7FFF00000FF8001E207D9F24>I<0000000FC0000007FFC0000007FFC0000007FFC00000 007FC00000003FC00000003FC00000003FC00000003FC00000003FC00000003FC0000000 3FC00000003FC00000003FC00000003FC00000003FC00000003FC00000003FC0000FF03F C0007FFE3FC001FFFFBFC003FC07FFC00FF801FFC01FF000FFC01FE0007FC03FC0003FC0 7FC0003FC07FC0003FC07F80003FC0FF80003FC0FF80003FC0FF80003FC0FF80003FC0FF 80003FC0FF80003FC0FF80003FC0FF80003FC0FF80003FC0FF80003FC07F80003FC07F80 003FC07FC0003FC03FC0007FC03FE0007FC01FE000FFC00FF003FFC007FC0FFFE001FFFF 3FFE007FFC3FFE000FF03FFE27327DB12D>I<000FFC00007FFF8001FFFFE003FC0FF00F F003F80FE001FC1FE001FC3FC000FE3FC000FE7FC000FE7F80007FFF80007FFF80007FFF FFFFFFFFFFFFFFFFFFFFFFFF800000FF800000FF800000FF8000007F8000007FC000007F C000003FC000073FE000071FE0000F0FF0001E07FC003C03FF00F800FFFFF0003FFFC000 07FE0020207E9F25>I<0000FF000007FFC0001FFFF0007FC7F000FF0FF801FF0FF801FE 0FF803FE0FF803FC0FF803FC07F003FC01C003FC000003FC000003FC000003FC000003FC 000003FC000003FC0000FFFFFC00FFFFFC00FFFFFC0003FC000003FC000003FC000003FC 000003FC000003FC000003FC000003FC000003FC000003FC000003FC000003FC000003FC 000003FC000003FC000003FC000003FC000003FC000003FC000003FC000003FC000003FC 000003FC000003FC000003FC000003FC00007FFFF0007FFFF0007FFFF0001D327EB119> I<00000007C0001FF01FE000FFFE7FF003FFFFFBF007F83FC3F00FE00FE3F01FE00FF3F0 1FC007F0C03FC007F8003FC007F8003FC007F8003FC007F8003FC007F8003FC007F8003F C007F8001FC007F0001FE00FF0000FE00FE00007F83FC00007FFFF80000EFFFE00000E1F F000001E000000001E000000001E000000001F000000001F800000001FFFFF80000FFFFF F0000FFFFFFC000FFFFFFF0007FFFFFF8007FFFFFFC01FFFFFFFC03F00007FC07E00001F E0FE00000FE0FC000007E0FC000007E0FC000007E0FE00000FE07E00000FC07F00001FC0 3F80003F801FF001FF0007FFFFFC0001FFFFF000001FFF000024307EA028>I<01F80000 00FFF8000000FFF8000000FFF80000000FF800000007F800000007F800000007F8000000 07F800000007F800000007F800000007F800000007F800000007F800000007F800000007 F800000007F800000007F800000007F807F80007F83FFE0007F8FFFF8007F9F07F8007FB C03FC007FF803FC007FF001FE007FE001FE007FC001FE007FC001FE007F8001FE007F800 1FE007F8001FE007F8001FE007F8001FE007F8001FE007F8001FE007F8001FE007F8001F E007F8001FE007F8001FE007F8001FE007F8001FE007F8001FE007F8001FE007F8001FE0 07F8001FE007F8001FE007F8001FE0FFFFC3FFFFFFFFC3FFFFFFFFC3FFFF28327DB12D> I<03C0000FF0000FF0001FF8001FF8001FF8001FF8000FF0000FF00003C0000000000000 0000000000000000000000000000000000000000000001F8007FF8007FF8007FF80007F8 0007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F8 0007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F8 00FFFF80FFFF80FFFF8011337DB217>I<01F800FFF800FFF800FFF8000FF80007F80007 F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007 F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007 F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007F80007 F80007F80007F80007F80007F800FFFFC0FFFFC0FFFFC012327DB117>108 D<03F007F8001FE000FFF03FFE00FFF800FFF0FFFF83FFFE00FFF1F07F87C1FE000FF3C0 3FCF00FF0007F7803FDE00FF0007F7001FFC007F8007FE001FF8007F8007FC001FF0007F 8007FC001FF0007F8007F8001FE0007F8007F8001FE0007F8007F8001FE0007F8007F800 1FE0007F8007F8001FE0007F8007F8001FE0007F8007F8001FE0007F8007F8001FE0007F 8007F8001FE0007F8007F8001FE0007F8007F8001FE0007F8007F8001FE0007F8007F800 1FE0007F8007F8001FE0007F8007F8001FE0007F8007F8001FE0007F8007F8001FE0007F 8007F8001FE0007F8007F8001FE0007F80FFFFC3FFFF0FFFFCFFFFC3FFFF0FFFFCFFFFC3 FFFF0FFFFC3E207D9F43>I<03F007F800FFF03FFE00FFF0FFFF80FFF1F07F800FF3C03F C007F7803FC007F7001FE007FE001FE007FC001FE007FC001FE007F8001FE007F8001FE0 07F8001FE007F8001FE007F8001FE007F8001FE007F8001FE007F8001FE007F8001FE007 F8001FE007F8001FE007F8001FE007F8001FE007F8001FE007F8001FE007F8001FE007F8 001FE007F8001FE007F8001FE0FFFFC3FFFFFFFFC3FFFFFFFFC3FFFF28207D9F2D>I<00 07FC0000007FFFC00001FFFFF00003FC07F80007F001FC000FE000FE001FC0007F003FC0 007F803FC0007F807F80003FC07F80003FC07F80003FC0FF80003FE0FF80003FE0FF8000 3FE0FF80003FE0FF80003FE0FF80003FE0FF80003FE0FF80003FE07F80003FC07F80003F C07F80003FC03FC0007F803FC0007F801FC0007F000FE000FE0007F001FC0003FC07F800 01FFFFF000007FFFC0000007FC000023207E9F28>I<01F81FF000FFF8FFFC00FFFBFFFF 00FFFFE07FC007FF003FE007FE001FF007FC000FF807F8000FF807F80007FC07F80007FC 07F80007FC07F80003FE07F80003FE07F80003FE07F80003FE07F80003FE07F80003FE07 F80003FE07F80003FE07F80003FE07F80003FE07F80007FC07F80007FC07F80007F807F8 000FF807FC001FF007FE001FF007FF003FE007FFC0FF8007FBFFFF0007F8FFFC0007F81F E00007F800000007F800000007F800000007F800000007F800000007F800000007F80000 0007F800000007F800000007F800000007F8000000FFFFC00000FFFFC00000FFFFC00000 272E7E9F2D>I<03F07E00FFF1FF80FFF3FFE0FFF3CFE00FF71FF007F71FF007FE1FF007 FC1FF007FC0FE007FC07C007FC010007F8000007F8000007F8000007F8000007F8000007 F8000007F8000007F8000007F8000007F8000007F8000007F8000007F8000007F8000007 F8000007F8000007F8000007F80000FFFFE000FFFFE000FFFFE0001C207E9F21>114 D<01FF860007FFFE001FFFFE003F00FE007C003E0078001E00F8000E00F8000E00FC000E 00FC000000FF000000FFF800007FFF80007FFFF0003FFFF8001FFFFC0007FFFE0001FFFF 00003FFF000001FF8000003F80E0001F80E0001F80F0000F80F0000F80F8000F80FC001F 00FE003F00FF807E00FFFFFC00F3FFF000C07F800019207D9F20>I<001C0000001C0000 001C0000001C0000003C0000003C0000003C0000007C0000007C000000FC000001FC0000 03FC000007FC00001FFC0000FFFFFE00FFFFFE00FFFFFE0003FC000003FC000003FC0000 03FC000003FC000003FC000003FC000003FC000003FC000003FC000003FC000003FC0000 03FC000003FC000003FC000003FC000003FC038003FC038003FC038003FC038003FC0380 03FC038003FC038003FE078001FE070001FF0F0000FFFE00003FFC000007F000192E7FAD 1F>I<01F80007E0FFF803FFE0FFF803FFE0FFF803FFE00FF8003FE007F8001FE007F800 1FE007F8001FE007F8001FE007F8001FE007F8001FE007F8001FE007F8001FE007F8001F E007F8001FE007F8001FE007F8001FE007F8001FE007F8001FE007F8001FE007F8001FE0 07F8001FE007F8001FE007F8003FE007F8003FE007F8007FE007F8007FE003FC00FFE003 FC03DFF001FFFF9FFF007FFE1FFF000FF81FFF28207D9F2D>I<7FFF807FFC7FFF807FFC 7FFF807FFC03FC001F8001FE001E0000FF003C0000FF803800007FC07800003FC0F00000 1FE1E000000FF3C000000FFF80000007FF00000003FE00000001FE00000000FF00000000 FF80000000FFC0000001FFC0000003DFE00000078FF00000078FF800000F07FC00001E03 FE00003C01FE00007800FF0000F000FF8001E0007FC003E0003FE0FFFC01FFFFFFFC01FF FFFFFC01FFFF28207F9F2B>120 D E /Fv 50 122 df<00000FF03FE000003838F03800 006079C01C0000C07B803C0001C033003C0001C007003800038007000000038007000000 03800E00000003800E00000003800E00000007000E00000007001E00000007001C000000 7FFFFFFFE000FFFFFFFFE0000E001C00E0000E001C01C0000E003801C0000E003801C000 0E003801C0001C00380380001C00380380001C00700380001C00700380001C0070070000 3800700700003800700708003800E0070C003800E00E18003800E00E18007000E00E1000 7000E00E30007001C00620007001C003C0007001C0000000E001C0000000E00380000000 E00380000000C00380000071C707000000F18F06000000F18F0C0000006306180000003C 03E00000002E2D82A22B>14 D<0C1E3F3F1D02020204040810204080080F75A20F>39 D<0E1E1E1E1E02020404080810204080070F7D840F>44 DI<0000000C0000001C00000018000000380000003000000070000000E0000000C0000001 C00000018000000380000003000000070000000E0000000C0000001C0000001800000038 0000007000000060000000E0000000C0000001C000000380000003000000070000000600 00000E0000001C0000001800000038000000300000007000000060000000E0000001C000 00018000000380000003000000070000000E0000000C0000001C00000018000000380000 007000000060000000E0000000C00000001E3180A419>47 D<000F800030C000E06001C0 700380700300700700700F00700E00701E00701E00701C00F03C00F03C00F03C00F07801 E07801E07801E07801E0F003C0F003C0F003C0F00380E00780E00780E00700E00F00E00E 00E01C00E01C00E0380060700030E0001F000014227AA019>I<0001000300070006001E 003E03EE039C001C001C001C0038003800380038007000700070007000E000E000E000E0 01C001C001C001C00380038003800780FFFCFFFC10217AA019>I<000FC0003060006038 00801801801C03001C02201E06101E0C101E0C101E0C101E18203C18203C18403C184078 1880F00F00E00001C0000780000E00003C0000700001E0000380000600000C0018180038 1800303000707F80E063FFC0E0FFC0C07F80C01E0017227CA019>I<000FC0003FE00078 7000E03001C0380380380780380780380F00380F00380F00381E00781E00781E00781E00 F81E00F01C00F00C01F00E02F00605E00309E001F1E00003C00003C00003800007000007 00600E00F01C00F03800E07000E0E0007FC0003F000015227BA019>57 D<07000F800F800F000E00000000000000000000000000000000000000000000007000F8 00F800F000E00009157A940F>I<000001800000038000000380000007C0000007C00000 0FC000000FC000001BC000003BC0000033C0000063C0000063C00000C3C00000C3C00001 83C0000383C0000303C0000603C0000603C0000C03C0000C03E0001801E0001FFFE0003F FFE0007001E0006001E000C001E000C001E0018001E0018001E0030001E0070001E00F00 01E07FC01FFEFFC01FFE1F237EA224>65 D<00FFFFE000FFFFF8000F003C000F001E001E 001E001E000E001E000F001E000F003C000E003C001E003C001E003C003C007800380078 0070007801E0007807C000FFFF8000F001E000F000F000F0007801E0007801E0003801E0 003C01E0003C03C0007803C0007803C0007803C000F0078001E0078003E0078007C00780 1F00FFFFFE00FFFFF00020227DA122>I<00007E01800003FF8100000F80C300003E0067 000078003F0000F0001E0001C0001E000380001E000780001E000F00000C000E00000C00 1E00000C003C00000C003C00001800780000000078000000007800000000F000000000F0 00000000F000000000F000000000F000000000E000000000E000006000E000006000F000 00C000F00000C000F0000180007000018000780003000038000600003C000C00001E0038 00000F80E0000003FFC0000000FE000000212479A223>I<00FFFFF00000FFFFFC00000F 003E00000F000F00001E000780001E000380001E0003C0001E0001C0003C0001C0003C00 01E0003C0001E0003C0001E000780001E000780001E000780001E000780001E000F00003 C000F00003C000F00003C000F00003C001E000078001E000078001E000070001E0000F00 03C0000E0003C0001C0003C0003C0003C0007800078000F000078001E000078007800007 801F0000FFFFFC0000FFFFF0000023227DA125>I<00FFFFFF8000FFFFFF80000F000F80 000F000780001E000380001E000380001E000300001E000300003C000300003C03030000 3C030300003C0303000078060000007806000000781E0000007FFE000000FFFC000000F0 1C000000F01C000000F01C000001E018000001E0180C0001E0180C0001E000180003C000 180003C000300003C000300003C00070000780006000078000E000078003C00007800FC0 00FFFFFFC000FFFFFF800021227DA121>I<00FFFFFF00FFFFFF000F001F000F0007001E 0007001E0007001E0006001E0006003C0006003C0006003C0306003C0306007806000078 060000780E0000781E0000FFFC0000FFFC0000F01C0000F01C0001E0180001E0180001E0 180001E0180003C0000003C0000003C0000003C000000780000007800000078000000780 0000FFFC0000FFF8000020227DA120>I<00007E01800003FF8100000F80C300003E0067 000078003F0000F0001E0001C0001E000380001E000780001E000F00000C000E00000C00 1E00000C003C00000C003C00001800780000000078000000007800000000F000000000F0 00000000F000000000F000000000F0003FFC00E0007FFC00E00001E000E00001E000F000 03C000F00003C000F00003C000700003C000780007800038000780003C000F80001E001B 80000FC0F3000003FFC1000000FF000000212479A226>I<00FFF800FFF0000F00000F00 001E00001E00001E00001E00003C00003C00003C00003C00007800007800007800007800 00F00000F00000F00000F00001E00001E00001E00001E00003C00003C00003C00003C000 078000078000078000078000FFF800FFF00015227DA113>73 D<00FFFC0000FFFC00000F 0000000F0000001E0000001E0000001E0000001E0000003C0000003C0000003C0000003C 00000078000000780000007800000078000000F0000000F0000000F0000000F0000001E0 000001E0006001E0006001E000C003C000C003C000C003C0018003C00180078003800780 070007800F0007807F00FFFFFE00FFFFFE001B227DA11F>76 D<00FFC0000FFC00FFC000 0FF8000FC0001F80000FC0003780001BC0003F00001BC0006F00001BC0006F00001BC000 CF000033C0019E000033C0019E000033C0031E000031E0031E000061E0063C000061E006 3C000061E00C3C000061E0183C0000C1E018780000C1E030780000C1E030780000C1E060 78000181E0C0F0000181E0C0F0000181E180F0000180F180F0000300F301E0000300F601 E0000300F601E0000300FC01E0000600FC03C0000600F803C0000600F803C0001F00F003 C000FFE0E07FFC00FFC0E07FF8002E227DA12C>I<00FF001FFC00FF801FF8000F8003C0 000F800380001BC00300001BC00300001BC003000019E003000031E006000031E0060000 30F006000030F006000060F00C000060780C000060780C000060780C0000C03C180000C0 3C180000C03C180000C01E180001801E300001801E300001800F300001800F300003000F 6000030007E000030007E000030007E000060007C000060003C000060003C0001F0003C0 00FFE0018000FFC001800026227DA124>I<00FFFFE000FFFFF8000F003C000F001E001E 000F001E000F001E0007001E000F003C000F003C000F003C000F003C001E0078001E0078 003C00780038007800F000F003C000FFFF0000F0000000F0000001E0000001E0000001E0 000001E0000003C0000003C0000003C0000003C000000780000007800000078000000780 0000FFF80000FFF0000020227DA121>80 D<00FFFFC000FFFFF0000F0078000F003C001E 001E001E000E001E000E001E000E003C001E003C001E003C001E003C003C007800380078 0070007800E00078078000FFFC0000F00E0000F0070000F0038001E003C001E003C001E0 03C001E003C003C0078003C0078003C0078003C0078007800F0007800F0307800F030780 0706FFF80706FFF0038C000000F020237DA124>82 D<0001F060000FFC40001E0EC00038 07C0007003C000E0038000C0038001C0038001C00380038003000380030003C0000003C0 000003E0000001F8000001FF000000FFE000007FF000001FF8000003FC0000007C000000 3C0000001E0000001E0000001E0030001C0030001C0030001C0030001800700038007000 7000780060007C01C000EF038000C7FF000081FC00001B247DA21B>I<1FFFFFF81FFFFF F81E03C0783803C03838078038300780386007803060078030600F0030C00F0030C00F00 30C00F0030001E0000001E0000001E0000001E0000003C0000003C0000003C0000003C00 000078000000780000007800000078000000F0000000F0000000F0000000F0000001E000 0001E0000001E0000003E00000FFFF0000FFFF00001D2277A123>I<3FFE07FF3FFC07FE 03C000F003C000E0078000C0078000C0078000C0078000C00F0001800F0001800F000180 0F0001801E0003001E0003001E0003001E0003003C0006003C0006003C0006003C000600 78000C0078000C0078000C0078000C00F0001800F0001800F00030007000300070006000 7000C00038018000380300001E0E00000FFC000003F00000202377A124>I87 D<00F8C0018DC00707C00E07800E03801C03803C0380380700780700780700780700F00E 00F00E00F00E10F00E18F01C30701C30703C20307C6030CC400F078015157B9419>97 D<03C01F803F800380038007000700070007000E000E000E000E001C001CF81D8C1E0E3C 063C073807380F700F700F700F700FE01EE01EE01EE03CE038E038607060E031C01F0010 237BA216>I<007E0001C3000301800703800E07801C07803C0000380000780000780000 780000F00000F00000F00000F00000F00100700300700600301C001870000FC00011157B 9416>I<00003C0003F80003F80000380000380000700000700000700000700000E00000 E00000E00000E00001C000F9C0018DC00707C00E07800E03801C03803C03803807007807 00780700780700F00E00F00E00F00E10F00E18F01C30701C30703C20307C6030CC400F07 8016237BA219>I<00F8038C0E061C063C063806780CF038FFE0F000F000E000E000E000 E000E002E006600C703830E00F800F157A9416>I<00003C0000E70001CF0001CF000386 000380000380000380000700000700000700000700000700000E0000FFF000FFF0000E00 000E00001C00001C00001C00001C00001C00003800003800003800003800003800007000 00700000700000700000700000E00000E00000E00000E00001C00001C00001C000718000 F38000F300006200003C0000182D82A20F>I<001F180031B800E0F801C0F001C0700380 700780700700E00F00E00F00E00F00E01E01C01E01C01E01C01E01C01E03800E03800E07 80060F80061F0001E700000700000700000E00000E00000E00701C00F01800F0300060E0 003F8000151F7E9416>I<00F0000FE0000FE00000E00000E00001C00001C00001C00001 C000038000038000038000038000070000071F0007618007C0C00F80E00F00E00F00E00E 00E01E01C01C01C01C01C01C01C038038038038038038438070670070C700E0C700E1870 0610E006206003C017237DA219>I<006000F000E000E000000000000000000000000000 0000000F00118021806180C380C380C380070007000E000E000E001C001C201C30386038 60384038C019800E000C217CA00F>I<01E00FC01FC001C001C003800380038003800700 0700070007000E000E000E000E001C001C001C001C003800380038003800700070007100 7180E300E300E300E60066003C000B237CA20C>108 D<1E07C07C00331861860063B033 030063E03E0380C3C03C0380C3C03C0380C3803803800780780700070070070007007007 0007007007000E00E00E000E00E00E000E00E00E100E00E01C181C01C01C301C01C03830 1C01C038601C01C0184038038018801801800F0025157C9428>I<1C07C0261860672030 C74038C78038C78038C700380F00700E00700E00700E00701C00E01C00E01C00E21C01C3 3801C638018638038438018C7001883000F018157C941B>I<007E0001C3000381800701 C00E01C01C01E03C01E03801E07801E07801E07801E0F003C0F003C0F00380F007807007 00700E00700C0030180018700007C00013157B9419>I<03C1F00663180C741C0C780C18 780E18700E18701E00E01E00E01E00E01E00E01E01C03C01C03C01C03C01C07803C07003 C07003C0E003C1C0076380071E000700000700000E00000E00000E00000E00001C00001C 0000FFC000FFC000171F7F9419>I<00F840018CC00707C00E07800E03801C03803C0380 380700780700780700780700F00E00F00E00F00E00F00E00F01C00701C00703C00307C00 30F8000F380000380000380000700000700000700000700000E00000E0000FFE000FFC00 121F7B9416>I<1E0F8033184063A0E063C1E0C3C1E0C380C0C380000700000700000700 000700000E00000E00000E00000E00001C00001C00001C00001C00003800001800001315 7C9415>I<00FC000183000201800403800C07800C07800C02000F00000FF00007FC0003 FE00003E00000F00000700700700F00600F00600E004006008003030001FC00011157D94 14>I<00C001C001C001C001C003800380038003800700FFF8FFF807000E000E000E000E 001C001C001C001C00380038003810381870307030706070C031801E000D1F7C9E10>I< 0F003011807021C07061C0E0C1C0E0C380E0C380E00381C00701C00701C00701C00E0380 0E03800E03840E03860E070C0C070C0E07080E0F1806131003E1E017157C941A>I<0E00 C03301E06383E06381E0C380E0C700E0C700E00700C00E00C00E00C00E00C01C01801C01 801C01801C03001C03001C02001C04000C0C0006180003E00013157C9416>I<0F003070 1180707821C070F861C0E078C1C0E038C380E038C380E0380381C0300701C0300701C030 0701C0300E0380600E0380600E0380600E0380C00E0380C00E0780800E078180060D8300 0319C60001F07C001D157C9420>I<03C1C00C6630183C70303CF02038F0603860603800 00700000700000700000700000E00000E00000E02000E03061C060F1C060F1C0C0E3C080 4663003C3E0014157D9416>I<0F001811803821C03861C070C1C070C38070C380700380 E00700E00700E00700E00E01C00E01C00E01C00E01C00E03800E03800E07800E0780061F 0001E700000700000700000E00300E00781C0078180070300060600021C0001F0000151F 7C9418>I E /Fw 9 122 df72 D<00FE010003FF83000F81E7001E0077003C003F0038001F0078000F 0070000F00F0000700F0000700F0000300F0000300F8000300F8000300FC0000007E0000 007F0000003FE000001FFE00000FFFE00007FFF80003FFFC00007FFE000007FF0000007F 0000001F8000000F80000007C0000007C0C00003C0C00003C0C00003C0C00003C0E00003 C0E0000380E0000380F0000780F8000700FC000E00EF001C00E3C07800C1FFF000803FC0 001A2B7DA921>83 D<03FC00000E070000180380003C01C0003E01E0003E00F0001C00F0 000800F0000000F0000000F0000000F000007FF00003E0F0000F80F0001E00F0003C00F0 007C00F0007800F0C0F800F0C0F800F0C0F800F0C0F801F0C07C01F0C03C0279801E0C7F 8007F01E001A1A7E991D>97 D<00000F0001FC3100070743800E03C3801E03C3003C01E0 003C01E0007C01F0007C01F0007C01F0007C01F0007C01F0003C01E0003C01E0001E03C0 000E0380001707000011FC000030000000300000003000000030000000180000001FFF80 000FFFF00007FFF80018007C0030001E0070000E0060000700E0000700E0000700E00007 00E000070070000E0070000E0038001C001C0038000781E00000FF000019287E9A1D> 103 D<0F000000FF000000FF0000001F0000000F0000000F0000000F0000000F0000000F 0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F07F0000F 1838000F201C000F400E000F400F000F800F000F800F000F000F000F000F000F000F000F 000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F 000F000F000F000F000F000F000F000F000F00FFF0FFF0FFF0FFF01C2A7EA921>I<1E00 3F003F003F003F001E000000000000000000000000000000000000000F00FF00FF001F00 0F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F00 0F000F00FFF0FFF00C297EA811>I<0F000000FF000000FF0000001F0000000F0000000F 0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F 0000000F0000000F03FFC00F03FFC00F00FE000F00F0000F00E0000F01C0000F0380000F 0700000F0E00000F1C00000F3E00000F7E00000FFF00000FCF00000F8780000F07C0000F 03C0000F03E0000F01F0000F00F0000F00F8000F0078000F007C000F007E00FFF1FFE0FF F1FFE01B2A7EA91F>107 D<018000018000018000018000018000038000038000038000 0780000780000F80003FFF80FFFF80078000078000078000078000078000078000078000 0780000780000780000780000780000780000780C00780C00780C00780C00780C00780C0 0780C003818001C18000E300007C0012257FA417>116 D121 D E /Fx 16 124 df<000000180000000000003C0000000000003C0000000000 003C0000000000007E0000000000007E0000000000007E000000000000FF000000000000 FF000000000000FF0000000000019F8000000000019F8000000000019F8000000000030F C000000000030FC000000000070FE0000000000607E0000000000607E0000000000E07F0 000000000C03F0000000000C03F0000000001803F8000000001801F8000000001801F800 0000003000FC000000003000FC000000003000FC0000000060007E0000000060007E0000 000060007E00000000C0003F00000000C0003F00000001C0003F8000000180001F800000 0180001F8000000380001FC000000300000FC000000300000FC0000007FFFFFFE0000007 FFFFFFE0000006000007E000000C000003F000000C000003F000000C000003F000001800 0001F8000018000001F8000038000001FC000030000000FC000030000000FC0000700000 00FE0000600000007E0000600000007E0000C00000007F0000C00000003F0001C0000000 3F0001E00000003F8003E00000003F800FF00000007FC0FFFE000007FFFFFFFE000007FF FF383C7EBB3C>65 D70 D80 D<7FFFFFFFFFFFC07FFFFFFFFFFFC07FC003FC003FC07E00 01F8000FC07C0001F80003C0780001F80001C0700001F80001C0700001F80000C0600001 F80000C0600001F80000C0E00001F80000E0E00001F80000E0C00001F8000060C00001F8 000060C00001F8000060C00001F8000060C00001F8000060C00001F8000060C00001F800 0060000001F8000000000001F8000000000001F8000000000001F8000000000001F80000 00000001F8000000000001F8000000000001F8000000000001F8000000000001F8000000 000001F8000000000001F8000000000001F8000000000001F8000000000001F800000000 0001F8000000000001F8000000000001F8000000000001F8000000000001F80000000000 01F8000000000001F8000000000001F8000000000001F8000000000001F8000000000001 F8000000000001F8000000000001F8000000000001F8000000000001F8000000000001F8 000000000001F8000000000001F8000000000001F8000000000001F8000000000001F800 0000000001F8000000000007FE0000000007FFFFFE00000007FFFFFE0000333B7DBA39> 84 D<007F80000003FFF000000780FC00000C003E00001C000F00003E000F80003F0007 C0003F0007C0003F0003E0001E0003E000000003E000000003E000000003E000000003E0 00000003E00000007FE000000FFBE000007E03E00001F803E00007E003E0000F8003E000 1F0003E0003F0003E0007E0003E0007E0003E000FC0003E060FC0003E060FC0003E060FC 0003E060FC0007E060FC0007E0607E000BE0607E0013E0603F0031F0C01FC1C1FF8007FF 80FF0001FE003E0023257CA427>97 D<0007F800003FFE0000FC1F8001F007C003C001E0 078001F00F8000F81F0000F81F00007C3E00007C3E00007C7E00007E7C00003E7C00003E FC00003EFFFFFFFEFFFFFFFEFC000000FC000000FC000000FC000000FC000000FC000000 7C0000007E0000007E0000003E0000003E0000061F0000060F80000C0F80000C07C00018 03E0003000F80060007E03C0001FFF000003F8001F257EA423>101 D<0000FC000003FF00000F8380001E07C0003C0FC0007C0FC000780FC000F8078000F800 0001F0000001F0000001F0000001F0000001F0000001F0000001F0000001F0000001F000 0001F0000001F0000001F0000001F0000001F00000FFFFFC00FFFFFC0001F0000001F000 0001F0000001F0000001F0000001F0000001F0000001F0000001F0000001F0000001F000 0001F0000001F0000001F0000001F0000001F0000001F0000001F0000001F0000001F000 0001F0000001F0000001F0000001F0000001F0000001F0000001F0000001F0000001F000 0001F0000001F0000001F0000003F800007FFFE0007FFFE0001A3C7FBB18>I<03E00000 00FFE0000000FFE000000007E000000003E000000003E000000003E000000003E0000000 03E000000003E000000003E000000003E000000003E000000003E000000003E000000003 E000000003E000000003E000000003E000000003E000000003E000000003E000000003E0 00000003E01FE00003E07FFC0003E0C07E0003E3001F0003E6000F8003E4000F8003E800 078003E80007C003F00007C003F00007C003E00007C003E00007C003E00007C003E00007 C003E00007C003E00007C003E00007C003E00007C003E00007C003E00007C003E00007C0 03E00007C003E00007C003E00007C003E00007C003E00007C003E00007C003E00007C003 E00007C003E00007C003E00007C003E00007C003E00007C003E00007C007F0000FE0FFFF 81FFFFFFFF81FFFF283C7EBB2C>104 D<07000F801FC01FC01FC00F8007000000000000 00000000000000000000000000000000000000000007C0FFC0FFC00FC007C007C007C007 C007C007C007C007C007C007C007C007C007C007C007C007C007C007C007C007C007C007 C007C007C007C007C007C007C007C007C00FE0FFFEFFFE0F397DB815>I<03E01FE0003F C000FFE07FFC00FFF800FFE0C07E0180FC0007E3001F06003E0003E6000F8C001F0003E4 000F88001F0003E8000790000F0003E80007D0000F8003F00007E0000F8003F00007E000 0F8003E00007C0000F8003E00007C0000F8003E00007C0000F8003E00007C0000F8003E0 0007C0000F8003E00007C0000F8003E00007C0000F8003E00007C0000F8003E00007C000 0F8003E00007C0000F8003E00007C0000F8003E00007C0000F8003E00007C0000F8003E0 0007C0000F8003E00007C0000F8003E00007C0000F8003E00007C0000F8003E00007C000 0F8003E00007C0000F8003E00007C0000F8003E00007C0000F8003E00007C0000F8003E0 0007C0000F8003E00007C0000F8007F0000FE0001FC0FFFF81FFFF03FFFEFFFF81FFFF03 FFFE3F257EA443>109 D<03E01FE000FFE07FFC00FFE0C07E0007E3001F0003E6000F80 03E4000F8003E800078003E80007C003F00007C003F00007C003E00007C003E00007C003 E00007C003E00007C003E00007C003E00007C003E00007C003E00007C003E00007C003E0 0007C003E00007C003E00007C003E00007C003E00007C003E00007C003E00007C003E000 07C003E00007C003E00007C003E00007C003E00007C003E00007C003E00007C003E00007 C007F0000FE0FFFF81FFFFFFFF81FFFF28257EA42C>I<0007FC0000001FFF0000007C07 C00001F001F00003C00078000780003C000F80003E001F00001F001E00000F003E00000F 803E00000F807E00000FC07C000007C07C000007C0FC000007E0FC000007E0FC000007E0 FC000007E0FC000007E0FC000007E0FC000007E0FC000007E0FC000007E07C000007C07C 000007C07E00000FC03E00000F803E00000F801F00001F001F00001F000F80003E0007C0 007C0003E000F80001F001F000007C07C000001FFF00000007FC000023257EA427>I<03 E03E00FFE0FF00FFE1C78007E30FC003E60FC003EC0FC003E8078003E8030003F0000003 F0000003F0000003F0000003E0000003E0000003E0000003E0000003E0000003E0000003 E0000003E0000003E0000003E0000003E0000003E0000003E0000003E0000003E0000003 E0000003E0000003E0000003E0000003E0000003E0000003E0000007F00000FFFFC000FF FFC0001A257EA41E>114 D<00FF020007FFC6000F00EE001C003E0038001E0078000E00 70000E00F0000E00F0000600F0000600F8000600F8000600FC0000007F0000003FF00000 3FFF00001FFFE00007FFF00001FFF800003FFC000001FE0000007F00C0001F00C0000F80 C0000F80E0000780E0000780E0000780F0000780F0000780F8000700F8000F00FC000E00 E6003C00E380F800C1FFF000807F800019257DA41F>I<03E00007C0FFE001FFC0FFE001 FFC007E0000FC003E00007C003E00007C003E00007C003E00007C003E00007C003E00007 C003E00007C003E00007C003E00007C003E00007C003E00007C003E00007C003E00007C0 03E00007C003E00007C003E00007C003E00007C003E00007C003E00007C003E00007C003 E00007C003E00007C003E00007C003E0000FC003E0000FC003E0000FC001E00017C001E0 0037C001F00067C000F800C7C0007E0387E0001FFE07FF0007F807FF28257EA42C>117 D123 D E end %%EndProlog %%BeginSetup %%Feature: *Resolution 300dpi TeXDict begin %%EndSetup %%Page: 1 1 1 0 bop 401 133 a Fx(The)27 b(F)-7 b(ourier)28 b(T)-7 b(ransform)27 b({)g(A)f(Primer)822 305 y Fw(Hagit)19 b(Shatk)m(a)n(y)650 379 y Fv(Dep)n(artment)e(of)h(Computer)f(Scienc)n (e)817 454 y(Br)n(own)h(University)774 529 y(Pr)n(ovidenc)n(e,)g(RI)f (02912)35 758 y Fu(1)81 b(In)n(tro)r(duction)35 893 y Ft(The)15 b(F)l(ourier)e(transform)h(is)g(among)g(the)g(most)f(widely)g (used)h(to)q(ols)h(for)g(transforming)e(data)i(sequences)35 955 y(and)i(functions)e(\(single)g(or)h(m)o(ulti-dim)o(ensional\),)c (from)j(what)h(is)f(referred)g(to)h(as)g(the)f Fv(time)j(domain)d Ft(to)35 1017 y(the)j Fv(fr)n(e)n(quency)h(domain)p Ft(.)26 b(Applications)17 b(of)h(the)f(transform)g(range)i(from)d(designing)i (\014lters)f(for)h(noise)35 1080 y(reduction)e(in)g(audio-signals)i (\(suc)o(h)e(as)g(m)o(usic)f(or)h(sp)q(eec)o(h\),)f(to)i(fast)g(m)o (ultipli)o(cation)d(of)i(p)q(olynomials.)35 1166 y(The)k(follo)o(wing)g (do)q(cumen)o(t)f(pro)o(vides)g(a)h(brief)g(in)o(tro)q(duction)f(to)i (the)e(F)l(ourier)h(transform,)g(for)g(those)35 1228 y(of)e(us)g(who)g(are)g(still)e(aliens)h(in)h(the)f Fv(fr)n(e)n(quency) i(domain)p Ft(.)25 b(The)17 b(topic)h(of)g(the)f(F)l(ourier)g (transform)g(and)35 1290 y(its)h(applications)f(is)g(co)o(v)o(ered)f (in)h(n)o(umerous,)f(stout)i(b)q(o)q(oks)h(\(suc)o(h)e(as)h([Bra65,)f (OS75)q(,)g(W)l(ea83,)g(BP85)q(,)35 1352 y(Jac90)q(]\),)j(and)g(this)f (pap)q(er)h(can)g(not)g(and)g(do)q(es)g(not)g(in)o(tend)f(to)h(co)o(v)o (er)e(the)h(area)h(in)f(full.)30 b(Its)19 b(goal)i(is)35 1415 y(to)e(in)o(tro)q(duce)g(the)f(basic)h(terminology)e(and)i(the)f (main)f(concepts)i(of)g(the)f(area,)h(pro)o(viding)g(common)35 1477 y(ground)f(for)e(further)g(discussion)h(and)f(study)l(.)35 1563 y(The)h(rest)g(of)g(the)g(pap)q(er)g(is)g(organized)g(as)g(follo)o (ws:)22 b(Section)16 b(2)i(in)o(tro)q(duces)e(the)h(idea)f(of)h (represen)o(ting)35 1625 y(sequences)f(and)h(functions)f(through)i(sin) o(usoids.)k(Section)16 b(3)h(sho)o(ws)g(ho)o(w)g(complex)d(n)o(um)o(b)q (ers)h(and)i(ex-)35 1687 y(p)q(onen)o(tials)c(\014t)g(in)o(to)f(the)h (sin)o(usoids)g(represen)o(tation)f(framew)o(ork.)18 b(Section)13 b(4)g(presen)o(ts)f(the)h(con)o(tin)o(uous)35 1750 y(F)l(ourier)20 b(transform.)32 b(In)19 b(Section)h(5)g(w)o(e)f (discuss)h(sampling,)g(whic)o(h)f(is)h(the)f(mean)g(for)h(con)o(v)o (erting)f(a)35 1812 y(con)o(tin)o(uous)13 b(signal)g(in)o(to)g(a)g (discrete)f(sequence.)19 b(Section)12 b(6)h(presen)o(ts)g(the)f (discrete)g(F)l(ourier)g(transform,)35 1874 y(and)20 b(the)e(prominen)o(t)f(related)i(topics)f({)i(con)o(v)o(olution)e(and)h (the)g(fast)g(F)l(ourier)f(transform.)29 b(Section)18 b(7)35 1936 y(demonstrates)e(some)f(of)i(the)f(applications)g(of)h(the) f(F)l(ourier)f(transform,)h(and)g(concludes)g(the)g(pap)q(er.)35 2126 y Fu(2)81 b(F)-7 b(unctions)27 b(as)g(Com)n(binations)f(of)h(Sin)n (usoids)35 2262 y Ft(An)o(y)17 b(con)o(tin)o(uous,)g(p)q(erio)q(dic)h (function)f(can)h(b)q(e)f(represen)o(ted)g(as)h(a)g(linear)f(com)o (bination)f(of)i(sines)f(and)35 2324 y(cosines.)k(A)13 b(sine)h(is)g(a)g(function)g(of)g(the)g(form:)19 b Fs(Asin)p Ft(\(2)p Fs(\031)r(!)r(t)6 b Ft(+)g Fs(\036)p Ft(\),)13 b(where)h Fs(A)g Ft(is)f(the)h Fv(amplitude)p Ft(,)h Fs(!)h Ft(is)e(the)35 2386 y Fv(fr)n(e)n(quency)j Ft(measured)f(in)g (cycles)f(\(or)i(p)q(erio)q(ds\))h(p)q(er)f(second,)f(and)h Fs(\036)g Ft(is)f(the)h Fv(phase)p Ft(,)f(whic)o(h)g(is)g(used)h(for)35 2448 y(getting)i(v)m(alues)f(other)h(than)g(0)f(at)h Fs(t)e Ft(=)g(0.)28 b(A)18 b(cosine)g(function)h(has)g(exactly)e(the)h (same)f(comp)q(onen)o(ts)p 35 2492 775 2 v 63 2537 a Fr(c)51 2538 y Fq(\015)35 b Fr(1995)14 b(Hagit)h(Shatk)n(a)o(y)m(.)21 b(P)o(ermission)14 b(is)h(gran)o(ted)h(to)f(an)o(y)g(individual)e(or)j (institution)e(to)h(use,)h(cop)o(y)g(or)f(distribute)35 2588 y(this)f(do)q(cumen)o(t)g(for)f(non-pro\014t)h(purp)q(ose)h(only)m (,)d(as)i(long)e(as)i(the)h(do)q(cumen)o(t)e(is)h(not)f(altered)i(in)e (an)o(y)g(w)o(a)o(y)m(,)g(the)h(title)g(and)35 2637 y(headers)i(are)e (unmo)q(di\014ed,)e(and)i(this)g(cop)o(yrigh)o(t)f(notice)h(is)g (retained)992 2841 y Ft(1)p eop %%Page: 2 2 2 1 bop 35 -68 a Ft(as)18 b(the)f(sine)f(function,)h(and)h(can)f(b)q(e) g(view)o(ed)f(as)h(a)h(shifted)e(sine)h(\(or)g(more)f(accurately)g({)i (a)f(sine)g(with)35 -6 y(phase)g Fs(\031)r(=)p Ft(2\).)35 80 y(Th)o(us,)f(giv)o(en)f(a)g(function)h Fs(f)5 b Ft(\()p Fs(t)p Ft(\),)15 b(w)o(e)g(can)g(usually)h(rewrite)e(it)h(\(or)h(at)g (least)f(appro)o(ximate)f(it\),)h(for)g(some)35 142 y Fs(n)i Ft(as:)560 219 y Fs(f)5 b Ft(\()p Fs(t)p Ft(\))14 b(=)732 165 y Fp(n)713 177 y Fo(X)711 269 y Fp(k)q Fn(=1)775 219 y Ft(\()p Fs(A)831 226 y Fp(k)852 219 y Fs(cos)p Ft(\(2)p Fs(\031)r(!)1022 226 y Fp(k)1044 219 y Fs(t)p Ft(\))c(+)i Fs(B)1178 226 y Fp(k)1199 219 y Fs(sin)p Ft(\(2)p Fs(\031)r(!)1371 226 y Fp(k)1392 219 y Fs(t)p Ft(\)\))462 b(\(1\))35 334 y(Both)23 b(sines)f Fv(and)h Ft(cosines)f(are)h(com)o(bined,)e(rather)i(than)g Fv(only)f Ft(sines,)i(to)f(allo)o(w)f(the)g(expression)g(of)35 396 y(functions)17 b(for)g(whic)o(h)e Fs(f)5 b Ft(\(0\))15 b Fm(6)p Ft(=)f(0,)j(in)f(a)g(w)o(a)o(y)h(that)f(is)h(simpler)d(than)j (adding)g(the)f(phase)h(to)g(the)f(sine)g(in)35 459 y(order)h(to)f(mak) o(e)f(it)h(in)o(to)f(a)i(cosine.)35 545 y(As)f(an)h(example)d(of)j(a)f (linear)g(com)o(bination)f(of)h(sin)o(usoids)h(consider)f(the)g (function:)608 645 y Fs(f)632 652 y Fn(1)652 645 y Ft(\()p Fs(t)p Ft(\))e(=)f(0)p Fs(:)p Ft(5)p Fs(sin\031)r(t)e Ft(+)g(2)p Fs(sin)p Ft(4)p Fs(\031)r(t)f Ft(+)h(4)p Fs(cos)p Ft(2)p Fs(\031)r(t)35 744 y Ft(Its)20 b(three)g(sin)o(usoidal)g(comp)q (onen)o(ts)f(and)i(the)f(function)g Fs(f)1146 751 y Fn(1)1185 744 y Ft(itself)f(are)i(depicted)d(in)i(Figure)g(1,)h(as)g Fv(a,)35 807 y(b,)i(c)d Ft(and)h Fv(d)f Ft(resp)q(ectiv)o(ely)l(.)30 b(The)21 b(function)e Fs(f)896 814 y Fn(1)916 807 y Ft(\()p Fs(t)p Ft(\))h(consists)g(of)h(sines)f(and)h(cosines)f(of)g(3)h (frequencies.)254 516 y 23681433 25575919 4736286 4736286 35522150 47362867 startTexFig 254 516 a %%BeginDocument: fig1.ps /Mathdict 150 dict def Mathdict begin /Mlmarg 1.0 72 mul def /Mrmarg 1.0 72 mul def /Mbmarg 1.0 72 mul def /Mtmarg 1.0 72 mul def /Mwidth 8.5 72 mul def /Mheight 11 72 mul def /Mtransform { } bind def /Mnodistort true def /Mfixwid true def /Mfixdash false def /Mrot 0 def /Mpstart { MathPictureStart } bind def /Mpend { MathPictureEnd } bind def /Mscale { 0 1 0 1 5 -1 roll MathScale } bind def /ISOLatin1Encoding dup where { pop pop } { [ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright /parenleft /parenright /asterisk /plus /comma /minus /period /slash /zero /one /two /three /four /five /six /seven /eight /nine /colon /semicolon /less /equal /greater /question /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore /quoteleft /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar /braceright /asciitilde /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright /ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron /degree /plusminus /twosuperior /threesuperior /acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf /threequarters /questiondown /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis ] def } ifelse /MFontDict 50 dict def /MStrCat { exch dup length 2 index length add string dup 3 1 roll copy length exch dup 4 2 roll exch putinterval } def /MCreateEncoding { 1 index 255 string cvs (-) MStrCat 1 index MStrCat cvn exch (Encoding) MStrCat cvn dup where { exch get } { pop StandardEncoding } ifelse 3 1 roll dup MFontDict exch known not { 1 index findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding 3 index def currentdict end 1 index exch definefont pop MFontDict 1 index null put } if exch pop exch pop } def /ISOLatin1 { (ISOLatin1) MCreateEncoding } def /ISO8859 { (ISOLatin1) MCreateEncoding } def /Mcopyfont { dup maxlength dict exch { 1 index /FID eq { pop pop } { 2 index 3 1 roll put } ifelse } forall } def /Plain /Courier findfont Mcopyfont definefont pop /Bold /Courier-Bold findfont Mcopyfont definefont pop /Italic /Courier-Oblique findfont Mcopyfont definefont pop /MathPictureStart { gsave Mtransform Mlmarg Mbmarg translate Mwidth Mlmarg Mrmarg add sub /Mwidth exch def Mheight Mbmarg Mtmarg add sub /Mheight exch def /Mtmatrix matrix currentmatrix def /Mgmatrix matrix currentmatrix def } bind def /MathPictureEnd { grestore } bind def /MFill { 0 0 moveto Mwidth 0 lineto Mwidth Mheight lineto 0 Mheight lineto fill } bind def /MPlotRegion { 3 index Mwidth mul 2 index Mheight mul translate exch sub Mheight mul /Mheight exch def exch sub Mwidth mul /Mwidth exch def } bind def /MathSubStart { Momatrix Mgmatrix Mtmatrix Mwidth Mheight 7 -2 roll moveto Mtmatrix setmatrix currentpoint Mgmatrix setmatrix 9 -2 roll moveto Mtmatrix setmatrix currentpoint 2 copy translate /Mtmatrix matrix currentmatrix def 3 -1 roll exch sub /Mheight exch def sub /Mwidth exch def } bind def /MathSubEnd { /Mheight exch def /Mwidth exch def /Mtmatrix exch def dup setmatrix /Mgmatrix exch def /Momatrix exch def } bind def /Mdot { moveto 0 0 rlineto stroke } bind def /Mtetra { moveto lineto lineto lineto fill } bind def /Metetra { moveto lineto lineto lineto closepath gsave fill grestore 0 setgray stroke } bind def /Mistroke { flattenpath 0 0 0 { 4 2 roll pop pop } { 4 -1 roll 2 index sub dup mul 4 -1 roll 2 index sub dup mul add sqrt 4 -1 roll add 3 1 roll } { stop } { stop } pathforall pop pop currentpoint stroke moveto currentdash 3 -1 roll add setdash } bind def /Mfstroke { stroke currentdash pop 0 setdash } bind def /Mrotsboxa { gsave dup /Mrot exch def Mrotcheck Mtmatrix dup setmatrix 7 1 roll 4 index 4 index translate rotate 3 index -1 mul 3 index -1 mul translate /Mtmatrix matrix currentmatrix def grestore Msboxa 3 -1 roll /Mtmatrix exch def /Mrot 0 def } bind def /Msboxa { newpath 5 -1 roll Mvboxa pop Mboxout 6 -1 roll 5 -1 roll 4 -1 roll Msboxa1 5 -3 roll Msboxa1 Mboxrot [ 7 -2 roll 2 copy [ 3 1 roll 10 -1 roll 9 -1 roll ] 6 1 roll 5 -2 roll ] } bind def /Msboxa1 { sub 2 div dup 2 index 1 add mul 3 -1 roll -1 add 3 -1 roll mul } bind def /Mvboxa { Mfixwid { Mvboxa1 } { dup Mwidthcal 0 exch { add } forall exch Mvboxa1 4 index 7 -1 roll add 4 -1 roll pop 3 1 roll } ifelse } bind def /Mvboxa1 { gsave newpath [ true 3 -1 roll { Mbbox 5 -1 roll { 0 5 1 roll } { 7 -1 roll exch sub (m) stringwidth pop .3 mul sub 7 1 roll 6 -1 roll 4 -1 roll Mmin 3 -1 roll 5 index add 5 -1 roll 4 -1 roll Mmax 4 -1 roll } ifelse false } forall { stop } if counttomark 1 add 4 roll ] grestore } bind def /Mbbox { 1 dict begin 0 0 moveto /temp (T) def { gsave currentpoint newpath moveto temp 0 3 -1 roll put temp false charpath flattenpath currentpoint pathbbox grestore moveto lineto moveto} forall pathbbox newpath end } bind def /Mmin { 2 copy gt { exch } if pop } bind def /Mmax { 2 copy lt { exch } if pop } bind def /Mrotshowa { dup /Mrot exch def Mrotcheck Mtmatrix dup setmatrix 7 1 roll 4 index 4 index translate rotate 3 index -1 mul 3 index -1 mul translate /Mtmatrix matrix currentmatrix def Mgmatrix setmatrix Mshowa /Mtmatrix exch def /Mrot 0 def } bind def /Mshowa { 4 -2 roll moveto 2 index Mtmatrix setmatrix Mvboxa 7 1 roll Mboxout 6 -1 roll 5 -1 roll 4 -1 roll Mshowa1 4 1 roll Mshowa1 rmoveto currentpoint Mfixwid { Mshowax } { Mshoway } ifelse pop pop pop pop Mgmatrix setmatrix } bind def /Mshowax { 0 1 4 index length -1 add { 2 index 4 index 2 index get 3 index add moveto 4 index exch get Mfixdash { Mfixdashp } if show } for } bind def /Mfixdashp { dup length 1 gt 1 index true exch { 45 eq and } forall and { gsave (--) stringwidth pop (-) stringwidth pop sub 2 div 0 rmoveto dup length 1 sub { (-) show } repeat grestore } if } bind def /Mshoway { 3 index Mwidthcal 5 1 roll 0 1 4 index length -1 add { 2 index 4 index 2 index get 3 index add moveto 4 index exch get [ 6 index aload length 2 add -1 roll { pop Strform stringwidth pop neg exch add 0 rmoveto } exch kshow cleartomark } for pop } bind def /Mwidthcal { [ exch { Mwidthcal1 } forall ] [ exch dup Maxlen -1 add 0 1 3 -1 roll { [ exch 2 index { 1 index Mget exch } forall pop Maxget exch } for pop ] Mreva } bind def /Mreva { [ exch aload length -1 1 {1 roll} for ] } bind def /Mget { 1 index length -1 add 1 index ge { get } { pop pop 0 } ifelse } bind def /Maxlen { [ exch { length } forall Maxget } bind def /Maxget { counttomark -1 add 1 1 3 -1 roll { pop Mmax } for exch pop } bind def /Mwidthcal1 { [ exch { Strform stringwidth pop } forall ] } bind def /Strform { /tem (x) def tem 0 3 -1 roll put tem } bind def /Mshowa1 { 2 copy add 4 1 roll sub mul sub -2 div } bind def /MathScale { Mwidth Mheight Mlp translate scale /yscale exch def /ybias exch def /xscale exch def /xbias exch def /Momatrix xscale yscale matrix scale xbias ybias matrix translate matrix concatmatrix def /Mgmatrix matrix currentmatrix def } bind def /Mlp { 3 copy Mlpfirst { Mnodistort { Mmin dup } if 4 index 2 index 2 index Mlprun 11 index 11 -1 roll 10 -4 roll Mlp1 8 index 9 -5 roll Mlp1 4 -1 roll and { exit } if 3 -1 roll pop pop } loop exch 3 1 roll 7 -3 roll pop pop pop } bind def /Mlpfirst { 3 -1 roll dup length 2 copy -2 add get aload pop pop pop 4 -2 roll -1 add get aload pop pop pop 6 -1 roll 3 -1 roll 5 -1 roll sub div 4 1 roll exch sub div } bind def /Mlprun { 2 copy 4 index 0 get dup 4 1 roll Mlprun1 3 copy 8 -2 roll 9 -1 roll { 3 copy Mlprun1 3 copy 11 -3 roll /gt Mlpminmax 8 3 roll 11 -3 roll /lt Mlpminmax 8 3 roll } forall pop pop pop pop 3 1 roll pop pop aload pop 5 -1 roll aload pop exch 6 -1 roll Mlprun2 8 2 roll 4 -1 roll Mlprun2 6 2 roll 3 -1 roll Mlprun2 4 2 roll exch Mlprun2 6 2 roll } bind def /Mlprun1 { aload pop exch 6 -1 roll 5 -1 roll mul add 4 -2 roll mul 3 -1 roll add } bind def /Mlprun2 { 2 copy add 2 div 3 1 roll exch sub } bind def /Mlpminmax { cvx 2 index 6 index 2 index exec { 7 -3 roll 4 -1 roll } if 1 index 5 index 3 -1 roll exec { 4 1 roll pop 5 -1 roll aload pop pop 4 -1 roll aload pop [ 8 -2 roll pop 5 -2 roll pop 6 -2 roll pop 5 -1 roll ] 4 1 roll pop } { pop pop pop } ifelse } bind def /Mlp1 { 5 index 3 index sub 5 index 2 index mul 1 index le 1 index 0 le or dup not { 1 index 3 index div .99999 mul 8 -1 roll pop 7 1 roll } if 8 -1 roll 2 div 7 -2 roll pop sub 5 index 6 -3 roll pop pop mul sub exch } bind def /intop 0 def /inrht 0 def /inflag 0 def /outflag 0 def /xadrht 0 def /xadlft 0 def /yadtop 0 def /yadbot 0 def /Minner { outflag 1 eq { /outflag 0 def /intop 0 def /inrht 0 def } if 5 index gsave Mtmatrix setmatrix Mvboxa pop grestore 3 -1 roll pop dup intop gt { /intop exch def } { pop } ifelse dup inrht gt { /inrht exch def } { pop } ifelse pop /inflag 1 def } bind def /Mouter { /xadrht 0 def /xadlft 0 def /yadtop 0 def /yadbot 0 def inflag 1 eq { dup 0 lt { dup intop mul neg /yadtop exch def } if dup 0 gt { dup intop mul /yadbot exch def } if pop dup 0 lt { dup inrht mul neg /xadrht exch def } if dup 0 gt { dup inrht mul /xadlft exch def } if pop /outflag 1 def } { pop pop} ifelse /inflag 0 def /inrht 0 def /intop 0 def } bind def /Mboxout { outflag 1 eq { 4 -1 roll xadlft leadjust add sub 4 1 roll 3 -1 roll yadbot leadjust add sub 3 1 roll exch xadrht leadjust add add exch yadtop leadjust add add /outflag 0 def /xadlft 0 def /yadbot 0 def /xadrht 0 def /yadtop 0 def } if } bind def /leadjust { (m) stringwidth pop .5 mul } bind def /Mrotcheck { dup 90 eq { yadbot /yadbot xadrht def /xadrht yadtop def /yadtop xadlft def /xadlft exch def } if dup cos 1 index sin Checkaux dup cos 1 index sin neg exch Checkaux 3 1 roll pop pop } bind def /Checkaux { 4 index exch 4 index mul 3 1 roll mul add 4 1 roll } bind def /Mboxrot { Mrot 90 eq { brotaux 4 2 roll } if Mrot 180 eq { 4 2 roll brotaux 4 2 roll brotaux } if Mrot 270 eq { 4 2 roll brotaux } if } bind def /brotaux { neg exch neg } bind def /Mabsproc { 0 matrix defaultmatrix dtransform idtransform dup mul exch dup mul add sqrt } bind def /Mabswid { Mabsproc setlinewidth } bind def /Mabsdash { exch [ exch { Mabsproc } forall ] exch setdash } bind def /MBeginOrig { Momatrix concat} bind def /MEndOrig { Mgmatrix setmatrix} bind def /sampledsound where { pop} { /sampledsound { exch pop exch 5 1 roll mul 4 idiv mul 2 idiv exch pop exch /Mtempproc exch def { Mtempproc pop} repeat } bind def } ifelse /g { setgray} bind def /k { setcmykcolor} bind def /m { moveto} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /P { grestore} bind def /s { stroke} bind def /setcmykcolor where { pop} { /setcmykcolor { 4 1 roll [ 4 1 roll ] { 1 index sub 1 sub neg dup 0 lt { pop 0 } if dup 1 gt { pop 1 } if exch } forall pop setrgbcolor } bind def } ifelse /Mcharproc { currentfile (x) readhexstring pop 0 get exch div } bind def /Mshadeproc { dup 3 1 roll { dup Mcharproc 3 1 roll } repeat 1 eq { setgray } { 3 eq { setrgbcolor } { setcmykcolor } ifelse } ifelse } bind def /Mrectproc { 3 index 2 index moveto 2 index 3 -1 roll lineto dup 3 1 roll lineto lineto fill } bind def /Mcolorimage { 7 1 roll pop pop matrix invertmatrix concat 2 exch exp 1 sub 3 1 roll 1 1 2 index { 1 1 4 index { dup 1 sub exch 2 index dup 1 sub exch 7 index 9 index Mshadeproc Mrectproc } for pop } for pop pop pop pop } bind def /Mimage { pop matrix invertmatrix concat 2 exch exp 1 sub 3 1 roll 1 1 2 index { 1 1 4 index { dup 1 sub exch 2 index dup 1 sub exch 7 index Mcharproc setgray Mrectproc } for pop } for pop pop pop } bind def MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.47619 0.0147151 0.47619 [ [ -0.001 -0.001 0 0 ] [ 1.001 .61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash 0 g p p .002 w 0 0 m 1 0 L s P p .002 w 0 0 m 0 .61803 L s P P p p .002 w 0 .61803 m 1 .61803 L s P p .002 w 1 0 m 1 .61803 L s P P p P 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath p p % Start of sub-graphic p 0.0238095 0.0147151 0.477324 0.295003 MathSubStart /Courier findfont 10 scalefont setfont % Scaling calculations 0 0.2 0.309017 0.0515028 [ [(1)] .2 .30902 0 2 Msboxa [(2)] .4 .30902 0 2 Msboxa [(3)] .6 .30902 0 2 Msboxa [(4)] .8 .30902 0 2 Msboxa [(5)] 1 .30902 0 2 Msboxa [(c)] .5 .61803 0 -2 Msboxa [(-6)] -0.0125 0 1 0 Msboxa [(-4)] -0.0125 .10301 1 0 Msboxa [(-2)] -0.0125 .20601 1 0 Msboxa [(0)] -0.0125 .30902 1 0 Msboxa [(2)] -0.0125 .41202 1 0 Msboxa [(4)] -0.0125 .51503 1 0 Msboxa [(6)] -0.0125 .61803 1 0 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 .61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash p p .002 w .2 .30902 m .2 .31527 L s P [(1)] .2 .30902 0 2 Mshowa p .002 w .4 .30902 m .4 .31527 L s P [(2)] .4 .30902 0 2 Mshowa p .002 w .6 .30902 m .6 .31527 L s P [(3)] .6 .30902 0 2 Mshowa p .002 w .8 .30902 m .8 .31527 L s P [(4)] .8 .30902 0 2 Mshowa p .002 w 1 .30902 m 1 .31527 L s P [(5)] 1 .30902 0 2 Mshowa p .001 w .04 .30902 m .04 .31277 L s P p .001 w .08 .30902 m .08 .31277 L s P p .001 w .12 .30902 m .12 .31277 L s P p .001 w .16 .30902 m .16 .31277 L s P p .001 w .24 .30902 m .24 .31277 L s P p .001 w .28 .30902 m .28 .31277 L s P p .001 w .32 .30902 m .32 .31277 L s P p .001 w .36 .30902 m .36 .31277 L s P p .001 w .44 .30902 m .44 .31277 L s P p .001 w .48 .30902 m .48 .31277 L s P p .001 w .52 .30902 m .52 .31277 L s P p .001 w .56 .30902 m .56 .31277 L s P p .001 w .64 .30902 m .64 .31277 L s P p .001 w .68 .30902 m .68 .31277 L s P p .001 w .72 .30902 m .72 .31277 L s P p .001 w .76 .30902 m .76 .31277 L s P p .001 w .84 .30902 m .84 .31277 L s P p .001 w .88 .30902 m .88 .31277 L s P p .001 w .92 .30902 m .92 .31277 L s P p .001 w .96 .30902 m .96 .31277 L s P p .002 w 0 .30902 m 1 .30902 L s P [(c)] .5 .61803 0 -2 Mshowa p .002 w 0 0 m .00625 0 L s P [(-6)] -0.0125 0 1 0 Mshowa p .002 w 0 .10301 m .00625 .10301 L s P [(-4)] -0.0125 .10301 1 0 Mshowa p .002 w 0 .20601 m .00625 .20601 L s P [(-2)] -0.0125 .20601 1 0 Mshowa p .002 w 0 .30902 m .00625 .30902 L s P [(0)] -0.0125 .30902 1 0 Mshowa p .002 w 0 .41202 m .00625 .41202 L s P [(2)] -0.0125 .41202 1 0 Mshowa p .002 w 0 .51503 m .00625 .51503 L s P [(4)] -0.0125 .51503 1 0 Mshowa p .002 w 0 .61803 m .00625 .61803 L s P [(6)] -0.0125 .61803 1 0 Mshowa p .001 w 0 .0206 m .00375 .0206 L s P p .001 w 0 .0412 m .00375 .0412 L s P p .001 w 0 .0618 m .00375 .0618 L s P p .001 w 0 .0824 m .00375 .0824 L s P p .001 w 0 .12361 m .00375 .12361 L s P p .001 w 0 .14421 m .00375 .14421 L s P p .001 w 0 .16481 m .00375 .16481 L s P p .001 w 0 .18541 m .00375 .18541 L s P p .001 w 0 .22661 m .00375 .22661 L s P p .001 w 0 .24721 m .00375 .24721 L s P p .001 w 0 .26781 m .00375 .26781 L s P p .001 w 0 .28842 m .00375 .28842 L s P p .001 w 0 .32962 m .00375 .32962 L s P p .001 w 0 .35022 m .00375 .35022 L s P p .001 w 0 .37082 m .00375 .37082 L s P p .001 w 0 .39142 m .00375 .39142 L s P p .001 w 0 .43262 m .00375 .43262 L s P p .001 w 0 .45322 m .00375 .45322 L s P p .001 w 0 .47383 m .00375 .47383 L s P p .001 w 0 .49443 m .00375 .49443 L s P p .001 w 0 .53563 m .00375 .53563 L s P p .001 w 0 .55623 m .00375 .55623 L s P p .001 w 0 .57683 m .00375 .57683 L s P p .001 w 0 .59743 m .00375 .59743 L s P p .002 w 0 0 m 0 .61803 L s P P 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath p p .004 w 0 .51503 m .0013 .51486 L .0026 .51434 L .00391 .51348 L .00521 .51228 L .00781 .50885 L .01042 .5041 L .01563 .4907 L .02083 .47246 L .03125 .42347 L .04167 .36234 L .0625 .23018 L .07292 .17318 L .07813 .14977 L .08333 .13061 L .08594 .12278 L .08854 .11621 L .09115 .11092 L .09375 .10696 L .09505 .10549 L .09635 .10436 L .09766 .10356 L .09896 .10312 L .10026 .10301 L .10156 .10325 L .10286 .10384 L .10417 .10477 L .10547 .10604 L .10677 .10765 L .10938 .11188 L .11198 .11742 L .11458 .12425 L .11979 .14156 L .125 .16334 L .13542 .2179 L .14583 .28213 L .15625 .34921 L .16667 .41202 L .17188 .43971 L .17708 .4639 L .18229 .48396 L .1875 .49935 L .1901 .50515 L .19141 .50757 L .19271 .50965 L .19401 .51139 L .19531 .5128 L .19661 .51386 L .19792 .51459 L .19922 .51497 L Mistroke .20052 .515 L .20182 .51469 L .20313 .51404 L .20443 .51304 L .20573 .5117 L .20833 .50801 L .21094 .50299 L .21354 .49667 L .21875 .48031 L .22917 .43443 L .25 .30902 L .27083 .18361 L .27604 .15866 L .28125 .13772 L .28646 .12137 L .28906 .11505 L .29167 .11003 L .29427 .10633 L .29557 .10499 L .29688 .104 L .29818 .10334 L .29948 .10303 L .30078 .10307 L .30208 .10345 L .30339 .10417 L .30469 .10524 L .30599 .10664 L .30729 .10839 L .3099 .11288 L .3125 .11869 L .31771 .13407 L .32292 .15413 L .33333 .20601 L .35417 .33591 L .36458 .40013 L .375 .45469 L .38021 .47647 L .38542 .49378 L .38802 .50061 L .39063 .50616 L .39323 .51039 L .39453 .512 L .39583 .51327 L .39714 .51419 L .39844 .51478 L .39974 .51502 L .40104 .51492 L .40234 .51447 L .40365 .51368 L .40495 .51254 L Mistroke .40625 .51107 L .40885 .50711 L .41146 .50182 L .41667 .48743 L .42188 .46827 L .42708 .44485 L .4375 .38785 L .45833 .2557 L .46875 .19456 L .47917 .14558 L .48438 .12733 L .48698 .12 L .48958 .11394 L .49219 .10918 L .49349 .1073 L .49479 .10576 L .49609 .10455 L .4974 .10369 L .4987 .10318 L .5 .10301 L .5013 .10318 L .5026 .10369 L .50391 .10455 L .50521 .10576 L .50781 .10918 L .51042 .11394 L .51563 .12733 L .52083 .14558 L .53125 .19456 L .54167 .2557 L .5625 .38785 L .57292 .44485 L .57813 .46827 L .58333 .48743 L .58594 .49525 L .58854 .50182 L .59115 .50711 L .59245 .50926 L .59375 .51107 L .59505 .51254 L .59635 .51368 L .59766 .51447 L .59896 .51492 L .60026 .51502 L .60156 .51478 L .60286 .51419 L .60417 .51327 L .60677 .51039 L .60807 .50844 L .60938 .50616 L Mistroke .61458 .49378 L .61979 .47647 L .625 .45469 L .64583 .33591 L .65625 .26883 L .66667 .20601 L .67188 .17832 L .67708 .15413 L .68229 .13407 L .6849 .12577 L .6875 .11869 L .6901 .11288 L .69141 .11047 L .69271 .10839 L .69401 .10664 L .69531 .10524 L .69661 .10417 L .69792 .10345 L .69922 .10307 L .70052 .10303 L .70182 .10334 L .70313 .104 L .70443 .10499 L .70573 .10633 L .70703 .10801 L .70833 .11003 L .75 .30902 L .76042 .37524 L .77083 .43443 L .78125 .48031 L .78385 .48909 L .78646 .49667 L .78906 .50299 L .79167 .50801 L .79297 .51002 L .79427 .5117 L .79557 .51304 L .79688 .51404 L .79818 .51469 L .79948 .515 L .80078 .51497 L .80208 .51459 L .80339 .51386 L .80469 .5128 L .80729 .50965 L .80859 .50757 L .8099 .50515 L .8125 .49935 L .81771 .48396 L .82292 .4639 L Mistroke .83333 .41202 L .85417 .28213 L .86458 .2179 L .875 .16334 L .88021 .14156 L .88542 .12425 L .88802 .11742 L .89063 .11188 L .89323 .10765 L .89453 .10604 L .89583 .10477 L .89714 .10384 L .89844 .10325 L .89974 .10301 L .90104 .10312 L .90234 .10356 L .90365 .10436 L .90495 .10549 L .90625 .10696 L .90885 .11092 L .91146 .11621 L .91667 .13061 L .92188 .14977 L .92708 .17318 L .9375 .23018 L .95833 .36234 L .96875 .42347 L .97396 .44984 L .97917 .47246 L .98438 .4907 L .98698 .49803 L .98958 .5041 L .99219 .50885 L .99349 .51073 L .99479 .51228 L .99609 .51348 L .9974 .51434 L .9987 .51486 L 1 .51503 L Mfstroke P P MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.522676 0.0147151 0.97619 0.295003 MathSubStart /Courier findfont 10 scalefont setfont % Scaling calculations 0 0.2 0.309017 0.0515028 [ [(1)] .2 .30902 0 2 Msboxa [(2)] .4 .30902 0 2 Msboxa [(3)] .6 .30902 0 2 Msboxa [(4)] .8 .30902 0 2 Msboxa [(5)] 1 .30902 0 2 Msboxa [(d)] .5 .61803 0 -2 Msboxa [(-6)] -0.0125 0 1 0 Msboxa [(-4)] -0.0125 .10301 1 0 Msboxa [(-2)] -0.0125 .20601 1 0 Msboxa [(0)] -0.0125 .30902 1 0 Msboxa [(2)] -0.0125 .41202 1 0 Msboxa [(4)] -0.0125 .51503 1 0 Msboxa [(6)] -0.0125 .61803 1 0 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 .61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash p p .002 w .2 .30902 m .2 .31527 L s P [(1)] .2 .30902 0 2 Mshowa p .002 w .4 .30902 m .4 .31527 L s P [(2)] .4 .30902 0 2 Mshowa p .002 w .6 .30902 m .6 .31527 L s P [(3)] .6 .30902 0 2 Mshowa p .002 w .8 .30902 m .8 .31527 L s P [(4)] .8 .30902 0 2 Mshowa p .002 w 1 .30902 m 1 .31527 L s P [(5)] 1 .30902 0 2 Mshowa p .001 w .04 .30902 m .04 .31277 L s P p .001 w .08 .30902 m .08 .31277 L s P p .001 w .12 .30902 m .12 .31277 L s P p .001 w .16 .30902 m .16 .31277 L s P p .001 w .24 .30902 m .24 .31277 L s P p .001 w .28 .30902 m .28 .31277 L s P p .001 w .32 .30902 m .32 .31277 L s P p .001 w .36 .30902 m .36 .31277 L s P p .001 w .44 .30902 m .44 .31277 L s P p .001 w .48 .30902 m .48 .31277 L s P p .001 w .52 .30902 m .52 .31277 L s P p .001 w .56 .30902 m .56 .31277 L s P p .001 w .64 .30902 m .64 .31277 L s P p .001 w .68 .30902 m .68 .31277 L s P p .001 w .72 .30902 m .72 .31277 L s P p .001 w .76 .30902 m .76 .31277 L s P p .001 w .84 .30902 m .84 .31277 L s P p .001 w .88 .30902 m .88 .31277 L s P p .001 w .92 .30902 m .92 .31277 L s P p .001 w .96 .30902 m .96 .31277 L s P p .002 w 0 .30902 m 1 .30902 L s P [(d)] .5 .61803 0 -2 Mshowa p .002 w 0 0 m .00625 0 L s P [(-6)] -0.0125 0 1 0 Mshowa p .002 w 0 .10301 m .00625 .10301 L s P [(-4)] -0.0125 .10301 1 0 Mshowa p .002 w 0 .20601 m .00625 .20601 L s P [(-2)] -0.0125 .20601 1 0 Mshowa p .002 w 0 .30902 m .00625 .30902 L s P [(0)] -0.0125 .30902 1 0 Mshowa p .002 w 0 .41202 m .00625 .41202 L s P [(2)] -0.0125 .41202 1 0 Mshowa p .002 w 0 .51503 m .00625 .51503 L s P [(4)] -0.0125 .51503 1 0 Mshowa p .002 w 0 .61803 m .00625 .61803 L s P [(6)] -0.0125 .61803 1 0 Mshowa p .001 w 0 .0206 m .00375 .0206 L s P p .001 w 0 .0412 m .00375 .0412 L s P p .001 w 0 .0618 m .00375 .0618 L s P p .001 w 0 .0824 m .00375 .0824 L s P p .001 w 0 .12361 m .00375 .12361 L s P p .001 w 0 .14421 m .00375 .14421 L s P p .001 w 0 .16481 m .00375 .16481 L s P p .001 w 0 .18541 m .00375 .18541 L s P p .001 w 0 .22661 m .00375 .22661 L s P p .001 w 0 .24721 m .00375 .24721 L s P p .001 w 0 .26781 m .00375 .26781 L s P p .001 w 0 .28842 m .00375 .28842 L s P p .001 w 0 .32962 m .00375 .32962 L s P p .001 w 0 .35022 m .00375 .35022 L s P p .001 w 0 .37082 m .00375 .37082 L s P p .001 w 0 .39142 m .00375 .39142 L s P p .001 w 0 .43262 m .00375 .43262 L s P p .001 w 0 .45322 m .00375 .45322 L s P p .001 w 0 .47383 m .00375 .47383 L s P p .001 w 0 .49443 m .00375 .49443 L s P p .001 w 0 .53563 m .00375 .53563 L s P p .001 w 0 .55623 m .00375 .55623 L s P p .001 w 0 .57683 m .00375 .57683 L s P p .001 w 0 .59743 m .00375 .59743 L s P p .002 w 0 0 m 0 .61803 L s P P 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath p p .004 w 0 .51503 m .00521 .54749 L .00781 .56056 L .01042 .571 L .01172 .57511 L .01302 .57844 L .01432 .58095 L .01563 .58261 L .01693 .58338 L .01823 .58326 L .01953 .58221 L .02083 .58023 L .02344 .57344 L .02474 .56863 L .02604 .56287 L .03125 .53077 L .03646 .48544 L .04167 .42952 L .05208 .30089 L .0625 .17876 L .06771 .13036 L .07031 .11073 L .07292 .09452 L .07552 .0819 L .07682 .07698 L .07813 .07299 L .07943 .06993 L .08073 .0678 L .08203 .06658 L .08333 .06627 L .08464 .06685 L .08594 .06829 L .08724 .07056 L .08854 .07363 L .09375 .09317 L .09635 .10667 L .09896 .12213 L .10417 .15712 L .11458 .23105 L .11979 .26362 L .125 .29014 L .1276 .30073 L .13021 .30947 L .13281 .31635 L .13411 .31913 L .13542 .32149 L .13672 .32344 L .13802 .32501 L .13932 .32623 L .14063 .32713 L Mistroke .14193 .32773 L .14323 .32808 L .14453 .3282 L .14583 .32815 L .14714 .32795 L .14844 .32766 L .14974 .3273 L .15104 .32693 L .15234 .32658 L .15365 .32631 L .15495 .32614 L .15625 .32613 L .15755 .3263 L .15885 .3267 L .16016 .32736 L .16146 .32832 L .16406 .33125 L .16536 .33327 L .16667 .33569 L .1875 .43153 L .19792 .50198 L .20313 .53287 L .20573 .54567 L .20833 .55615 L .21094 .56393 L .21224 .5667 L .21354 .56867 L .21484 .56982 L .21615 .5701 L .21745 .5695 L .21875 .568 L .22005 .56558 L .22135 .56222 L .22396 .5527 L .22656 .53944 L .22917 .52254 L .23438 .47854 L .23958 .42294 L .25 .29081 L .26042 .15916 L .26563 .10417 L .27083 .06101 L .27344 .04462 L .27474 .0378 L .27604 .03192 L .27734 .02699 L .27865 .02302 L .27995 .02 L .28125 .01792 L .28255 .01677 L Mistroke .28385 .01654 L .28516 .01721 L .28646 .01875 L .28776 .02114 L .28906 .02433 L .29167 .03299 L .29427 .0444 L .29688 .05818 L .30208 .09115 L .3125 .16627 L .31771 .20169 L .32292 .23215 L .32813 .25607 L .33073 .26537 L .33333 .27292 L .33594 .2788 L .33854 .28319 L .33984 .28488 L .34115 .28629 L .34245 .28742 L .34375 .28834 L .34635 .28964 L .34766 .29011 L .34896 .29051 L .35156 .29127 L .35417 .29227 L .35547 .29296 L .35677 .29382 L .35807 .29491 L .35938 .29625 L .36198 .29983 L .36458 .30482 L .36719 .31139 L .36979 .31971 L .375 .34183 L .38542 .40622 L .39583 .48492 L .40104 .52208 L .40365 .53854 L .40625 .55301 L .40885 .56507 L .41016 .57008 L .41146 .57435 L .41276 .57784 L .41406 .58052 L .41536 .58234 L .41667 .5833 L .41797 .58335 L .41927 .58249 L .42057 .5807 L Mistroke .42188 .57797 L .42448 .56966 L .42578 .5641 L .42708 .5576 L .43229 .5227 L .4375 .475 L .44792 .35354 L .45833 .22462 L .46354 .16819 L .46875 .12211 L .47135 .10382 L .47396 .08903 L .47526 .083 L .47656 .07789 L .47786 .07371 L .47917 .07047 L .48047 .06815 L .48177 .06675 L .48307 .06626 L .48438 .06666 L .48568 .06793 L .48698 .07004 L .48828 .07295 L .48958 .07664 L .5 .12876 L .51042 .20205 L .51563 .23796 L .52083 .26946 L .52604 .2946 L .52865 .30445 L .53125 .31244 L .53385 .31861 L .53516 .32105 L .53646 .32308 L .53776 .32473 L .53906 .32601 L .54036 .32697 L .54167 .32763 L .54297 .32803 L .54427 .32819 L .54557 .32817 L .54688 .328 L .54818 .32772 L .54948 .32737 L .55078 .327 L .55208 .32665 L .55339 .32636 L .55469 .32616 L .55599 .32612 L .55729 .32625 L Mistroke .55859 .3266 L .5599 .32721 L .5612 .32811 L .5625 .32932 L .5638 .33089 L .5651 .33284 L .56771 .33793 L .57031 .34475 L .57292 .35335 L .57813 .37591 L .58333 .40489 L .59375 .47418 L .59896 .5086 L .60417 .53824 L .60677 .55016 L .60807 .55522 L .60938 .55961 L .61068 .56328 L .61198 .56621 L .61328 .56834 L .61458 .56966 L .61589 .57011 L .61719 .56969 L .61849 .56837 L .61979 .56613 L .6224 .55886 L .6237 .55382 L .625 .54784 L .64583 .34559 L .65625 .2095 L .66146 .14736 L .66667 .0945 L .66927 .07256 L .67188 .05402 L .67448 .03909 L .67578 .03302 L .67708 .0279 L .67839 .02374 L .67969 .02053 L .68099 .01826 L .68229 .01693 L .68359 .01652 L .6849 .01701 L .6862 .01838 L .6875 .02059 L .6901 .02744 L .69141 .032 L .69271 .03725 L .69792 .06426 L .70833 .136 L Mistroke .71875 .20825 L .72396 .23749 L .72917 .26001 L .73177 .26859 L .73438 .27546 L .73698 .28073 L .73828 .28281 L .73958 .28457 L .74089 .28603 L .74219 .28722 L .74349 .28817 L .74479 .28893 L .74609 .28954 L .7474 .29002 L .75 .29081 L .7513 .29119 L .7526 .29162 L .75391 .29215 L .75521 .29281 L .75781 .29467 L .75911 .29596 L .76042 .29753 L .76302 .30165 L .76563 .30725 L .76823 .3145 L .77083 .32354 L .77604 .34713 L .78125 .37767 L .79167 .45314 L .79688 .49268 L .80208 .52887 L .80729 .55815 L .8099 .56914 L .8112 .57356 L .8125 .57721 L .8138 .58005 L .8151 .58205 L .81641 .58318 L .81771 .58342 L .81901 .58274 L .82031 .58113 L .82161 .57859 L .82292 .5751 L .82422 .57066 L .82552 .56529 L .82813 .55175 L .83333 .5141 L .83854 .46416 L .84375 .40496 L .85417 .27483 L Mistroke .85938 .21267 L .86458 .15805 L .86979 .11439 L .8724 .09748 L .875 .08413 L .8776 .07447 L .87891 .07104 L .88021 .06854 L .88151 .06696 L .88281 .06629 L .88411 .06651 L .88542 .06761 L .88672 .06955 L .88802 .07231 L .89063 .08012 L .89323 .09074 L .89583 .1038 L .90625 .17201 L .91667 .24469 L .92188 .27504 L .92448 .2878 L .92708 .29876 L .92969 .30787 L .93229 .31512 L .93359 .31807 L .9349 .3206 L .9375 .32443 L .9388 .32578 L .9401 .3268 L .94141 .32752 L .94271 .32797 L .94401 .32818 L .94531 .32819 L .94661 .32804 L .94792 .32778 L .95052 .32708 L .95182 .32672 L .95313 .32641 L .95443 .32619 L .95573 .32611 L .95703 .3262 L .95833 .32651 L .95964 .32706 L .96094 .3279 L .96224 .32905 L .96354 .33055 L .96615 .33467 L .96875 .34045 L .97135 .34797 L .97396 .3573 L Mistroke .97917 .38124 L 1 .51503 L Mfstroke P P MathSubEnd P % End of sub-graphic P p % Start of sub-graphic p 0.0238095 0.323031 0.477324 0.603319 MathSubStart /Courier findfont 10 scalefont setfont % Scaling calculations 0 0.2 0.309017 0.0515028 [ [(1)] .2 .30902 0 2 Msboxa [(2)] .4 .30902 0 2 Msboxa [(3)] .6 .30902 0 2 Msboxa [(4)] .8 .30902 0 2 Msboxa [(5)] 1 .30902 0 2 Msboxa [(a)] .5 .61803 0 -2 Msboxa [(-6)] -0.0125 0 1 0 Msboxa [(-4)] -0.0125 .10301 1 0 Msboxa [(-2)] -0.0125 .20601 1 0 Msboxa [(0)] -0.0125 .30902 1 0 Msboxa [(2)] -0.0125 .41202 1 0 Msboxa [(4)] -0.0125 .51503 1 0 Msboxa [(6)] -0.0125 .61803 1 0 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 .61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash p p .002 w .2 .30902 m .2 .31527 L s P [(1)] .2 .30902 0 2 Mshowa p .002 w .4 .30902 m .4 .31527 L s P [(2)] .4 .30902 0 2 Mshowa p .002 w .6 .30902 m .6 .31527 L s P [(3)] .6 .30902 0 2 Mshowa p .002 w .8 .30902 m .8 .31527 L s P [(4)] .8 .30902 0 2 Mshowa p .002 w 1 .30902 m 1 .31527 L s P [(5)] 1 .30902 0 2 Mshowa p .001 w .04 .30902 m .04 .31277 L s P p .001 w .08 .30902 m .08 .31277 L s P p .001 w .12 .30902 m .12 .31277 L s P p .001 w .16 .30902 m .16 .31277 L s P p .001 w .24 .30902 m .24 .31277 L s P p .001 w .28 .30902 m .28 .31277 L s P p .001 w .32 .30902 m .32 .31277 L s P p .001 w .36 .30902 m .36 .31277 L s P p .001 w .44 .30902 m .44 .31277 L s P p .001 w .48 .30902 m .48 .31277 L s P p .001 w .52 .30902 m .52 .31277 L s P p .001 w .56 .30902 m .56 .31277 L s P p .001 w .64 .30902 m .64 .31277 L s P p .001 w .68 .30902 m .68 .31277 L s P p .001 w .72 .30902 m .72 .31277 L s P p .001 w .76 .30902 m .76 .31277 L s P p .001 w .84 .30902 m .84 .31277 L s P p .001 w .88 .30902 m .88 .31277 L s P p .001 w .92 .30902 m .92 .31277 L s P p .001 w .96 .30902 m .96 .31277 L s P p .002 w 0 .30902 m 1 .30902 L s P [(a)] .5 .61803 0 -2 Mshowa p .002 w 0 0 m .00625 0 L s P [(-6)] -0.0125 0 1 0 Mshowa p .002 w 0 .10301 m .00625 .10301 L s P [(-4)] -0.0125 .10301 1 0 Mshowa p .002 w 0 .20601 m .00625 .20601 L s P [(-2)] -0.0125 .20601 1 0 Mshowa p .002 w 0 .30902 m .00625 .30902 L s P [(0)] -0.0125 .30902 1 0 Mshowa p .002 w 0 .41202 m .00625 .41202 L s P [(2)] -0.0125 .41202 1 0 Mshowa p .002 w 0 .51503 m .00625 .51503 L s P [(4)] -0.0125 .51503 1 0 Mshowa p .002 w 0 .61803 m .00625 .61803 L s P [(6)] -0.0125 .61803 1 0 Mshowa p .001 w 0 .0206 m .00375 .0206 L s P p .001 w 0 .0412 m .00375 .0412 L s P p .001 w 0 .0618 m .00375 .0618 L s P p .001 w 0 .0824 m .00375 .0824 L s P p .001 w 0 .12361 m .00375 .12361 L s P p .001 w 0 .14421 m .00375 .14421 L s P p .001 w 0 .16481 m .00375 .16481 L s P p .001 w 0 .18541 m .00375 .18541 L s P p .001 w 0 .22661 m .00375 .22661 L s P p .001 w 0 .24721 m .00375 .24721 L s P p .001 w 0 .26781 m .00375 .26781 L s P p .001 w 0 .28842 m .00375 .28842 L s P p .001 w 0 .32962 m .00375 .32962 L s P p .001 w 0 .35022 m .00375 .35022 L s P p .001 w 0 .37082 m .00375 .37082 L s P p .001 w 0 .39142 m .00375 .39142 L s P p .001 w 0 .43262 m .00375 .43262 L s P p .001 w 0 .45322 m .00375 .45322 L s P p .001 w 0 .47383 m .00375 .47383 L s P p .001 w 0 .49443 m .00375 .49443 L s P p .001 w 0 .53563 m .00375 .53563 L s P p .001 w 0 .55623 m .00375 .55623 L s P p .001 w 0 .57683 m .00375 .57683 L s P p .001 w 0 .59743 m .00375 .59743 L s P p .002 w 0 0 m 0 .61803 L s P P 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath p p .004 w 0 .30902 m .02083 .31729 L .04167 .32469 L .0625 .33043 L .06771 .33153 L .07292 .33247 L .07813 .33326 L .08333 .33389 L .08594 .33414 L .08854 .33435 L .09115 .33452 L .09375 .33464 L .09505 .33469 L .09635 .33473 L .09766 .33475 L .09896 .33476 L .10026 .33477 L .10156 .33476 L .10286 .33474 L .10417 .33471 L .10547 .33467 L .10677 .33462 L .10938 .33449 L .11198 .33431 L .11458 .3341 L .11979 .33353 L .125 .33281 L .13542 .33089 L .14583 .32838 L .16667 .32189 L .20833 .30566 L .22917 .29763 L .25 .29081 L .26042 .28809 L .27083 .28592 L .27604 .28507 L .28125 .28437 L .28646 .28385 L .28906 .28364 L .29167 .28349 L .29427 .28337 L .29557 .28333 L .29688 .2833 L .29818 .28328 L .29948 .28327 L .30078 .28327 L .30208 .28328 L .30339 .2833 L .30469 .28334 L .30599 .28338 L Mistroke .30729 .28343 L .3099 .28358 L .3125 .28376 L .31771 .28426 L .32292 .28492 L .33333 .28672 L .34375 .28911 L .35417 .29204 L .375 .29916 L .41667 .31568 L .4375 .32332 L .44792 .32662 L .45833 .32945 L .46875 .33173 L .47917 .3334 L .48438 .334 L .48698 .33423 L .48958 .33442 L .49219 .33457 L .49349 .33463 L .49479 .33468 L .49609 .33472 L .4974 .33475 L .4987 .33476 L .5 .33477 L .5013 .33476 L .5026 .33475 L .50391 .33472 L .50521 .33468 L .50781 .33457 L .51042 .33442 L .51302 .33423 L .51563 .334 L .52083 .3334 L .53125 .33173 L .54167 .32945 L .5625 .32332 L .58333 .31568 L .625 .29916 L .64583 .29204 L .65625 .28911 L .66667 .28672 L .67188 .28574 L .67708 .28492 L .68229 .28426 L .6849 .28399 L .6875 .28376 L .6901 .28358 L .69141 .2835 L .69271 .28343 L Mistroke .69401 .28338 L .69531 .28334 L .69661 .2833 L .69792 .28328 L .69922 .28327 L .70052 .28327 L .70182 .28328 L .70313 .2833 L .70443 .28333 L .70573 .28337 L .70703 .28342 L .70833 .28349 L .71354 .28385 L .71615 .28409 L .71875 .28437 L .72917 .28592 L .73958 .28809 L .75 .29081 L .79167 .30566 L .8125 .31404 L .83333 .32189 L .85417 .32838 L .86458 .33089 L .86979 .33192 L .875 .33281 L .88021 .33353 L .88542 .3341 L .88802 .33431 L .89063 .33449 L .89323 .33462 L .89453 .33467 L .89583 .33471 L .89714 .33474 L .89844 .33476 L .89974 .33477 L .90104 .33476 L .90234 .33475 L .90365 .33473 L .90495 .33469 L .90625 .33464 L .90885 .33452 L .91146 .33435 L .91667 .33389 L .92188 .33326 L .92708 .33247 L .9375 .33043 L .95833 .32469 L 1 .30902 L Mfstroke P P MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.522676 0.323031 0.97619 0.603319 MathSubStart /Courier findfont 10 scalefont setfont % Scaling calculations 0 0.2 0.309017 0.0515028 [ [(1)] .2 .30902 0 2 Msboxa [(2)] .4 .30902 0 2 Msboxa [(3)] .6 .30902 0 2 Msboxa [(4)] .8 .30902 0 2 Msboxa [(5)] 1 .30902 0 2 Msboxa [(b)] .5 .61803 0 -2 Msboxa [(-6)] -0.0125 0 1 0 Msboxa [(-4)] -0.0125 .10301 1 0 Msboxa [(-2)] -0.0125 .20601 1 0 Msboxa [(0)] -0.0125 .30902 1 0 Msboxa [(2)] -0.0125 .41202 1 0 Msboxa [(4)] -0.0125 .51503 1 0 Msboxa [(6)] -0.0125 .61803 1 0 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 .61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash p p .002 w .2 .30902 m .2 .31527 L s P [(1)] .2 .30902 0 2 Mshowa p .002 w .4 .30902 m .4 .31527 L s P [(2)] .4 .30902 0 2 Mshowa p .002 w .6 .30902 m .6 .31527 L s P [(3)] .6 .30902 0 2 Mshowa p .002 w .8 .30902 m .8 .31527 L s P [(4)] .8 .30902 0 2 Mshowa p .002 w 1 .30902 m 1 .31527 L s P [(5)] 1 .30902 0 2 Mshowa p .001 w .04 .30902 m .04 .31277 L s P p .001 w .08 .30902 m .08 .31277 L s P p .001 w .12 .30902 m .12 .31277 L s P p .001 w .16 .30902 m .16 .31277 L s P p .001 w .24 .30902 m .24 .31277 L s P p .001 w .28 .30902 m .28 .31277 L s P p .001 w .32 .30902 m .32 .31277 L s P p .001 w .36 .30902 m .36 .31277 L s P p .001 w .44 .30902 m .44 .31277 L s P p .001 w .48 .30902 m .48 .31277 L s P p .001 w .52 .30902 m .52 .31277 L s P p .001 w .56 .30902 m .56 .31277 L s P p .001 w .64 .30902 m .64 .31277 L s P p .001 w .68 .30902 m .68 .31277 L s P p .001 w .72 .30902 m .72 .31277 L s P p .001 w .76 .30902 m .76 .31277 L s P p .001 w .84 .30902 m .84 .31277 L s P p .001 w .88 .30902 m .88 .31277 L s P p .001 w .92 .30902 m .92 .31277 L s P p .001 w .96 .30902 m .96 .31277 L s P p .002 w 0 .30902 m 1 .30902 L s P [(b)] .5 .61803 0 -2 Mshowa p .002 w 0 0 m .00625 0 L s P [(-6)] -0.0125 0 1 0 Mshowa p .002 w 0 .10301 m .00625 .10301 L s P [(-4)] -0.0125 .10301 1 0 Mshowa p .002 w 0 .20601 m .00625 .20601 L s P [(-2)] -0.0125 .20601 1 0 Mshowa p .002 w 0 .30902 m .00625 .30902 L s P [(0)] -0.0125 .30902 1 0 Mshowa p .002 w 0 .41202 m .00625 .41202 L s P [(2)] -0.0125 .41202 1 0 Mshowa p .002 w 0 .51503 m .00625 .51503 L s P [(4)] -0.0125 .51503 1 0 Mshowa p .002 w 0 .61803 m .00625 .61803 L s P [(6)] -0.0125 .61803 1 0 Mshowa p .001 w 0 .0206 m .00375 .0206 L s P p .001 w 0 .0412 m .00375 .0412 L s P p .001 w 0 .0618 m .00375 .0618 L s P p .001 w 0 .0824 m .00375 .0824 L s P p .001 w 0 .12361 m .00375 .12361 L s P p .001 w 0 .14421 m .00375 .14421 L s P p .001 w 0 .16481 m .00375 .16481 L s P p .001 w 0 .18541 m .00375 .18541 L s P p .001 w 0 .22661 m .00375 .22661 L s P p .001 w 0 .24721 m .00375 .24721 L s P p .001 w 0 .26781 m .00375 .26781 L s P p .001 w 0 .28842 m .00375 .28842 L s P p .001 w 0 .32962 m .00375 .32962 L s P p .001 w 0 .35022 m .00375 .35022 L s P p .001 w 0 .37082 m .00375 .37082 L s P p .001 w 0 .39142 m .00375 .39142 L s P p .001 w 0 .43262 m .00375 .43262 L s P p .001 w 0 .45322 m .00375 .45322 L s P p .001 w 0 .47383 m .00375 .47383 L s P p .001 w 0 .49443 m .00375 .49443 L s P p .001 w 0 .53563 m .00375 .53563 L s P p .001 w 0 .55623 m .00375 .55623 L s P p .001 w 0 .57683 m .00375 .57683 L s P p .001 w 0 .59743 m .00375 .59743 L s P p .002 w 0 0 m 0 .61803 L s P P 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath p p .004 w 0 .30902 m .00521 .34213 L .01042 .37172 L .01563 .39466 L .01693 .39905 L .01823 .40284 L .01953 .406 L .02083 .40851 L .02214 .41036 L .02344 .41153 L .02474 .41201 L .02604 .4118 L .02734 .41091 L .02865 .40933 L .03125 .40418 L .03255 .40064 L .03385 .39649 L .03646 .38646 L .04167 .36052 L .05208 .29557 L .05729 .26346 L .0625 .23618 L .0651 .22529 L .06771 .21663 L .06901 .21322 L .07031 .21045 L .07161 .20833 L .07292 .20689 L .07422 .20614 L .07552 .20607 L .07682 .20669 L .07813 .20799 L .07943 .20997 L .08073 .21261 L .08333 .21981 L .08594 .22939 L .08854 .2411 L .09375 .2696 L .10417 .33568 L .10938 .36624 L .11198 .37943 L .11458 .39074 L .11719 .39986 L .11849 .40352 L .11979 .40656 L .12109 .40894 L .1224 .41065 L .1237 .41168 L .125 .41202 L .1263 .41168 L Mistroke .1276 .41065 L .12891 .40894 L .13021 .40656 L .13281 .39986 L .13542 .39074 L .14063 .36624 L .14583 .33568 L .15625 .2696 L .16146 .2411 L .16406 .22939 L .16667 .21981 L .16797 .2159 L .16927 .21261 L .17057 .20997 L .17188 .20799 L .17318 .20669 L .17448 .20607 L .17578 .20614 L .17708 .20689 L .17839 .20833 L .17969 .21045 L .18099 .21322 L .18229 .21663 L .1875 .23618 L .19271 .26346 L .19792 .29557 L .20313 .32911 L .20833 .36052 L .21094 .37436 L .21354 .38646 L .21615 .39649 L .21875 .40418 L .22005 .40708 L .22135 .40933 L .22266 .41091 L .22396 .4118 L .22526 .41201 L .22656 .41153 L .22786 .41036 L .22917 .40851 L .25 .30902 L .25521 .27591 L .26042 .24631 L .26302 .23384 L .26563 .22337 L .26693 .21898 L .26823 .21519 L .26953 .21203 L .27083 .20952 L .27214 .20768 L Mistroke .27344 .20651 L .27474 .20603 L .27604 .20623 L .27734 .20713 L .27865 .2087 L .27995 .21095 L .28125 .21385 L .29167 .25751 L .30208 .32246 L .30729 .35458 L .3125 .38185 L .3151 .39274 L .31771 .4014 L .31901 .40481 L .32031 .40759 L .32161 .4097 L .32292 .41114 L .32422 .4119 L .32552 .41197 L .32682 .41135 L .32813 .41004 L .32943 .40806 L .33073 .40542 L .33333 .39822 L .33594 .38864 L .33854 .37693 L .34375 .34844 L .35417 .28236 L .35938 .25179 L .36198 .2386 L .36458 .2273 L .36719 .21817 L .36979 .21148 L .37109 .2091 L .3724 .20739 L .3737 .20636 L .375 .20601 L .3763 .20636 L .3776 .20739 L .37891 .2091 L .38021 .21148 L .38281 .21817 L .38542 .2273 L .38802 .2386 L .39063 .25179 L .39583 .28236 L .40625 .34844 L .41146 .37693 L .41406 .38864 L .41667 .39822 L Mistroke .41797 .40213 L .41927 .40542 L .42057 .40806 L .42188 .41004 L .42318 .41135 L .42448 .41197 L .42578 .4119 L .42708 .41114 L .42839 .4097 L .42969 .40759 L .43229 .4014 L .4349 .39274 L .4375 .38185 L .44792 .32246 L .45313 .28892 L .45833 .25751 L .46354 .23157 L .46615 .22154 L .46745 .21739 L .46875 .21385 L .47005 .21095 L .47135 .2087 L .47266 .20713 L .47396 .20623 L .47526 .20603 L .47656 .20651 L .47786 .20768 L .47917 .20952 L .48047 .21203 L .48177 .21519 L .48438 .22337 L .48958 .24631 L .5 .30902 L .50521 .34213 L .51042 .37172 L .51563 .39466 L .51693 .39905 L .51823 .40284 L .51953 .406 L .52083 .40851 L .52214 .41036 L .52344 .41153 L .52474 .41201 L .52604 .4118 L .52734 .41091 L .52865 .40933 L .53125 .40418 L .53255 .40064 L .53385 .39649 L .53646 .38646 L Mistroke .54167 .36052 L .55208 .29557 L .55729 .26346 L .5625 .23618 L .5651 .22529 L .56771 .21663 L .56901 .21322 L .57031 .21045 L .57161 .20833 L .57292 .20689 L .57422 .20614 L .57552 .20607 L .57682 .20669 L .57813 .20799 L .57943 .20997 L .58073 .21261 L .58333 .21981 L .58594 .22939 L .58854 .2411 L .59375 .2696 L .60417 .33568 L .60938 .36624 L .61458 .39074 L .61719 .39986 L .61849 .40352 L .61979 .40656 L .62109 .40894 L .6224 .41065 L .6237 .41168 L .625 .41202 L .6263 .41168 L .6276 .41065 L .62891 .40894 L .63021 .40656 L .63151 .40352 L .63281 .39986 L .63542 .39074 L .64063 .36624 L .64583 .33568 L .65625 .2696 L .66146 .2411 L .66406 .22939 L .66667 .21981 L .66797 .2159 L .66927 .21261 L .67057 .20997 L .67188 .20799 L .67318 .20669 L .67448 .20607 L .67578 .20614 L Mistroke .67708 .20689 L .67839 .20833 L .67969 .21045 L .68229 .21663 L .6849 .22529 L .6875 .23618 L .69792 .29557 L .70313 .32911 L .70833 .36052 L .71354 .38646 L .71615 .39649 L .71745 .40064 L .71875 .40418 L .72005 .40708 L .72135 .40933 L .72266 .41091 L .72396 .4118 L .72526 .41201 L .72656 .41153 L .72786 .41036 L .72917 .40851 L .73047 .406 L .73177 .40284 L .73438 .39466 L .73958 .37172 L .75 .30902 L .75521 .27591 L .76042 .24631 L .76563 .22337 L .76693 .21898 L .76823 .21519 L .76953 .21203 L .77083 .20952 L .77214 .20768 L .77344 .20651 L .77474 .20603 L .77604 .20623 L .77734 .20713 L .77865 .2087 L .78125 .21385 L .78255 .21739 L .78385 .22154 L .78646 .23157 L .79167 .25751 L .80208 .32246 L .80729 .35458 L .8125 .38185 L .8151 .39274 L .81771 .4014 L .81901 .40481 L Mistroke .82031 .40759 L .82161 .4097 L .82292 .41114 L .82422 .4119 L .82552 .41197 L .82682 .41135 L .82813 .41004 L .82943 .40806 L .83073 .40542 L .83203 .40213 L .83333 .39822 L .85417 .28236 L .85938 .25179 L .86198 .2386 L .86458 .2273 L .86719 .21817 L .86979 .21148 L .87109 .2091 L .8724 .20739 L .8737 .20636 L .875 .20601 L .8763 .20636 L .8776 .20739 L .87891 .2091 L .88021 .21148 L .88281 .21817 L .88542 .2273 L .88802 .2386 L .89063 .25179 L .89583 .28236 L .90625 .34844 L .91146 .37693 L .91406 .38864 L .91667 .39822 L .91797 .40213 L .91927 .40542 L .92057 .40806 L .92188 .41004 L .92318 .41135 L .92448 .41197 L .92578 .4119 L .92708 .41114 L .92839 .4097 L .92969 .40759 L .93099 .40481 L .93229 .4014 L .9375 .38185 L .94271 .35458 L .94792 .32246 L .95313 .28892 L Mistroke .95833 .25751 L .96094 .24367 L .96354 .23157 L .96615 .22154 L .96875 .21385 L .97005 .21095 L .97135 .2087 L .97266 .20713 L .97396 .20623 L .97526 .20603 L .97656 .20651 L .97786 .20768 L .97917 .20952 L .98047 .21203 L .98177 .21519 L .98438 .22337 L .98698 .23384 L .98958 .24631 L 1 .30902 L Mfstroke P P MathSubEnd P % End of sub-graphic P P % End of Graphics MathPictureEnd end showpage %%EndDocument endTexFig 246 1824 a Fl(Figure)f(1)p Ft(:)h(A)16 b(plot)g(of)g Fs(f)719 1831 y Fn(1)739 1824 y Ft(\()p Fs(t)p Ft(\),)g(\()p Fs(d)p Ft(\),)g(and)g(its)g(comp)q(onen)o(ts)g(\()p Fs(a;)8 b(b;)g(c)p Ft(\),)15 b(for)h Fs(t)e Ft(=)g(0)p Fs(::)p Ft(5)35 1938 y(Th)o(us,)i(the)g(frequency)f(analysis)i(of)f Fs(f)740 1945 y Fn(1)760 1938 y Ft(\()p Fs(t)p Ft(\),)f(can)h(b)q(e)h (summarized)c(in)j(a)g(table)g(suc)o(h)g(as)h(T)l(able)f(1,)g(whic)o(h) 35 2000 y(pro)o(vides)e(for)g(eac)o(h)f(frequency)g(of)h Fs(f)701 2007 y Fn(1)735 2000 y Ft(the)f(amplitude)f(of)j(the)e(sine)h (w)o(a)o(v)o(e)f(and)h(of)g(the)g(cosine)g(w)o(a)o(v)o(e)f(with)35 2062 y(this)k(frequency)l(.)p 160 2184 1688 2 v 159 2244 2 61 v 185 2226 a Fk(k)p 240 2244 V 240 2244 V 51 w Fl(F)-5 b(requency)18 b(\()p Fk(!)594 2233 y Fj(k)617 2226 y Fl(\))p 663 2244 V 663 2244 V 50 w(Cosine)h(Amplitude)h(\()p Fk(A)1215 2233 y Fj(k)1239 2226 y Fl(\))p 1285 2244 V 1285 2244 V 49 w(Sine)f(Amplitude)h(\()p Fk(B)1777 2233 y Fj(k)1801 2226 y Fl(\))p 1847 2244 V 160 2246 1688 2 v 159 2306 2 61 v 189 2288 a Ft(1)p 240 2306 V 203 w(1)p Fs(=)p Ft(2)p 663 2306 V 474 w(0)p 1285 2306 V 544 w(1)p Fs(=)p Ft(2)p 1847 2306 V 160 2308 1688 2 v 159 2368 2 61 v 189 2350 a(2)p 240 2368 V 227 w(2)p 663 2368 V 498 w(0)p 1285 2368 V 568 w(2)p 1847 2368 V 160 2370 1688 2 v 159 2430 2 61 v 189 2412 a(3)p 240 2430 V 227 w(1)p 663 2430 V 498 w(4)p 1285 2430 V 568 w(0)p 1847 2430 V 160 2431 1688 2 v 468 2514 a Fl(T)-5 b(able)19 b(1)p Ft(:)j(F)l(requency)14 b(con)o(ten)o(ts)i(of)h(the)f(function)g Fs(f)1465 2521 y Fn(1)1484 2514 y Ft(\()p Fs(t)p Ft(\))35 2654 y(The)j(represen)o(tation)e(of)i(a)f(p)q(erio)q(dic)g(function)g (\(or)h(of)f(a)h(function)f(that)h(is)f(de\014ned)g(only)g(on)g(a)h (\014nite)35 2717 y(in)o(terv)m(al\))j(as)i(the)f(linear)g(com)o (bination)e(of)j(sines)f(and)g(cosines,)i(is)e(kno)o(wn)g(as)h(the)f Fv(F)l(ourier)g(series)992 2841 y Ft(2)p eop %%Page: 3 3 3 2 bop 35 -68 a Ft(expansion)22 b(of)f(the)g(function.)36 b(The)21 b(F)l(ourier)g(transform)f(is)h(a)h(to)q(ol)g(for)f(obtaining) h(suc)o(h)f(frequency)35 -6 y(and)c(amplitude)d(information)h(for)i (sequences)e(and)i(functions,)e(whic)o(h)h(are)g(not)g(necessarily)f(p) q(erio)q(dic.)35 56 y(\(Note)h(that)h(sequences)e(are)i(just)f(a)h(sp)q (ecial)f(case)g(of)g(functions.\))35 246 y Fu(3)81 b(Fitting)27 b(in)f(Complex)g(Num)n(b)r(ers)h(and)g(Exp)r(onen)n(tials)35 381 y Ft(Another)16 b(w)o(a)o(y)g(of)h(writing)f(sin)o(usoids)g(relies) f(on)i(the)f(follo)o(wing)g(equalities:)439 494 y Fs(e)462 473 y Fp(i\022)507 494 y Ft(=)e Fs(cos)p Ft(\()p Fs(\022)q Ft(\))d(+)g Fs(isin)p Ft(\()p Fs(\022)q Ft(\))188 b Fs(e)1107 473 y Fi(\000)p Fp(i\022)1179 494 y Ft(=)14 b Fs(cos)p Ft(\()p Fs(\022)q Ft(\))e Fm(\000)e Fs(isin)p Ft(\()p Fs(\022)q Ft(\))341 b(\(2\))35 606 y(where)17 b Fs(i)g Ft(is)g(the)g(square)h(ro)q(ot)g(of)f Fm(\000)p Ft(1.)25 b(Both)17 b(are)g(easily)g(deriv)o(ed)e(from)h(the)h(T)l(a)o(ylor)h (series)e(expansion)35 668 y(of)h Fs(cos)p Ft(,)f Fs(sin)p Ft(,)g(and)h Fs(e)405 650 y Fp(\022)424 668 y Ft(.)k(Through)c (addition)g(and)g(subtraction)f(they)g(can)h(b)q(e)f(rewritten)f(as:) 508 806 y Fs(cos)p Ft(\()p Fs(\022)q Ft(\))f(=)708 773 y Fs(e)731 755 y Fp(i\022)773 773 y Ft(+)d Fs(e)845 755 y Fi(\000)p Fp(i\022)p 708 795 196 2 v 794 841 a Ft(2)1097 806 y Fs(sin)p Ft(\()p Fs(\022)q Ft(\))j(=)1298 773 y Fs(e)1321 755 y Fp(i\022)1364 773 y Fm(\000)c Fs(e)1436 755 y Fi(\000)p Fp(i\022)p 1298 795 197 2 v 1376 841 a Ft(2)p Fs(i)1910 806 y Ft(\(3\))35 929 y(Hence,)19 b(w)o(e)g(can)h(substitute)f(the)h Fs(sin)f Ft(and)h Fs(cos)g Ft(expressions)f(of)h(equation)g(1)g(b)o(y)f(the)g(resp)q (ectiv)o(e)f(ex-)35 991 y(pressions)f(of)g(equation)f(3)h(and)f(get:) 400 1127 y Fs(f)5 b Ft(\()p Fs(t)p Ft(\))14 b(=)572 1073 y Fp(n)553 1086 y Fo(X)550 1178 y Fp(k)q Fn(=1)615 1127 y Ft([)634 1094 y Fs(A)671 1101 y Fp(k)p 634 1116 58 2 v 650 1162 a Ft(2)696 1127 y(\()p Fs(e)738 1107 y Fn(2)p Fp(\031)q(i!)811 1113 y Fh(k)830 1107 y Fp(t)856 1127 y Ft(+)d Fs(e)928 1107 y Fi(\000)p Fn(2)p Fp(\031)q(i!)1028 1113 y Fh(k)1047 1107 y Fp(t)1062 1127 y Ft(\))g(+)1146 1094 y Fs(B)1183 1101 y Fp(k)p 1146 1116 59 2 v 1154 1162 a Ft(2)p Fs(i)1209 1127 y Ft(\()p Fs(e)1251 1107 y Fn(2)p Fp(\031)q(i!)1324 1113 y Fh(k)1343 1107 y Fp(t)1369 1127 y Fm(\000)f Fs(e)1441 1107 y Fi(\000)p Fn(2)p Fp(\031)q(i!)1541 1113 y Fh(k)1561 1107 y Fp(t)1575 1127 y Ft(\)])302 b(\(4\))35 1271 y(If)16 b(w)o(e)g(denote:)766 1319 y Fs(C)801 1326 y Fp(k)836 1319 y Ft(=)893 1298 y Fp(A)919 1304 y Fh(k)938 1298 y Fi(\000)p Fp(iB)1004 1304 y Fh(k)p 893 1307 131 2 v 949 1336 a Fn(2)1125 1319 y Fs(k)g(>)e Ft(0)766 1409 y Fs(C)801 1416 y Fp(k)836 1409 y Ft(=)893 1388 y Fp(A)919 1394 y Fh(k)938 1388 y Fn(+)p Fp(iB)1004 1394 y Fh(k)p 893 1398 V 949 1426 a Fn(2)1125 1409 y Fs(k)i(<)e Ft(0)766 1499 y Fs(C)801 1506 y Fn(0)834 1499 y Ft(=)g(0)766 1588 y Fs(!)796 1595 y Fp(k)831 1588 y Ft(=)g Fm(\000)p Fs(!)952 1595 y Fi(\000)p Fp(k)1125 1588 y Fs(k)i(<)e Ft(0)1910 1468 y(\(5\))35 1704 y(w)o(e)i(can)h(again)g(rewrite)e Fs(f)5 b Ft(\()p Fs(t)p Ft(\):)774 1793 y Fs(f)g Ft(\()p Fs(t)p Ft(\))14 b(=)962 1739 y Fp(n)943 1751 y Fo(X)925 1844 y Fp(k)q Fn(=)p Fi(\000)p Fp(n)1021 1793 y Ft([)p Fs(C)1070 1800 y Fp(k)1090 1793 y Fs(e)1113 1772 y Fn(2)p Fp(\031)q(i!)1186 1778 y Fh(k)1205 1772 y Fp(t)1220 1793 y Ft(])676 b(\(6\))35 1917 y(Under)23 b(this)g(new)h(notation)g(w)o(e)e (can)i(rewrite)e(the)h(frequency)f(analysis)i(of)f(T)l(able)g(1)h(as)g (sho)o(wn)g(in)35 1979 y(T)l(able)17 b(2.)p 659 2039 690 2 v 658 2099 2 61 v 700 2081 a Fk(k)p 771 2099 V 771 2099 V 67 w Fl(F)-5 b(requency)18 b(\()p Fk(!)1125 2088 y Fj(k)1148 2081 y Fl(\))p 1194 2099 V 1194 2099 V 69 w Fk(C)1280 2088 y Fj(k)p 1348 2099 V 659 2101 690 2 v 658 2161 2 61 v 684 2143 a Fm(\000)p Ft(3)p 771 2161 V 205 w Fm(\000)p Ft(1)p 1194 2161 V 245 w(2)p 1348 2161 V 659 2163 690 2 v 658 2223 2 61 v 684 2205 a Fm(\000)p Ft(2)p 771 2223 V 205 w Fm(\000)p Ft(2)p 1194 2223 V 236 w(2)p Fs(i)p 1348 2223 V 659 2224 690 2 v 658 2285 2 61 v 684 2267 a Fm(\000)p Ft(1)p 771 2285 V 180 w Fm(\000)p Ft(1)p Fs(=)p Ft(2)p 1194 2285 V 201 w Fs(i=)p Ft(4)p 1348 2285 V 659 2286 690 2 v 658 2346 2 61 v 703 2328 a(0)p 771 2346 V 244 w(0)p 1194 2346 V 265 w(0)p 1348 2346 V 659 2348 690 2 v 658 2408 2 61 v 703 2390 a(1)p 771 2408 V 220 w(1)p Fs(=)p Ft(2)p 1194 2408 V 201 w Fm(\000)p Fs(i=)p Ft(4)p 1348 2408 V 659 2410 690 2 v 658 2470 2 61 v 703 2452 a(2)p 771 2470 V 244 w(2)p 1194 2470 V 237 w Fm(\000)p Ft(2)p Fs(i)p 1348 2470 V 659 2472 690 2 v 658 2532 2 61 v 703 2514 a Ft(3)p 771 2532 V 244 w(1)p 1194 2532 V 245 w Fm(\000)p Ft(2)p 1348 2532 V 659 2534 690 2 v 294 2617 a Fl(T)-5 b(able)19 b(2)p Ft(:)i(Another)16 b(form)f(of)i(frequency)e(con)o(ten)o(ts)g(of)i(the)f (function)g Fs(f)1639 2624 y Fn(1)1659 2617 y Ft(\()p Fs(t)p Ft(\))992 2841 y(3)p eop %%Page: 4 4 4 3 bop 35 -68 a Ft(F)l(urther)17 b(manipulation)e(of)i(equation)g(6)g (is)f(based)i(on)f(using)g(the)f(p)q(olar)i(notation)f(for)g(complex)e (n)o(um-)35 -6 y(b)q(ers,)i(that)f(is:)636 56 y Fs(x)10 b Ft(+)h Fs(iy)k Ft(=)f Fs(r)q Ft(\()p Fs(cos)p Ft(\()p Fs(\022)q Ft(\))e(+)f Fs(isin)p Ft(\()p Fs(\022)q Ft(\)\))i(=)h Fs(r)q(e)1341 36 y Fp(i\022)35 139 y Ft(where)526 201 y Fs(r)h Ft(=)f Fm(j)p Fs(x)d Ft(+)g Fs(iy)r Fm(j)i Ft(=)838 148 y Fo(q)p 880 148 153 2 v 53 x Fs(x)908 187 y Fn(2)938 201 y Ft(+)e Fs(y)1013 187 y Fn(2)1099 201 y Ft(and)67 b Fs(tan)p Ft(\()p Fs(\022)q Ft(\))13 b(=)1450 168 y Fs(y)p 1449 190 28 2 v 1449 235 a(x)35 295 y Ft(Using)k(this)f (represen)o(tation)f(of)i(complex)d(n)o(um)o(b)q(ers,)g(w)o(e)i(get:) 593 391 y Fs(C)628 398 y Fp(k)649 391 y Fs(e)672 371 y Fn(2)p Fp(\031)q(i!)745 377 y Fh(k)764 371 y Fp(t)792 391 y Ft(=)e Fs(r)866 398 y Fp(k)887 391 y Fs(e)910 371 y Fp(i\036)943 377 y Fh(k)964 391 y Fs(e)987 371 y Fn(2)p Fp(\031)q(!)1048 377 y Fh(k)1067 371 y Fp(t)1096 391 y Ft(=)f Fs(r)1169 398 y Fp(k)1191 391 y Fs(e)1214 371 y Fp(i)p Fn(\(2)p Fp(\031)q(!)1301 377 y Fh(k)1319 371 y Fp(t)p Fn(+)p Fp(\036)1380 377 y Fh(k)1399 371 y Fn(\))1910 391 y Ft(\(7\))35 488 y(where)391 596 y Fs(r)413 603 y Fp(k)448 596 y Ft(=)500 523 y Fo( )537 562 y Fs(A)574 544 y Fn(2)574 574 y Fp(k)606 562 y Ft(+)e Fs(B)695 544 y Fn(2)692 574 y Fp(k)p 537 584 178 2 v 614 630 a Ft(4)720 523 y Fo(!)753 534 y Fn(1)p Fp(=)p Fn(2)882 596 y Ft(and)56 b Fs(tan)p Ft(\()p Fs(\036)1137 603 y Fp(k)1158 596 y Ft(\))14 b(=)1237 496 y Fo(8)1237 533 y(>)1237 546 y(<)1237 621 y(>)1237 633 y(:)1299 515 y Fi(\000)p Fp(B)1353 521 y Fh(k)p 1299 524 74 2 v 1313 553 a Fp(A)1339 559 y Fh(k)1474 536 y Fs(k)i(>)e Ft(0)1299 606 y Fp(B)1326 612 y Fh(k)p 1299 615 46 2 v 1299 644 a Fp(A)1325 650 y Fh(k)1474 627 y Fs(k)i(<)e Ft(0)35 757 y(F)l(rom)h(all)h(the)g(ab)q(o)o(v)o(e)g (w)o(e)g(obtain:)743 868 y Fs(f)5 b Ft(\()p Fs(t)p Ft(\))14 b(=)930 814 y Fp(n)911 826 y Fo(X)893 919 y Fp(k)q Fn(=)p Fi(\000)p Fp(n)997 868 y Fs(r)1019 875 y Fp(k)1041 868 y Fs(e)1064 847 y Fp(i)p Fn(\(2)p Fp(\031)q(!)1151 853 y Fh(k)1169 847 y Fp(t)p Fn(+)p Fp(\036)1230 853 y Fh(k)1249 847 y Fn(\))1910 868 y Ft(\(8\))35 1002 y(The)j(full)e(details)h(of)g (the)g(ab)q(o)o(v)o(e)h(rewriting)e(can)i(b)q(e)f(found)h(in)f([W)l (ea83].)35 1088 y(Using)g(the)g(terminology)e(in)o(tro)q(duced)i(in)g (Section)f(2,)h Fs(w)1085 1095 y Fp(k)1122 1088 y Ft(is)g(the)g Fs(k)1282 1070 y Fp(th)1333 1088 y Fv(fr)n(e)n(quency)p Ft(,)g Fs(r)1582 1095 y Fp(k)1620 1088 y Ft(is)f(the)h Fv(amplitude)p Ft(,)35 1151 y(and)g Fs(\036)158 1158 y Fp(k)195 1151 y Ft(is)f(the)h Fv(phase)p Ft(.)21 b(In)15 b(the)g(follo)o(wing)g(sections)h(w)o(e)f(will)f(b)q(e)i(using)f(this)h (terminology)e(as)i(the)f(basis)35 1213 y(for)i(discussing)f(the)g(F)l (ourier)g(transform.)35 1401 y Fu(4)81 b(The)27 b(Con)n(tin)n(uous)g(F) -7 b(ourier)26 b(T)-7 b(ransform)35 1536 y Ft(The)17 b(con)o(tin)o(uous)f(F)l(ourier)g(transform)f(of)i(a)g(function)f Fs(f)5 b Ft(\()p Fs(t)p Ft(\))16 b(is)g(de\014ned)g(as)h(follo)o(ws:) 694 1647 y Fs(F)7 b Ft(\()p Fs(!)r Ft(\))13 b(=)868 1588 y Fo(Z)909 1601 y Fi(1)891 1682 y(\0001)964 1647 y Fs(f)5 b Ft(\()p Fs(t)p Ft(\))p Fs(e)1072 1626 y Fi(\000)p Fn(2)p Fp(\031)q(i!)q(t)1188 1647 y Fs(dt)679 b Ft(\(9\))707 1770 y Fs(f)5 b Ft(\()p Fs(t)p Ft(\))13 b(=)857 1712 y Fo(Z)899 1725 y Fi(1)880 1806 y(\0001)953 1770 y Fs(F)7 b Ft(\()p Fs(!)r Ft(\))p Fs(e)1085 1750 y Fn(2)p Fp(\031)q(i!)q(t)1174 1770 y Fs(d!)657 b Ft(\(10\))35 1917 y(Equation)21 b(10)f(is)g(the)f (con)o(tin)o(uous)h(generalization)f(of)h(expressing)f Fs(f)5 b Ft(\()p Fs(t)p Ft(\))20 b(as)g(a)g(com)o(bination)f(of)h(sin)o (u-)35 1980 y(soids,)f(as)g(discussed)f(in)g(the)g(previous)g (sections.)28 b(It)17 b(is)h(kno)o(wn)h(as)g(the)f Fv(inverse)i(F)l (ourier)f(tr)n(ansform)p Ft(.)35 2042 y(Equation)g(9)f(pro)o(vides)g (the)f(means)g(for)i(\014nding)f(the)g(amplitude)e(for)i(eac)o(h)f (frequency)g Fs(!)r Ft(,)h(giv)o(en)f(that)35 2104 y(the)f(in)o(tegral) f(indeed)g(con)o(v)o(erges.)20 b(The)c(result)f(of)h(applying)f(the)h (F)l(ourier)f(transform)g(to)h(a)g(function)g(is)35 2166 y(called)11 b(the)h Fv(fr)n(e)n(quency)i(sp)n(e)n(ctrum)e Ft(or)g(the)g Fv(p)n(ower)h(sp)n(e)n(ctrum)f Ft(of)g(the)g(function,)g (or)g(in)g(short)h(the)e Fv(sp)n(e)n(ctrum)p Ft(.)35 2252 y(Here)16 b(are)g(examples)e(of)j(sev)o(eral)e(useful)h(functions) g(and)h(their)e(resp)q(ectiv)o(e)g(F)l(ourier)g(transforms:)35 2420 y Fl(Example)k(1)24 b Ft(The)16 b Fv(Pulse)i Ft(function)e(is)g (de\014ned)g(as:)22 b Fs(p)1061 2428 y Fn(1)p Fp(=n)1120 2420 y Ft(\()p Fs(t)p Ft(\))13 b(=)1241 2320 y Fo(8)1241 2358 y(>)1241 2370 y(<)1241 2445 y(>)1241 2457 y(:)1304 2341 y Fp(n)p 1304 2349 22 2 v 1306 2377 a Fn(2)1427 2360 y Fm(j)p Fs(t)p Fm(j)g(\024)1545 2341 y Fn(1)p 1544 2349 V 1544 2377 a Fp(n)1299 2450 y Ft(0)104 b Fs(other)q(w)q(ise)35 2559 y Ft(Its)16 b(F)l(ourier)g(transform)g(is)g(a)h Fv(sinc)g Ft(function,)e(obtained)i(as)g(follo)o(ws:)35 2684 y Fs(P)66 2692 y Fn(1)p Fp(=n)126 2684 y Ft(\()p Fs(!)r Ft(\))d(=)254 2626 y Fo(Z)295 2639 y Fi(1)276 2720 y(\0001)349 2684 y Fs(p)373 2692 y Fn(1)p Fp(=n)432 2684 y Ft(\()p Fs(t)p Ft(\))p Fs(e)511 2664 y Fi(\000)p Fn(2)p Fp(\031)q(i!)q(t)627 2684 y Fs(dt)g Ft(=)728 2626 y Fo(Z)776 2625 y Fg(1)p 774 2631 20 2 v 774 2652 a Fh(n)750 2720 y Fi(\000)785 2707 y Fg(1)p 783 2713 V 783 2733 a Fh(n)822 2651 y Fs(n)p 822 2673 30 2 v 824 2719 a Ft(2)856 2684 y Fs(e)879 2664 y Fi(\000)p Fn(2)p Fp(\031)q(i!)q(t)996 2684 y Fs(dt)f Ft(=)1109 2651 y Fs(n)p 1109 2673 V 1111 2719 a Ft(2)1148 2651 y Fs(e)1171 2633 y Fn(2)p Fp(\031)q(i!)q(=n)1297 2651 y Fm(\000)e Fs(e)1370 2633 y Fi(\000)p Fn(2)p Fp(\031)q(i!)q(=n)p 1148 2673 365 2 v 1279 2719 a Ft(2)p Fs(\031)r(i!)1531 2684 y Ft(=)1588 2651 y Fs(sin)p Ft(\(2)p Fs(\031)r(!)r(=n)p Ft(\))p 1588 2673 247 2 v 1641 2719 a(2)p Fs(\031)r(!)r(=n)1853 2684 y Ft(=)j Fs(sinc)p Ft(\(2)p Fs(\031)r(!)r(=n)p Ft(\))992 2841 y(4)p eop %%Page: 5 5 5 4 bop 254 -591 a 23681433 23681433 4736286 4736286 35522150 47362867 startTexFig 254 -591 a %%BeginDocument: fig2.ps /Mathdict 150 dict def Mathdict begin /Mlmarg 1.0 72 mul def /Mrmarg 1.0 72 mul def /Mbmarg 1.0 72 mul def /Mtmarg 1.0 72 mul def /Mwidth 8.5 72 mul def /Mheight 11 72 mul def /Mtransform { } bind def /Mnodistort true def /Mfixwid true def /Mfixdash false def /Mrot 0 def /Mpstart { MathPictureStart } bind def /Mpend { MathPictureEnd } bind def /Mscale { 0 1 0 1 5 -1 roll MathScale } bind def /ISOLatin1Encoding dup where { pop pop } { [ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright /parenleft /parenright /asterisk /plus /comma /minus /period /slash /zero /one /two /three /four /five /six /seven /eight /nine /colon /semicolon /less /equal /greater /question /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore /quoteleft /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar /braceright /asciitilde /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright /ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron /degree /plusminus /twosuperior /threesuperior /acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf /threequarters /questiondown /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis ] def } ifelse /MFontDict 50 dict def /MStrCat { exch dup length 2 index length add string dup 3 1 roll copy length exch dup 4 2 roll exch putinterval } def /MCreateEncoding { 1 index 255 string cvs (-) MStrCat 1 index MStrCat cvn exch (Encoding) MStrCat cvn dup where { exch get } { pop StandardEncoding } ifelse 3 1 roll dup MFontDict exch known not { 1 index findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding 3 index def currentdict end 1 index exch definefont pop MFontDict 1 index null put } if exch pop exch pop } def /ISOLatin1 { (ISOLatin1) MCreateEncoding } def /ISO8859 { (ISOLatin1) MCreateEncoding } def /Mcopyfont { dup maxlength dict exch { 1 index /FID eq { pop pop } { 2 index 3 1 roll put } ifelse } forall } def /Plain /Courier findfont Mcopyfont definefont pop /Bold /Courier-Bold findfont Mcopyfont definefont pop /Italic /Courier-Oblique findfont Mcopyfont definefont pop /MathPictureStart { gsave Mtransform Mlmarg Mbmarg translate Mwidth Mlmarg Mrmarg add sub /Mwidth exch def Mheight Mbmarg Mtmarg add sub /Mheight exch def /Mtmatrix matrix currentmatrix def /Mgmatrix matrix currentmatrix def } bind def /MathPictureEnd { grestore } bind def /MFill { 0 0 moveto Mwidth 0 lineto Mwidth Mheight lineto 0 Mheight lineto fill } bind def /MPlotRegion { 3 index Mwidth mul 2 index Mheight mul translate exch sub Mheight mul /Mheight exch def exch sub Mwidth mul /Mwidth exch def } bind def /MathSubStart { Momatrix Mgmatrix Mtmatrix Mwidth Mheight 7 -2 roll moveto Mtmatrix setmatrix currentpoint Mgmatrix setmatrix 9 -2 roll moveto Mtmatrix setmatrix currentpoint 2 copy translate /Mtmatrix matrix currentmatrix def 3 -1 roll exch sub /Mheight exch def sub /Mwidth exch def } bind def /MathSubEnd { /Mheight exch def /Mwidth exch def /Mtmatrix exch def dup setmatrix /Mgmatrix exch def /Momatrix exch def } bind def /Mdot { moveto 0 0 rlineto stroke } bind def /Mtetra { moveto lineto lineto lineto fill } bind def /Metetra { moveto lineto lineto lineto closepath gsave fill grestore 0 setgray stroke } bind def /Mistroke { flattenpath 0 0 0 { 4 2 roll pop pop } { 4 -1 roll 2 index sub dup mul 4 -1 roll 2 index sub dup mul add sqrt 4 -1 roll add 3 1 roll } { stop } { stop } pathforall pop pop currentpoint stroke moveto currentdash 3 -1 roll add setdash } bind def /Mfstroke { stroke currentdash pop 0 setdash } bind def /Mrotsboxa { gsave dup /Mrot exch def Mrotcheck Mtmatrix dup setmatrix 7 1 roll 4 index 4 index translate rotate 3 index -1 mul 3 index -1 mul translate /Mtmatrix matrix currentmatrix def grestore Msboxa 3 -1 roll /Mtmatrix exch def /Mrot 0 def } bind def /Msboxa { newpath 5 -1 roll Mvboxa pop Mboxout 6 -1 roll 5 -1 roll 4 -1 roll Msboxa1 5 -3 roll Msboxa1 Mboxrot [ 7 -2 roll 2 copy [ 3 1 roll 10 -1 roll 9 -1 roll ] 6 1 roll 5 -2 roll ] } bind def /Msboxa1 { sub 2 div dup 2 index 1 add mul 3 -1 roll -1 add 3 -1 roll mul } bind def /Mvboxa { Mfixwid { Mvboxa1 } { dup Mwidthcal 0 exch { add } forall exch Mvboxa1 4 index 7 -1 roll add 4 -1 roll pop 3 1 roll } ifelse } bind def /Mvboxa1 { gsave newpath [ true 3 -1 roll { Mbbox 5 -1 roll { 0 5 1 roll } { 7 -1 roll exch sub (m) stringwidth pop .3 mul sub 7 1 roll 6 -1 roll 4 -1 roll Mmin 3 -1 roll 5 index add 5 -1 roll 4 -1 roll Mmax 4 -1 roll } ifelse false } forall { stop } if counttomark 1 add 4 roll ] grestore } bind def /Mbbox { 1 dict begin 0 0 moveto /temp (T) def { gsave currentpoint newpath moveto temp 0 3 -1 roll put temp false charpath flattenpath currentpoint pathbbox grestore moveto lineto moveto} forall pathbbox newpath end } bind def /Mmin { 2 copy gt { exch } if pop } bind def /Mmax { 2 copy lt { exch } if pop } bind def /Mrotshowa { dup /Mrot exch def Mrotcheck Mtmatrix dup setmatrix 7 1 roll 4 index 4 index translate rotate 3 index -1 mul 3 index -1 mul translate /Mtmatrix matrix currentmatrix def Mgmatrix setmatrix Mshowa /Mtmatrix exch def /Mrot 0 def } bind def /Mshowa { 4 -2 roll moveto 2 index Mtmatrix setmatrix Mvboxa 7 1 roll Mboxout 6 -1 roll 5 -1 roll 4 -1 roll Mshowa1 4 1 roll Mshowa1 rmoveto currentpoint Mfixwid { Mshowax } { Mshoway } ifelse pop pop pop pop Mgmatrix setmatrix } bind def /Mshowax { 0 1 4 index length -1 add { 2 index 4 index 2 index get 3 index add moveto 4 index exch get Mfixdash { Mfixdashp } if show } for } bind def /Mfixdashp { dup length 1 gt 1 index true exch { 45 eq and } forall and { gsave (--) stringwidth pop (-) stringwidth pop sub 2 div 0 rmoveto dup length 1 sub { (-) show } repeat grestore } if } bind def /Mshoway { 3 index Mwidthcal 5 1 roll 0 1 4 index length -1 add { 2 index 4 index 2 index get 3 index add moveto 4 index exch get [ 6 index aload length 2 add -1 roll { pop Strform stringwidth pop neg exch add 0 rmoveto } exch kshow cleartomark } for pop } bind def /Mwidthcal { [ exch { Mwidthcal1 } forall ] [ exch dup Maxlen -1 add 0 1 3 -1 roll { [ exch 2 index { 1 index Mget exch } forall pop Maxget exch } for pop ] Mreva } bind def /Mreva { [ exch aload length -1 1 {1 roll} for ] } bind def /Mget { 1 index length -1 add 1 index ge { get } { pop pop 0 } ifelse } bind def /Maxlen { [ exch { length } forall Maxget } bind def /Maxget { counttomark -1 add 1 1 3 -1 roll { pop Mmax } for exch pop } bind def /Mwidthcal1 { [ exch { Strform stringwidth pop } forall ] } bind def /Strform { /tem (x) def tem 0 3 -1 roll put tem } bind def /Mshowa1 { 2 copy add 4 1 roll sub mul sub -2 div } bind def /MathScale { Mwidth Mheight Mlp translate scale /yscale exch def /ybias exch def /xscale exch def /xbias exch def /Momatrix xscale yscale matrix scale xbias ybias matrix translate matrix concatmatrix def /Mgmatrix matrix currentmatrix def } bind def /Mlp { 3 copy Mlpfirst { Mnodistort { Mmin dup } if 4 index 2 index 2 index Mlprun 11 index 11 -1 roll 10 -4 roll Mlp1 8 index 9 -5 roll Mlp1 4 -1 roll and { exit } if 3 -1 roll pop pop } loop exch 3 1 roll 7 -3 roll pop pop pop } bind def /Mlpfirst { 3 -1 roll dup length 2 copy -2 add get aload pop pop pop 4 -2 roll -1 add get aload pop pop pop 6 -1 roll 3 -1 roll 5 -1 roll sub div 4 1 roll exch sub div } bind def /Mlprun { 2 copy 4 index 0 get dup 4 1 roll Mlprun1 3 copy 8 -2 roll 9 -1 roll { 3 copy Mlprun1 3 copy 11 -3 roll /gt Mlpminmax 8 3 roll 11 -3 roll /lt Mlpminmax 8 3 roll } forall pop pop pop pop 3 1 roll pop pop aload pop 5 -1 roll aload pop exch 6 -1 roll Mlprun2 8 2 roll 4 -1 roll Mlprun2 6 2 roll 3 -1 roll Mlprun2 4 2 roll exch Mlprun2 6 2 roll } bind def /Mlprun1 { aload pop exch 6 -1 roll 5 -1 roll mul add 4 -2 roll mul 3 -1 roll add } bind def /Mlprun2 { 2 copy add 2 div 3 1 roll exch sub } bind def /Mlpminmax { cvx 2 index 6 index 2 index exec { 7 -3 roll 4 -1 roll } if 1 index 5 index 3 -1 roll exec { 4 1 roll pop 5 -1 roll aload pop pop 4 -1 roll aload pop [ 8 -2 roll pop 5 -2 roll pop 6 -2 roll pop 5 -1 roll ] 4 1 roll pop } { pop pop pop } ifelse } bind def /Mlp1 { 5 index 3 index sub 5 index 2 index mul 1 index le 1 index 0 le or dup not { 1 index 3 index div .99999 mul 8 -1 roll pop 7 1 roll } if 8 -1 roll 2 div 7 -2 roll pop sub 5 index 6 -3 roll pop pop mul sub exch } bind def /intop 0 def /inrht 0 def /inflag 0 def /outflag 0 def /xadrht 0 def /xadlft 0 def /yadtop 0 def /yadbot 0 def /Minner { outflag 1 eq { /outflag 0 def /intop 0 def /inrht 0 def } if 5 index gsave Mtmatrix setmatrix Mvboxa pop grestore 3 -1 roll pop dup intop gt { /intop exch def } { pop } ifelse dup inrht gt { /inrht exch def } { pop } ifelse pop /inflag 1 def } bind def /Mouter { /xadrht 0 def /xadlft 0 def /yadtop 0 def /yadbot 0 def inflag 1 eq { dup 0 lt { dup intop mul neg /yadtop exch def } if dup 0 gt { dup intop mul /yadbot exch def } if pop dup 0 lt { dup inrht mul neg /xadrht exch def } if dup 0 gt { dup inrht mul /xadlft exch def } if pop /outflag 1 def } { pop pop} ifelse /inflag 0 def /inrht 0 def /intop 0 def } bind def /Mboxout { outflag 1 eq { 4 -1 roll xadlft leadjust add sub 4 1 roll 3 -1 roll yadbot leadjust add sub 3 1 roll exch xadrht leadjust add add exch yadtop leadjust add add /outflag 0 def /xadlft 0 def /yadbot 0 def /xadrht 0 def /yadtop 0 def } if } bind def /leadjust { (m) stringwidth pop .5 mul } bind def /Mrotcheck { dup 90 eq { yadbot /yadbot xadrht def /xadrht yadtop def /yadtop xadlft def /xadlft exch def } if dup cos 1 index sin Checkaux dup cos 1 index sin neg exch Checkaux 3 1 roll pop pop } bind def /Checkaux { 4 index exch 4 index mul 3 1 roll mul add 4 1 roll } bind def /Mboxrot { Mrot 90 eq { brotaux 4 2 roll } if Mrot 180 eq { 4 2 roll brotaux 4 2 roll brotaux } if Mrot 270 eq { 4 2 roll brotaux } if } bind def /brotaux { neg exch neg } bind def /Mabsproc { 0 matrix defaultmatrix dtransform idtransform dup mul exch dup mul add sqrt } bind def /Mabswid { Mabsproc setlinewidth } bind def /Mabsdash { exch [ exch { Mabsproc } forall ] exch setdash } bind def /MBeginOrig { Momatrix concat} bind def /MEndOrig { Mgmatrix setmatrix} bind def /sampledsound where { pop} { /sampledsound { exch pop exch 5 1 roll mul 4 idiv mul 2 idiv exch pop exch /Mtempproc exch def { Mtempproc pop} repeat } bind def } ifelse /g { setgray} bind def /k { setcmykcolor} bind def /m { moveto} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /P { grestore} bind def /s { stroke} bind def /setcmykcolor where { pop} { /setcmykcolor { 4 1 roll [ 4 1 roll ] { 1 index sub 1 sub neg dup 0 lt { pop 0 } if dup 1 gt { pop 1 } if exch } forall pop setrgbcolor } bind def } ifelse /Mcharproc { currentfile (x) readhexstring pop 0 get exch div } bind def /Mshadeproc { dup 3 1 roll { dup Mcharproc 3 1 roll } repeat 1 eq { setgray } { 3 eq { setrgbcolor } { setcmykcolor } ifelse } ifelse } bind def /Mrectproc { 3 index 2 index moveto 2 index 3 -1 roll lineto dup 3 1 roll lineto lineto fill } bind def /Mcolorimage { 7 1 roll pop pop matrix invertmatrix concat 2 exch exp 1 sub 3 1 roll 1 1 2 index { 1 1 4 index { dup 1 sub exch 2 index dup 1 sub exch 7 index 9 index Mshadeproc Mrectproc } for pop } for pop pop pop pop } bind def /Mimage { pop matrix invertmatrix concat 2 exch exp 1 sub 3 1 roll 1 1 2 index { 1 1 4 index { dup 1 sub exch 2 index dup 1 sub exch 7 index Mcharproc setgray Mrectproc } for pop } for pop pop pop } bind def MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.47619 0.0113379 0.47619 [ [ -0.001 -0.001 0 0 ] [ 1.001 .47719 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash 0 g p p .002 w 0 0 m 1 0 L s P p .002 w 0 0 m 0 .47619 L s P P p p .002 w 0 .47619 m 1 .47619 L s P p .002 w 1 0 m 1 .47619 L s P P p P 0 0 m 1 0 L 1 .47619 L 0 .47619 L closepath clip newpath p p % Start of sub-graphic p 0.0238095 0.0113379 0.477324 0.464853 MathSubStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.1 0.25 0.5 [ [(t)] 1.025 .25 -1 0 Msboxa [(p \(t\))( 1/n)] .5 1 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 1.001 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash p [(t)] 1.025 .25 -1 0 Mshowa p .002 w 0 .25 m 1 .25 L s P [(p \(t\))( 1/n)] .5 1 0 -4 Mshowa p .002 w .5 0 m .5 1 L s P P 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath p p p .004 w .45 .75 m .45417 .75 L .45833 .75 L .4625 .75 L .46667 .75 L .47083 .75 L .475 .75 L .47917 .75 L .48333 .75 L .4875 .75 L .49167 .75 L .49583 .75 L .5 .75 L .50417 .75 L .50833 .75 L .5125 .75 L .51667 .75 L .52083 .75 L .525 .75 L .52917 .75 L .53333 .75 L .5375 .75 L .54167 .75 L .54583 .75 L .55 .75 L s P P p p .004 w .55 .25 m .56875 .25 L .5875 .25 L .60625 .25 L .625 .25 L .64375 .25 L .6625 .25 L .68125 .25 L .7 .25 L .71875 .25 L .7375 .25 L .75625 .25 L .775 .25 L .79375 .25 L .8125 .25 L .83125 .25 L .85 .25 L .86875 .25 L .8875 .25 L .90625 .25 L .925 .25 L .94375 .25 L .9625 .25 L .98125 .25 L 1 .25 L s P P p p .004 w 0 .25 m .01875 .25 L .0375 .25 L .05625 .25 L .075 .25 L .09375 .25 L .1125 .25 L .13125 .25 L .15 .25 L .16875 .25 L .1875 .25 L .20625 .25 L .225 .25 L .24375 .25 L .2625 .25 L .28125 .25 L .3 .25 L .31875 .25 L .3375 .25 L .35625 .25 L .375 .25 L .39375 .25 L .4125 .25 L .43125 .25 L .45 .25 L s P P p [ .01 .01 ] 0 setdash .6 g .0005 w .45 .25 m .45 .75 L s P p [ .01 .01 ] 0 setdash .6 g .0005 w .55 .25 m .55 .75 L s P P MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.522676 0.0113379 0.97619 0.464853 MathSubStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.05 0.25 0.5 [ [(w)] 1.025 .25 -1 0 Msboxa [(P \(w\))( 1/n)] .5 1 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 1.001 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash p [(w)] 1.025 .25 -1 0 Mshowa p .002 w 0 .25 m 1 .25 L s P [(P \(w\))( 1/n)] .5 1 0 -4 Mshowa p .002 w .5 0 m .5 1 L s P P 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath p p .004 w 0 .25 m .00521 .24483 L .01042 .24011 L .01563 .23634 L .01823 .23495 L .01953 .23441 L .02083 .23396 L .02214 .23362 L .02344 .23338 L .02474 .23326 L .02604 .23325 L .02734 .23335 L .02865 .23356 L .02995 .23388 L .03125 .23432 L .03255 .23486 L .03385 .2355 L .03646 .23709 L .04167 .24132 L .05208 .25232 L .05729 .25795 L .0625 .26286 L .0651 .26487 L .06771 .26651 L .07031 .26772 L .07161 .26816 L .07292 .26847 L .07422 .26867 L .07552 .26874 L .07682 .26868 L .07813 .2685 L .07943 .26819 L .08073 .26776 L .08333 .26654 L .08594 .26486 L .08854 .26275 L .09375 .2575 L .10417 .2448 L .10938 .23868 L .11198 .23598 L .11458 .23362 L .11719 .23167 L .11979 .23018 L .12109 .22963 L .1224 .22921 L .1237 .22892 L .125 .22878 L .1263 .22878 L .1276 .22892 L .12891 .2292 L Mistroke .13021 .22962 L .13151 .23019 L .13281 .23089 L .13542 .23268 L .13802 .23497 L .14063 .2377 L .14583 .24418 L .15625 .25886 L .16146 .2655 L .16406 .26831 L .16667 .27067 L .16797 .27167 L .16927 .27252 L .17057 .27323 L .17188 .27379 L .17318 .27419 L .17448 .27443 L .17578 .27451 L .17708 .27443 L .17839 .27419 L .17969 .27377 L .18099 .2732 L .18229 .27246 L .1875 .26801 L .1901 .26496 L .19271 .26145 L .19792 .25344 L .20833 .23636 L .21354 .22911 L .21615 .22619 L .21875 .22386 L .22005 .22294 L .22135 .22219 L .22266 .22162 L .22396 .22123 L .22526 .22104 L .22656 .22104 L .22786 .22123 L .22917 .22162 L .25 .25 L .25521 .26045 L .26042 .27022 L .26302 .27451 L .26563 .27823 L .26823 .28127 L .27083 .28354 L .27214 .28436 L .27344 .28495 L .27474 .28532 L .27604 .28546 L Mistroke .27734 .28535 L .27865 .28501 L .27995 .28443 L .28125 .28361 L .29167 .2691 L .30208 .24475 L .30729 .23174 L .3125 .21999 L .3151 .21502 L .31771 .21085 L .31901 .20911 L .32031 .20762 L .32161 .2064 L .32292 .20545 L .32422 .20478 L .32552 .20442 L .32682 .20435 L .32813 .20459 L .32943 .20514 L .33073 .206 L .33203 .20717 L .33333 .20865 L .35417 .26412 L .35938 .28144 L .36458 .29662 L .36719 .30284 L .36979 .30787 L .37109 .30988 L .3724 .31153 L .3737 .31279 L .375 .31366 L .3763 .31412 L .3776 .31415 L .37891 .31375 L .38021 .3129 L .38151 .31162 L .38281 .30989 L .38411 .30771 L .38542 .3051 L .39063 .29042 L .39583 .26977 L .40625 .21752 L .41146 .19074 L .41667 .1673 L .41927 .15774 L .42188 .1501 L .42318 .14709 L .42448 .14468 L .42578 .14291 L .42708 .1418 L Mistroke .42839 .14139 L .42969 .1417 L .43099 .14276 L .43229 .14459 L .43359 .14721 L .4349 .15064 L .4375 .15997 L .4401 .17261 L .44271 .18857 L .44792 .23006 L .45833 .34549 L .46875 .48526 L .47917 .61896 L .48438 .67346 L .48958 .71506 L .49219 .73016 L .49479 .74112 L .49609 .745 L .4974 .74777 L .4987 .74944 L .5 .75 L .5013 .74944 L .5026 .74777 L .50391 .745 L .50521 .74112 L .50781 .73016 L .51042 .71506 L .51563 .67346 L .52083 .61896 L .53125 .48526 L .54167 .34549 L .54688 .28312 L .55208 .23006 L .55729 .18857 L .5599 .17261 L .5625 .15997 L .5651 .15064 L .56641 .14721 L .56771 .14459 L .56901 .14276 L .57031 .1417 L .57161 .14139 L .57292 .1418 L .57422 .14291 L .57552 .14468 L .57813 .1501 L .58073 .15774 L .58333 .1673 L .59375 .21752 L .59896 .24474 L Mistroke .60417 .26977 L .60938 .29042 L .61198 .29858 L .61458 .3051 L .61589 .30771 L .61719 .30989 L .61849 .31162 L .61979 .3129 L .62109 .31375 L .6224 .31415 L .6237 .31412 L .625 .31366 L .64583 .26412 L .65104 .24655 L .65625 .23051 L .66146 .2175 L .66406 .21251 L .66536 .21043 L .66667 .20865 L .66797 .20717 L .66927 .206 L .67057 .20514 L .67188 .20459 L .67318 .20435 L .67448 .20442 L .67578 .20478 L .67708 .20545 L .67839 .2064 L .67969 .20762 L .68229 .21085 L .6875 .21999 L .69792 .24475 L .70313 .25764 L .70833 .2691 L .71094 .27393 L .71354 .27802 L .71615 .28126 L .71745 .28255 L .71875 .28361 L .72005 .28443 L .72135 .28501 L .72266 .28535 L .72396 .28546 L .72526 .28532 L .72656 .28495 L .72786 .28436 L .72917 .28354 L .75 .25 L .75521 .23998 L .76042 .2314 L Mistroke .76302 .22792 L .76563 .22509 L .76693 .22394 L .76823 .22298 L .76953 .2222 L .77083 .22162 L .77214 .22123 L .77344 .22104 L .77474 .22104 L .77604 .22123 L .77734 .22162 L .77865 .22219 L .77995 .22294 L .78125 .22386 L .79167 .23636 L .80208 .25344 L .80729 .26145 L .8099 .26496 L .8125 .26801 L .8151 .27053 L .81771 .27246 L .81901 .2732 L .82031 .27377 L .82161 .27419 L .82292 .27443 L .82422 .27451 L .82552 .27443 L .82682 .27419 L .82813 .27379 L .82943 .27323 L .83073 .27252 L .83333 .27067 L .83854 .2655 L .84375 .25886 L .85417 .24418 L .85938 .2377 L .86198 .23497 L .86458 .23268 L .86589 .23172 L .86719 .23089 L .86849 .23019 L .86979 .22962 L .87109 .2292 L .8724 .22892 L .8737 .22878 L .875 .22878 L .8763 .22892 L .8776 .22921 L .87891 .22963 L .88021 .23018 L Mistroke .88542 .23362 L .88802 .23598 L .89063 .23868 L .89583 .2448 L .90625 .2575 L .91146 .26275 L .91406 .26486 L .91667 .26654 L .91797 .26721 L .91927 .26776 L .92057 .26819 L .92188 .2685 L .92318 .26868 L .92448 .26874 L .92578 .26867 L .92708 .26847 L .92839 .26816 L .92969 .26772 L .93229 .26651 L .9349 .26487 L .9375 .26286 L .94792 .25232 L .95313 .24657 L .95833 .24132 L .96354 .23709 L .96615 .2355 L .96745 .23486 L .96875 .23432 L .97005 .23388 L .97135 .23356 L .97266 .23335 L .97396 .23325 L .97526 .23326 L .97656 .23338 L .97786 .23362 L .97917 .23396 L .98047 .23441 L .98177 .23495 L .98438 .23634 L .98958 .24011 L 1 .25 L Mfstroke P P MathSubEnd P % End of sub-graphic P P % End of Graphics MathPictureEnd end showpage %%EndDocument endTexFig 337 539 a Fl(Figure)19 b(2)p Ft(:)j(A)15 b(plot)i(of)f Fs(p)810 546 y Fn(1)p Fp(=n)870 539 y Ft(\()p Fs(t)p Ft(\),)f(and)i(its)f(F)l(ourier)f(transform)h Fs(P)1541 546 y Fn(1)p Fp(=n)1600 539 y Ft(\()p Fs(!)r Ft(\))35 679 y(The)h(resp)q(ectiv)o(e)d(graphs)k(for)e Fs(p)618 687 y Fn(1)p Fp(=n)677 679 y Ft(\()p Fs(t)p Ft(\))g(and)h Fs(P)875 687 y Fn(1)p Fp(=n)934 679 y Ft(\()p Fs(!)r Ft(\))g(are)f(sho)o(wn)h(in)f(Figure)g(2.)35 802 y Fl(Example)j(2)24 b Ft(The)16 b Fs(\016)i Ft(function)e(is)g(de\014ned)g(as:)22 b Fs(\016)r Ft(\()p Fs(t)p Ft(\))13 b(=)h(lim)1158 809 y Fp(n)p Fi(!1)1261 802 y Fs(p)1285 809 y Fn(1)p Fp(=n)1344 802 y Ft(\()p Fs(t)p Ft(\))35 888 y(This)i(function)f(is)g(also)h(kno)o (wn)g(as)g(the)f Fv(Dir)n(ac)h(delta)h(function)g Ft(or)f(the)f Fv(unit)i(impulse)h(function)p Ft(.)k(It)15 b(is)g(0)35 950 y(for)i(all)f Fs(t)p Ft(,)f(except)g(for)i(0,)f(and)h(w)o(e)f(can)g (think)g(of)g Fs(\016)r Ft(\(0\))g(as)h(b)q(eing)g Fm(1)p Ft(.)35 1036 y(The)g(F)l(ourier)e(transform)h(of)h Fs(\016)r Ft(\()p Fs(t)p Ft(\))e(is:)555 1158 y(\001\()p Fs(!)r Ft(\))f(=)26 b(lim)732 1183 y Fp(n)p Fi(!1)832 1158 y Fs(P)7 b Ft(\()p Fs(!)r Ft(\))14 b(=)26 b(lim)1006 1183 y Fp(n)p Fi(!1)1111 1125 y Fs(sin)p Ft(\(2)p Fs(\031)r(!)r(=n)p Ft(\))p 1111 1147 247 2 v 1165 1192 a(2)p Fs(\031)r(!)r(=n)1376 1158 y Ft(=)14 b(1)35 1307 y Fl(Example)19 b(3)24 b Ft(Let)16 b Fs(f)5 b Ft(\()p Fs(t)p Ft(\))17 b(b)q(e)f(some)f(simple)f(cosine)i (function:)21 b Fs(f)5 b Ft(\()p Fs(t)p Ft(\))14 b(=)g Fs(cos)p Ft(\(2)p Fs(\031)r(at)p Ft(\))35 1393 y(Its)i(F)l(ourier)g (transform)g(is:)429 1503 y Fs(F)7 b Ft(\()p Fs(!)r Ft(\))13 b(=)603 1444 y Fo(Z)645 1457 y Fi(1)626 1538 y(\0001)699 1503 y Fs(cos)p Ft(\(2)p Fs(\031)r(at)p Ft(\))p Fs(e)925 1482 y Fi(\000)p Fn(2)p Fp(\031)q(i!)q(t)1041 1503 y Fs(dt)h Ft(=)1154 1469 y Fs(\016)r Ft(\()p Fs(!)f Ft(+)e Fs(a)p Ft(\))g(+)g Fs(\016)r Ft(\()p Fs(!)h Fm(\000)f Fs(a)p Ft(\))p 1154 1491 420 2 v 1352 1537 a(2)35 1642 y(The)17 b(resp)q(ectiv)o(e)d(graphs)k(for)e Fs(f)5 b Ft(\()p Fs(t)p Ft(\))16 b(and)h Fs(F)7 b Ft(\()p Fs(!)r Ft(\))16 b(are)g(sho)o(wn)h(in)f(Figure)g(3.)254 1290 y 23681433 23681433 4736286 4736286 35522150 47362867 startTexFig 254 1290 a %%BeginDocument: fig3.ps /Mathdict 150 dict def Mathdict begin /Mlmarg 1.0 72 mul def /Mrmarg 1.0 72 mul def /Mbmarg 1.0 72 mul def /Mtmarg 1.0 72 mul def /Mwidth 8.5 72 mul def /Mheight 11 72 mul def /Mtransform { } bind def /Mnodistort true def /Mfixwid true def /Mfixdash false def /Mrot 0 def /Mpstart { MathPictureStart } bind def /Mpend { MathPictureEnd } bind def /Mscale { 0 1 0 1 5 -1 roll MathScale } bind def /ISOLatin1Encoding dup where { pop pop } { [ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright /parenleft /parenright /asterisk /plus /comma /minus /period /slash /zero /one /two /three /four /five /six /seven /eight /nine /colon /semicolon /less /equal /greater /question /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore /quoteleft /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar /braceright /asciitilde /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright /ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron /degree /plusminus /twosuperior /threesuperior /acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf /threequarters /questiondown /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis ] def } ifelse /MFontDict 50 dict def /MStrCat { exch dup length 2 index length add string dup 3 1 roll copy length exch dup 4 2 roll exch putinterval } def /MCreateEncoding { 1 index 255 string cvs (-) MStrCat 1 index MStrCat cvn exch (Encoding) MStrCat cvn dup where { exch get } { pop StandardEncoding } ifelse 3 1 roll dup MFontDict exch known not { 1 index findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding 3 index def currentdict end 1 index exch definefont pop MFontDict 1 index null put } if exch pop exch pop } def /ISOLatin1 { (ISOLatin1) MCreateEncoding } def /ISO8859 { (ISOLatin1) MCreateEncoding } def /Mcopyfont { dup maxlength dict exch { 1 index /FID eq { pop pop } { 2 index 3 1 roll put } ifelse } forall } def /Plain /Courier findfont Mcopyfont definefont pop /Bold /Courier-Bold findfont Mcopyfont definefont pop /Italic /Courier-Oblique findfont Mcopyfont definefont pop /MathPictureStart { gsave Mtransform Mlmarg Mbmarg translate Mwidth Mlmarg Mrmarg add sub /Mwidth exch def Mheight Mbmarg Mtmarg add sub /Mheight exch def /Mtmatrix matrix currentmatrix def /Mgmatrix matrix currentmatrix def } bind def /MathPictureEnd { grestore } bind def /MFill { 0 0 moveto Mwidth 0 lineto Mwidth Mheight lineto 0 Mheight lineto fill } bind def /MPlotRegion { 3 index Mwidth mul 2 index Mheight mul translate exch sub Mheight mul /Mheight exch def exch sub Mwidth mul /Mwidth exch def } bind def /MathSubStart { Momatrix Mgmatrix Mtmatrix Mwidth Mheight 7 -2 roll moveto Mtmatrix setmatrix currentpoint Mgmatrix setmatrix 9 -2 roll moveto Mtmatrix setmatrix currentpoint 2 copy translate /Mtmatrix matrix currentmatrix def 3 -1 roll exch sub /Mheight exch def sub /Mwidth exch def } bind def /MathSubEnd { /Mheight exch def /Mwidth exch def /Mtmatrix exch def dup setmatrix /Mgmatrix exch def /Momatrix exch def } bind def /Mdot { moveto 0 0 rlineto stroke } bind def /Mtetra { moveto lineto lineto lineto fill } bind def /Metetra { moveto lineto lineto lineto closepath gsave fill grestore 0 setgray stroke } bind def /Mistroke { flattenpath 0 0 0 { 4 2 roll pop pop } { 4 -1 roll 2 index sub dup mul 4 -1 roll 2 index sub dup mul add sqrt 4 -1 roll add 3 1 roll } { stop } { stop } pathforall pop pop currentpoint stroke moveto currentdash 3 -1 roll add setdash } bind def /Mfstroke { stroke currentdash pop 0 setdash } bind def /Mrotsboxa { gsave dup /Mrot exch def Mrotcheck Mtmatrix dup setmatrix 7 1 roll 4 index 4 index translate rotate 3 index -1 mul 3 index -1 mul translate /Mtmatrix matrix currentmatrix def grestore Msboxa 3 -1 roll /Mtmatrix exch def /Mrot 0 def } bind def /Msboxa { newpath 5 -1 roll Mvboxa pop Mboxout 6 -1 roll 5 -1 roll 4 -1 roll Msboxa1 5 -3 roll Msboxa1 Mboxrot [ 7 -2 roll 2 copy [ 3 1 roll 10 -1 roll 9 -1 roll ] 6 1 roll 5 -2 roll ] } bind def /Msboxa1 { sub 2 div dup 2 index 1 add mul 3 -1 roll -1 add 3 -1 roll mul } bind def /Mvboxa { Mfixwid { Mvboxa1 } { dup Mwidthcal 0 exch { add } forall exch Mvboxa1 4 index 7 -1 roll add 4 -1 roll pop 3 1 roll } ifelse } bind def /Mvboxa1 { gsave newpath [ true 3 -1 roll { Mbbox 5 -1 roll { 0 5 1 roll } { 7 -1 roll exch sub (m) stringwidth pop .3 mul sub 7 1 roll 6 -1 roll 4 -1 roll Mmin 3 -1 roll 5 index add 5 -1 roll 4 -1 roll Mmax 4 -1 roll } ifelse false } forall { stop } if counttomark 1 add 4 roll ] grestore } bind def /Mbbox { 1 dict begin 0 0 moveto /temp (T) def { gsave currentpoint newpath moveto temp 0 3 -1 roll put temp false charpath flattenpath currentpoint pathbbox grestore moveto lineto moveto} forall pathbbox newpath end } bind def /Mmin { 2 copy gt { exch } if pop } bind def /Mmax { 2 copy lt { exch } if pop } bind def /Mrotshowa { dup /Mrot exch def Mrotcheck Mtmatrix dup setmatrix 7 1 roll 4 index 4 index translate rotate 3 index -1 mul 3 index -1 mul translate /Mtmatrix matrix currentmatrix def Mgmatrix setmatrix Mshowa /Mtmatrix exch def /Mrot 0 def } bind def /Mshowa { 4 -2 roll moveto 2 index Mtmatrix setmatrix Mvboxa 7 1 roll Mboxout 6 -1 roll 5 -1 roll 4 -1 roll Mshowa1 4 1 roll Mshowa1 rmoveto currentpoint Mfixwid { Mshowax } { Mshoway } ifelse pop pop pop pop Mgmatrix setmatrix } bind def /Mshowax { 0 1 4 index length -1 add { 2 index 4 index 2 index get 3 index add moveto 4 index exch get Mfixdash { Mfixdashp } if show } for } bind def /Mfixdashp { dup length 1 gt 1 index true exch { 45 eq and } forall and { gsave (--) stringwidth pop (-) stringwidth pop sub 2 div 0 rmoveto dup length 1 sub { (-) show } repeat grestore } if } bind def /Mshoway { 3 index Mwidthcal 5 1 roll 0 1 4 index length -1 add { 2 index 4 index 2 index get 3 index add moveto 4 index exch get [ 6 index aload length 2 add -1 roll { pop Strform stringwidth pop neg exch add 0 rmoveto } exch kshow cleartomark } for pop } bind def /Mwidthcal { [ exch { Mwidthcal1 } forall ] [ exch dup Maxlen -1 add 0 1 3 -1 roll { [ exch 2 index { 1 index Mget exch } forall pop Maxget exch } for pop ] Mreva } bind def /Mreva { [ exch aload length -1 1 {1 roll} for ] } bind def /Mget { 1 index length -1 add 1 index ge { get } { pop pop 0 } ifelse } bind def /Maxlen { [ exch { length } forall Maxget } bind def /Maxget { counttomark -1 add 1 1 3 -1 roll { pop Mmax } for exch pop } bind def /Mwidthcal1 { [ exch { Strform stringwidth pop } forall ] } bind def /Strform { /tem (x) def tem 0 3 -1 roll put tem } bind def /Mshowa1 { 2 copy add 4 1 roll sub mul sub -2 div } bind def /MathScale { Mwidth Mheight Mlp translate scale /yscale exch def /ybias exch def /xscale exch def /xbias exch def /Momatrix xscale yscale matrix scale xbias ybias matrix translate matrix concatmatrix def /Mgmatrix matrix currentmatrix def } bind def /Mlp { 3 copy Mlpfirst { Mnodistort { Mmin dup } if 4 index 2 index 2 index Mlprun 11 index 11 -1 roll 10 -4 roll Mlp1 8 index 9 -5 roll Mlp1 4 -1 roll and { exit } if 3 -1 roll pop pop } loop exch 3 1 roll 7 -3 roll pop pop pop } bind def /Mlpfirst { 3 -1 roll dup length 2 copy -2 add get aload pop pop pop 4 -2 roll -1 add get aload pop pop pop 6 -1 roll 3 -1 roll 5 -1 roll sub div 4 1 roll exch sub div } bind def /Mlprun { 2 copy 4 index 0 get dup 4 1 roll Mlprun1 3 copy 8 -2 roll 9 -1 roll { 3 copy Mlprun1 3 copy 11 -3 roll /gt Mlpminmax 8 3 roll 11 -3 roll /lt Mlpminmax 8 3 roll } forall pop pop pop pop 3 1 roll pop pop aload pop 5 -1 roll aload pop exch 6 -1 roll Mlprun2 8 2 roll 4 -1 roll Mlprun2 6 2 roll 3 -1 roll Mlprun2 4 2 roll exch Mlprun2 6 2 roll } bind def /Mlprun1 { aload pop exch 6 -1 roll 5 -1 roll mul add 4 -2 roll mul 3 -1 roll add } bind def /Mlprun2 { 2 copy add 2 div 3 1 roll exch sub } bind def /Mlpminmax { cvx 2 index 6 index 2 index exec { 7 -3 roll 4 -1 roll } if 1 index 5 index 3 -1 roll exec { 4 1 roll pop 5 -1 roll aload pop pop 4 -1 roll aload pop [ 8 -2 roll pop 5 -2 roll pop 6 -2 roll pop 5 -1 roll ] 4 1 roll pop } { pop pop pop } ifelse } bind def /Mlp1 { 5 index 3 index sub 5 index 2 index mul 1 index le 1 index 0 le or dup not { 1 index 3 index div .99999 mul 8 -1 roll pop 7 1 roll } if 8 -1 roll 2 div 7 -2 roll pop sub 5 index 6 -3 roll pop pop mul sub exch } bind def /intop 0 def /inrht 0 def /inflag 0 def /outflag 0 def /xadrht 0 def /xadlft 0 def /yadtop 0 def /yadbot 0 def /Minner { outflag 1 eq { /outflag 0 def /intop 0 def /inrht 0 def } if 5 index gsave Mtmatrix setmatrix Mvboxa pop grestore 3 -1 roll pop dup intop gt { /intop exch def } { pop } ifelse dup inrht gt { /inrht exch def } { pop } ifelse pop /inflag 1 def } bind def /Mouter { /xadrht 0 def /xadlft 0 def /yadtop 0 def /yadbot 0 def inflag 1 eq { dup 0 lt { dup intop mul neg /yadtop exch def } if dup 0 gt { dup intop mul /yadbot exch def } if pop dup 0 lt { dup inrht mul neg /xadrht exch def } if dup 0 gt { dup inrht mul /xadlft exch def } if pop /outflag 1 def } { pop pop} ifelse /inflag 0 def /inrht 0 def /intop 0 def } bind def /Mboxout { outflag 1 eq { 4 -1 roll xadlft leadjust add sub 4 1 roll 3 -1 roll yadbot leadjust add sub 3 1 roll exch xadrht leadjust add add exch yadtop leadjust add add /outflag 0 def /xadlft 0 def /yadbot 0 def /xadrht 0 def /yadtop 0 def } if } bind def /leadjust { (m) stringwidth pop .5 mul } bind def /Mrotcheck { dup 90 eq { yadbot /yadbot xadrht def /xadrht yadtop def /yadtop xadlft def /xadlft exch def } if dup cos 1 index sin Checkaux dup cos 1 index sin neg exch Checkaux 3 1 roll pop pop } bind def /Checkaux { 4 index exch 4 index mul 3 1 roll mul add 4 1 roll } bind def /Mboxrot { Mrot 90 eq { brotaux 4 2 roll } if Mrot 180 eq { 4 2 roll brotaux 4 2 roll brotaux } if Mrot 270 eq { 4 2 roll brotaux } if } bind def /brotaux { neg exch neg } bind def /Mabsproc { 0 matrix defaultmatrix dtransform idtransform dup mul exch dup mul add sqrt } bind def /Mabswid { Mabsproc setlinewidth } bind def /Mabsdash { exch [ exch { Mabsproc } forall ] exch setdash } bind def /MBeginOrig { Momatrix concat} bind def /MEndOrig { Mgmatrix setmatrix} bind def /sampledsound where { pop} { /sampledsound { exch pop exch 5 1 roll mul 4 idiv mul 2 idiv exch pop exch /Mtempproc exch def { Mtempproc pop} repeat } bind def } ifelse /g { setgray} bind def /k { setcmykcolor} bind def /m { moveto} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /P { grestore} bind def /s { stroke} bind def /setcmykcolor where { pop} { /setcmykcolor { 4 1 roll [ 4 1 roll ] { 1 index sub 1 sub neg dup 0 lt { pop 0 } if dup 1 gt { pop 1 } if exch } forall pop setrgbcolor } bind def } ifelse /Mcharproc { currentfile (x) readhexstring pop 0 get exch div } bind def /Mshadeproc { dup 3 1 roll { dup Mcharproc 3 1 roll } repeat 1 eq { setgray } { 3 eq { setrgbcolor } { setcmykcolor } ifelse } ifelse } bind def /Mrectproc { 3 index 2 index moveto 2 index 3 -1 roll lineto dup 3 1 roll lineto lineto fill } bind def /Mcolorimage { 7 1 roll pop pop matrix invertmatrix concat 2 exch exp 1 sub 3 1 roll 1 1 2 index { 1 1 4 index { dup 1 sub exch 2 index dup 1 sub exch 7 index 9 index Mshadeproc Mrectproc } for pop } for pop pop pop pop } bind def /Mimage { pop matrix invertmatrix concat 2 exch exp 1 sub 3 1 roll 1 1 2 index { 1 1 4 index { dup 1 sub exch 2 index dup 1 sub exch 7 index Mcharproc setgray Mrectproc } for pop } for pop pop pop } bind def MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.47619 0.0113379 0.47619 [ [ -0.001 -0.001 0 0 ] [ 1.001 .47719 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash 0 g p p .002 w 0 0 m 1 0 L s P p .002 w 0 0 m 0 .47619 L s P P p p .002 w 0 .47619 m 1 .47619 L s P p .002 w 1 0 m 1 .47619 L s P P p P 0 0 m 1 0 L 1 .47619 L 0 .47619 L closepath clip newpath % Start of user PostScript /mathtops { gsave MBeginOrig moveto MEndOrig currentpoint grestore } bind def /MAtocoords { mathtops 4 2 roll mathtops 4 copy pop pop 3 -1 roll sub /arry exch def exch sub /arrx exch def arrx dup mul arry dup mul add sqrt /arrl exch def translate } bind def /MAarrowhead1 { gsave MAtocoords [ arrx arrl div arry arrl div -1 arry mul arrl div arrx arrl div 0 0 ] concat -0.04 0.012 moveto 0 0 lineto -0.04 -0.012 lineto stroke grestore } def % End of user PostScript p p % Start of sub-graphic p 0.0238095 0.0113379 0.477324 0.464853 MathSubStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.1 0.5 0.333333 [ [(t)] 1.025 .5 -1 0 Msboxa [(f\(t\))] .5 1 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 1.001 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash p [(t)] 1.025 .5 -1 0 Mshowa p .002 w 0 .5 m 1 .5 L s P [(f\(t\))] .5 1 0 -4 Mshowa p .002 w .5 0 m .5 1 L s P P 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath p p .004 w 0 .83333 m .0013 .83222 L .0026 .82888 L .00391 .82334 L .00521 .81564 L .00781 .79397 L .01042 .76445 L .01563 .68519 L .02083 .58627 L .03125 .37244 L .03646 .28022 L .03906 .24233 L .04167 .21132 L .04297 .19867 L .04427 .18803 L .04557 .17948 L .04688 .17307 L .04818 .16885 L .04948 .16685 L .05078 .16707 L .05208 .16952 L .05339 .17418 L .05469 .18102 L .05599 .18999 L .05729 .20104 L .0625 .2643 L .06771 .35257 L .07292 .45649 L .07813 .56503 L .08333 .66667 L .08594 .71146 L .08854 .75061 L .09115 .78307 L .09375 .80796 L .09505 .81735 L .09635 .82463 L .09766 .82973 L .09896 .83262 L .10026 .83329 L .10156 .83173 L .10286 .82795 L .10417 .82198 L .10547 .81385 L .10677 .80362 L .10938 .77716 L .11458 .70292 L .125 .5 L .13542 .29708 L .13802 .25671 L .14063 .22284 L Mistroke .14323 .19638 L .14453 .18615 L .14583 .17802 L .14714 .17205 L .14844 .16827 L .14974 .16671 L .15104 .16738 L .15234 .17027 L .15365 .17537 L .15495 .18265 L .15625 .19204 L .15885 .21693 L .16146 .24939 L .16667 .33333 L .17708 .54351 L .18229 .64743 L .1875 .7357 L .1901 .77095 L .19271 .79896 L .19401 .81001 L .19531 .81898 L .19661 .82582 L .19792 .83048 L .19922 .83293 L .20052 .83315 L .20182 .83115 L .20313 .82693 L .20443 .82052 L .20573 .81197 L .20833 .78868 L .21094 .75767 L .21354 .71978 L .21875 .62756 L .22917 .41373 L .23438 .31481 L .23698 .27214 L .23958 .23555 L .24219 .20603 L .24349 .19417 L .24479 .18436 L .24609 .17666 L .2474 .17112 L .2487 .16778 L .25 .16667 L .2513 .16778 L .2526 .17112 L .25391 .17666 L .25521 .18436 L .25651 .19417 L .25781 .20603 L Mistroke .26042 .23555 L .26563 .31481 L .27083 .41373 L .28125 .62756 L .28646 .71978 L .28906 .75767 L .29167 .78868 L .29427 .81197 L .29557 .82052 L .29688 .82693 L .29818 .83115 L .29948 .83315 L .30078 .83293 L .30208 .83048 L .30339 .82582 L .30469 .81898 L .30729 .79896 L .3099 .77095 L .3125 .7357 L .32292 .54351 L .32813 .43497 L .33333 .33333 L .33854 .24939 L .34115 .21693 L .34245 .20349 L .34375 .19204 L .34505 .18265 L .34635 .17537 L .34766 .17027 L .34896 .16738 L .35026 .16671 L .35156 .16827 L .35286 .17205 L .35417 .17802 L .35547 .18615 L .35677 .19638 L .35938 .22284 L .36458 .29708 L .375 .5 L .38021 .60715 L .38542 .70292 L .39063 .77716 L .39193 .79136 L .39323 .80362 L .39453 .81385 L .39583 .82198 L .39714 .82795 L .39844 .83173 L .39974 .83329 L .40104 .83262 L Mistroke .40234 .82973 L .40365 .82463 L .40495 .81735 L .40625 .80796 L .40885 .78307 L .41146 .75061 L .41667 .66667 L .42708 .45649 L .43229 .35257 L .4375 .2643 L .4401 .22905 L .44271 .20104 L .44401 .18999 L .44531 .18102 L .44661 .17418 L .44792 .16952 L .44922 .16707 L .45052 .16685 L .45182 .16885 L .45313 .17307 L .45443 .17948 L .45573 .18803 L .45703 .19867 L .45833 .21132 L .46875 .37244 L .47917 .58627 L .48438 .68519 L .48958 .76445 L .49219 .79397 L .49479 .81564 L .49609 .82334 L .4974 .82888 L .4987 .83222 L .5 .83333 L .5013 .83222 L .5026 .82888 L .50391 .82334 L .50521 .81564 L .50781 .79397 L .51042 .76445 L .51563 .68519 L .52083 .58627 L .53125 .37244 L .53646 .28022 L .53906 .24233 L .54167 .21132 L .54297 .19867 L .54427 .18803 L .54557 .17948 L .54688 .17307 L Mistroke .54818 .16885 L .54948 .16685 L .55078 .16707 L .55208 .16952 L .55339 .17418 L .55469 .18102 L .55729 .20104 L .5599 .22905 L .5625 .2643 L .57292 .45649 L .57813 .56503 L .58333 .66667 L .58594 .71146 L .58854 .75061 L .59115 .78307 L .59245 .79651 L .59375 .80796 L .59505 .81735 L .59635 .82463 L .59766 .82973 L .59896 .83262 L .60026 .83329 L .60156 .83173 L .60286 .82795 L .60417 .82198 L .625 .5 L .63021 .39285 L .63542 .29708 L .63802 .25671 L .64063 .22284 L .64193 .20864 L .64323 .19638 L .64453 .18615 L .64583 .17802 L .64714 .17205 L .64844 .16827 L .64974 .16671 L .65104 .16738 L .65234 .17027 L .65365 .17537 L .65495 .18265 L .65625 .19204 L .66667 .33333 L .67708 .54351 L .68229 .64743 L .6875 .7357 L .6901 .77095 L .69271 .79896 L .69401 .81001 L .69531 .81898 L Mistroke .69661 .82582 L .69792 .83048 L .69922 .83293 L .70052 .83315 L .70182 .83115 L .70313 .82693 L .70443 .82052 L .70573 .81197 L .70833 .78868 L .71094 .75767 L .71354 .71978 L .71875 .62756 L .72917 .41373 L .73438 .31481 L .73698 .27214 L .73958 .23555 L .74219 .20603 L .74349 .19417 L .74479 .18436 L .74609 .17666 L .7474 .17112 L .7487 .16778 L .75 .16667 L .7513 .16778 L .7526 .17112 L .75391 .17666 L .75521 .18436 L .75651 .19417 L .75781 .20603 L .76042 .23555 L .76563 .31481 L .77083 .41373 L .78125 .62756 L .78646 .71978 L .78906 .75767 L .79167 .78868 L .79427 .81197 L .79557 .82052 L .79688 .82693 L .79818 .83115 L .79948 .83315 L .80078 .83293 L .80208 .83048 L .80339 .82582 L .80469 .81898 L .80729 .79896 L .8099 .77095 L .8125 .7357 L .82292 .54351 L .82813 .43497 L Mistroke .83333 .33333 L .83854 .24939 L .84115 .21693 L .84245 .20349 L .84375 .19204 L .84505 .18265 L .84635 .17537 L .84766 .17027 L .84896 .16738 L .85026 .16671 L .85156 .16827 L .85286 .17205 L .85417 .17802 L .85547 .18615 L .85677 .19638 L .85938 .22284 L .86458 .29708 L .875 .5 L .88542 .70292 L .88802 .74329 L .89063 .77716 L .89323 .80362 L .89453 .81385 L .89583 .82198 L .89714 .82795 L .89844 .83173 L .89974 .83329 L .90104 .83262 L .90234 .82973 L .90365 .82463 L .90495 .81735 L .90625 .80796 L .90885 .78307 L .91146 .75061 L .91667 .66667 L .92708 .45649 L .93229 .35257 L .9375 .2643 L .9401 .22905 L .94271 .20104 L .94401 .18999 L .94531 .18102 L .94661 .17418 L .94792 .16952 L .94922 .16707 L .95052 .16685 L .95182 .16885 L .95313 .17307 L .95443 .17948 L .95573 .18803 L Mistroke .95703 .19867 L .95833 .21132 L .97917 .58627 L .98438 .68519 L .98698 .72786 L .98958 .76445 L .99219 .79397 L .99479 .81564 L .99609 .82334 L .9974 .82888 L .9987 .83222 L 1 .83333 L Mfstroke P P MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.522676 0.0113379 0.97619 0.464853 MathSubStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.25 0 0.25 [ [(-a)] .25 0 0 2 Msboxa [(a)] .75 0 0 2 Msboxa [(w)] 1.025 0 -1 0 Msboxa [(F\(w\))] .5 1 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 1.001 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash p p .002 w .25 0 m .25 .00625 L s P [(-a)] .25 0 0 2 Mshowa p .002 w .75 0 m .75 .00625 L s P [(a)] .75 0 0 2 Mshowa [(w)] 1.025 0 -1 0 Mshowa p .002 w 0 0 m 1 0 L s P [(F\(w\))] .5 1 0 -4 Mshowa p .002 w .5 0 m .5 1 L s P P 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath p p .004 w 0 0 m .04167 0 L .08333 0 L .125 0 L .16667 0 L .20833 0 L .25 0 L .29167 0 L .33333 0 L .375 0 L .41667 0 L .45833 0 L .5 0 L .54167 0 L .58333 0 L .625 0 L .66667 0 L .70833 0 L .75 0 L .79167 0 L .83333 0 L .875 0 L .91667 0 L .95833 0 L 1 0 L s P P p .001 w .25 0 m .25 .875 L s % Start of user PostScript -1. 0 -1. 3.5 MAarrowhead1 % End of user PostScript P p .001 w .75 0 m .75 .875 L s % Start of user PostScript 1. 0 1. 3.5 MAarrowhead1 % End of user PostScript P MathSubEnd P % End of sub-graphic P P % End of Graphics MathPictureEnd end showpage %%EndDocument endTexFig 263 2420 a Fl(Figure)k(3)p Ft(:)h(A)16 b(plot)g(of)g Fs(f)5 b Ft(\()p Fs(t)p Ft(\))14 b(=)g Fs(cos)p Ft(\(2)p Fs(\031)r(at)p Ft(\),)h(and)i(its)f(F)l(ourier)g(transform)g Fs(F)7 b Ft(\()p Fs(t)p Ft(\))35 2592 y(T)l(able)17 b(3)h(lists)e(some) g(of)h(the)g(F)l(ourier)f(transform)h(prop)q(erties,)f(whic)o(h)h(mak)o (e)e(it)h(so)i(useful)e(in)h(practice.)35 2654 y(W)l(e)i(follo)o(w)f (the)g(con)o(v)o(en)o(tion)f(of)i(source)g(functions)f(denoted)h(b)o(y) f(small)f(letters,)h(while)f(their)h(F)l(ourier)35 2717 y(transform)e(results)g(\(whic)o(h)g(are)g(assumed)g(to)g(exist\))g (are)g(capitalized.)992 2841 y(5)p eop %%Page: 6 6 6 5 bop 149 -116 1711 2 v 261 -74 a Fl(Prop)r(ert)n(y)314 b Fk(f)6 b Fl(\()p Fk(t)p Fl(\))590 b Fk(F)8 b Fl(\()p Fk(!)r Fl(\))p 149 -55 V 174 -12 a Ft(1.)49 b(Linearit)o(y)341 b Fs(af)846 -5 y Fn(1)865 -12 y Ft(\()p Fs(t)p Ft(\))11 b(+)g Fs(bf)1026 -5 y Fn(2)1045 -12 y Ft(\()p Fs(t)p Ft(\))384 b Fs(aF)1543 -5 y Fn(1)1562 -12 y Ft(\()p Fs(!)r Ft(\))11 b(+)g Fs(bF)1745 -5 y Fn(2)1764 -12 y Ft(\()p Fs(!)r Ft(\))174 48 y(2.)49 b(Con)o(v)o(olution)520 30 y Fn(1)556 48 y Ft(Theorem)g Fs(f)820 55 y Fn(1)839 48 y Ft(\()p Fs(t)p Ft(\))11 b Fm(\003)g Fs(f)966 55 y Fn(2)986 48 y Ft(\()p Fs(t)p Ft(\))443 b Fs(F)1517 55 y Fn(1)1536 48 y Ft(\()p Fs(!)r Ft(\))p Fs(F)1638 55 y Fn(2)1658 48 y Ft(\()p Fs(!)r Ft(\))174 108 y(3.)49 b(Pro)q(duct)17 b(Theorem)155 b Fs(f)820 115 y Fn(1)839 108 y Ft(\()p Fs(t)p Ft(\))p Fs(f)919 115 y Fn(2)939 108 y Ft(\()p Fs(t)p Ft(\))490 b Fs(F)1517 115 y Fn(1)1536 108 y Ft(\()p Fs(!)r Ft(\))12 b Fm(\003)e Fs(F)1685 115 y Fn(2)1705 108 y Ft(\()p Fs(!)r Ft(\))174 168 y(4.)49 b(Time)15 b(Shifting)240 b Fs(f)5 b Ft(\()p Fs(t)11 b Fm(\000)f Fs(t)940 175 y Fn(0)960 168 y Ft(\))506 b Fs(F)7 b Ft(\()p Fs(!)r Ft(\))p Fs(e)1617 150 y Fi(\000)p Fn(2)p Fp(\031)q(i!)q(t)1731 155 y Fg(0)174 228 y Ft(5.)49 b(F)l(requency)15 b(Shifting)134 b Fs(f)5 b Ft(\()p Fs(t)p Ft(\))p Fs(e)904 210 y Fi(\000)p Fn(2)p Fp(\031)q(i!)1004 215 y Fg(0)1021 210 y Fp(t)1485 228 y Fs(F)i Ft(\()p Fs(!)13 b Fm(\000)d Fs(!)1665 235 y Fn(0)1686 228 y Ft(\))174 288 y(6.)49 b(Scaling)413 270 y Fn(2)796 288 y Fs(f)5 b Ft(\()p Fs(at)p Ft(\))578 b Fm(j)p Fs(a)p Fm(j)1539 270 y Fi(\000)p Fn(1)1585 288 y Fs(F)7 b Ft(\()p Fs(!)r(=a)p Ft(\))174 349 y(7.)49 b(P)o(arsev)m(al's)16 b(Theorem)796 313 y Fo(R)823 326 y Fi(1)815 361 y(\0001)888 349 y Fm(j)p Fs(f)5 b Ft(\()p Fs(t)p Ft(\))p Fm(j)1001 331 y Fn(2)1021 349 y Fs(dt)13 b Ft(=)1129 313 y Fo(R)1157 326 y Fi(1)1149 361 y(\0001)1222 349 y Fm(j)p Fs(F)7 b Ft(\()p Fs(!)r Ft(\))p Fm(j)1359 331 y Fn(2)1378 349 y Fs(d!)p 149 368 V 385 449 a Fl(T)-5 b(able)19 b(3)p Ft(:)i(Some)15 b(Basic)h(Prop)q(erties)g(of)h(the)f(F)l (ourier)g(T)l(ransform)35 591 y(Most)h(of)g(the)e(ab)q(o)o(v)o(e)i (prop)q(erties)f(can)g(b)q(e)h(pro)o(v)o(ed)e(easily)h(from)f(the)h (de\014nition)g(of)g(the)g(transform)g(and)35 653 y(its)e(in)o(v)o (erse.)19 b(Pro)q(ofs)d(for)e(the)g(more)f(complicated)f(prop)q(erties) i(\(suc)o(h)g(as)h(P)o(arsev)m(al's)f(theorem\),)f(as)i(w)o(ell)35 716 y(as)i(some)f(additional)g(prop)q(erties)g(can)h(b)q(e)f(found)h (in)f([W)l(ea83,)g(OS89)q(,)g(Jac90].)35 802 y(Prop)q(erties)23 b(2)f(and)h(3)f(state,)i(resp)q(ectiv)o(ely)l(,)c(that)j(con)o(v)o (olution)e(in)h(the)g(time)e(domain)h(corresp)q(onds)35 864 y(to)h(m)o(ultiplication)d(of)j(co)q(e\016cien)o(ts)e(in)h(the)g (frequency)f(domain,)i(and)g(vice)e(v)o(ersa.)37 b(This)22 b(is)f(one)h(of)35 926 y(the)e(most)e(useful)h(prop)q(erties)g(of)h (the)f(transform,)g(and)h(is)f(tak)o(en)g(adv)m(an)o(tage)i(of)e(in)g (\014lter)g(design,)h(in)35 988 y(reasoning)e(ab)q(out)g(sequence)e(b)q (eha)o(vior,)g(as)i(w)o(ell)d(as)i(in)g(fast)g(m)o(ultiplic)o(ation)e (of)i(p)q(olynomials,)e(as)j(will)35 1051 y(b)q(e)f(discussed)f(later)g (on,)g(when)g(discussing)h(the)f(discrete)f(v)o(ersion)h(of)g(the)g (transform.)35 1137 y(Prop)q(ert)o(y)24 b(4)h(ab)q(o)o(v)o(e)f(states)g (that)g(shifting)g(of)g(the)g(original)g(function)f(in)h(time)e (corresp)q(onds)j(to)f(a)35 1199 y(c)o(hange)18 b(of)f(phase)h(of)f (the)g(sin)o(usoids)g(comprising)f(the)h(function.)24 b(Similarly)l(,)14 b(prop)q(ert)o(y)j(5)g(states)h(that)35 1261 y(a)f(sin)o(usoidal)f(mo)q(dulation)g(in)g(the)g(function)g (corresp)q(onds)h(to)g(a)g(phase)f(shift)g(in)g(frequency)l(.)35 1347 y(P)o(arsev)m(al's)i(theorem)e(states)i(that)g(the)f(total)h (energy)f(of)h(a)g(signal)g(is)f(the)h(same)e(in)i(the)f(time)e(domain) 35 1409 y(as)i(it)f(is)g(in)g(the)g(frequency)f(domain.)35 1495 y(Since)k(most)f(ph)o(ysical)h(signals,)h(from)e(radio)i(w)o(a)o (v)o(es)e(to)i(seismic)d(phenomena,)i(are)g(con)o(tin)o(uous,)h(and)35 1557 y(ha)o(v)o(e)j(a)h(con)o(tin)o(uous)f(range)h(of)g(frequencies,)f (the)g(functions)g(that)h(are)f(used)h(to)g(mo)q(del)e(them)f(are)35 1620 y(con)o(tin)o(uous)c(as)h(w)o(ell,)d(and)j(ha)o(ving)e(con)o(tin)o (uous)h(transform)g(is)f(desirable.)23 b(Ho)o(w)o(ev)o(er,)15 b(in)h(man)o(y)g(cases,)35 1682 y(the)i(function)f(describing)h(a)g (phenomenon)f(is)g(unkno)o(wn.)26 b(Data)19 b(that)f(c)o(haracterizes)e (it)i(needs)f(to)h(b)q(e)35 1744 y(gathered)i(and)g(analyzed.)31 b(Moreo)o(v)o(er,)18 b(measured)h(discrete)f(v)m(alues)h(at)h(v)m (arious)g(p)q(oin)o(ts)g(in)f(time)e(are)35 1806 y(relativ)o(ely)i (easy)i(to)g(obtain,)h(and)f(computers)f(whic)o(h)g(pro)q(cess)i(suc)o (h)e(data)i(are)f(inheren)o(tly)e(discrete)35 1869 y(as)h(w)o(ell.)26 b(Therefore,)18 b(w)o(e)g(are)h(in)o(terested)e(in)h(a)g(transform)g (from)g(the)g Fv(discr)n(ete)i(time)g(domain)e Ft(to)h(the)35 1931 y Fv(discr)n(ete)24 b(fr)n(e)n(quency)g(domain)p Ft(,)f(and)h(an)f(in)o(v)o(erse)d(discrete)i(transform)g(to)h(tak)o(e)f (us)h(in)f(the)h(opp)q(osite)35 1993 y(direction.)h(The)18 b(rest)f(of)h(this)f(pap)q(er)h(discusses)g(v)m(arious)g(asp)q(ects)g (of)g(the)f(discrete)f(signals)i(and)g(their)35 2056 y(transforms.)35 2246 y Fu(5)81 b(Sampling)35 2381 y Ft(Discrete)18 b(sequences)h(most)f(commonly)e(o)q(ccur)j(as)h(a)f (represen)o(tation)g(of)g(con)o(tin)o(uous)g(signals.)30 b(They)35 2443 y(are)17 b(obtained)f(through)i(p)q(erio)q(dic)d (sampling)h(of)g(the)g(signal.)35 2529 y(A)i(correct)f(c)o(hoice)f(of)i (sampling)f(in)o(terv)m(als)g(is)g(crucial)g(for)h(getting)f(a)h (faithful)g(represen)o(tation)f(of)h(the)p 35 2573 775 2 v 92 2604 a Ff(1)110 2619 y Fr(The)c Fe(c)n(onvolution)h Fr(of)e(the)i(functions)f Fd(f)t Fr(\()p Fd(x)p Fr(\))g(and)g Fd(g)q Fr(\()p Fd(x)p Fr(\))g(is:)k Fd(f)t Fr(\()p Fd(x)p Fr(\))10 b Fq(\003)f Fd(g)q Fr(\()p Fd(x)p Fr(\))j(=)1290 2586 y Fo(R)1318 2596 y Fc(1)1309 2634 y(\0001)1378 2619 y Fd(f)t Fr(\()p Fd(\030)r Fr(\))p Fd(g)q Fr(\()p Fd(x)e Fq(\000)g Fd(\030)r Fr(\))p Fd(d\030)r Fr(.)92 2657 y Ff(2)110 2672 y Fr(In)k(particular,)f Fd(f)t Fr(\()p Fq(\000)p Fd(t)p Fr(\))i(corresp)q(onds)h(to)e Fd(F)6 b Fr(\()p Fq(\000)p Fd(!)q Fr(\))p Fd(:)992 2841 y Ft(6)p eop %%Page: 7 7 7 6 bop 254 -413 a 23681433 25575919 4736286 4736286 35522150 47362867 startTexFig 254 -413 a %%BeginDocument: fig4.ps /Mathdict 150 dict def Mathdict begin /Mlmarg 1.0 72 mul def /Mrmarg 1.0 72 mul def /Mbmarg 1.0 72 mul def /Mtmarg 1.0 72 mul def /Mwidth 8.5 72 mul def /Mheight 11 72 mul def /Mtransform { } bind def /Mnodistort true def /Mfixwid true def /Mfixdash false def /Mrot 0 def /Mpstart { MathPictureStart } bind def /Mpend { MathPictureEnd } bind def /Mscale { 0 1 0 1 5 -1 roll MathScale } bind def /ISOLatin1Encoding dup where { pop pop } { [ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright /parenleft /parenright /asterisk /plus /comma /minus /period /slash /zero /one /two /three /four /five /six /seven /eight /nine /colon /semicolon /less /equal /greater /question /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore /quoteleft /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar /braceright /asciitilde /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright /ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron /degree /plusminus /twosuperior /threesuperior /acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf /threequarters /questiondown /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis ] def } ifelse /MFontDict 50 dict def /MStrCat { exch dup length 2 index length add string dup 3 1 roll copy length exch dup 4 2 roll exch putinterval } def /MCreateEncoding { 1 index 255 string cvs (-) MStrCat 1 index MStrCat cvn exch (Encoding) MStrCat cvn dup where { exch get } { pop StandardEncoding } ifelse 3 1 roll dup MFontDict exch known not { 1 index findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding 3 index def currentdict end 1 index exch definefont pop MFontDict 1 index null put } if exch pop exch pop } def /ISOLatin1 { (ISOLatin1) MCreateEncoding } def /ISO8859 { (ISOLatin1) MCreateEncoding } def /Mcopyfont { dup maxlength dict exch { 1 index /FID eq { pop pop } { 2 index 3 1 roll put } ifelse } forall } def /Plain /Courier findfont Mcopyfont definefont pop /Bold /Courier-Bold findfont Mcopyfont definefont pop /Italic /Courier-Oblique findfont Mcopyfont definefont pop /MathPictureStart { gsave Mtransform Mlmarg Mbmarg translate Mwidth Mlmarg Mrmarg add sub /Mwidth exch def Mheight Mbmarg Mtmarg add sub /Mheight exch def /Mtmatrix matrix currentmatrix def /Mgmatrix matrix currentmatrix def } bind def /MathPictureEnd { grestore } bind def /MFill { 0 0 moveto Mwidth 0 lineto Mwidth Mheight lineto 0 Mheight lineto fill } bind def /MPlotRegion { 3 index Mwidth mul 2 index Mheight mul translate exch sub Mheight mul /Mheight exch def exch sub Mwidth mul /Mwidth exch def } bind def /MathSubStart { Momatrix Mgmatrix Mtmatrix Mwidth Mheight 7 -2 roll moveto Mtmatrix setmatrix currentpoint Mgmatrix setmatrix 9 -2 roll moveto Mtmatrix setmatrix currentpoint 2 copy translate /Mtmatrix matrix currentmatrix def 3 -1 roll exch sub /Mheight exch def sub /Mwidth exch def } bind def /MathSubEnd { /Mheight exch def /Mwidth exch def /Mtmatrix exch def dup setmatrix /Mgmatrix exch def /Momatrix exch def } bind def /Mdot { moveto 0 0 rlineto stroke } bind def /Mtetra { moveto lineto lineto lineto fill } bind def /Metetra { moveto lineto lineto lineto closepath gsave fill grestore 0 setgray stroke } bind def /Mistroke { flattenpath 0 0 0 { 4 2 roll pop pop } { 4 -1 roll 2 index sub dup mul 4 -1 roll 2 index sub dup mul add sqrt 4 -1 roll add 3 1 roll } { stop } { stop } pathforall pop pop currentpoint stroke moveto currentdash 3 -1 roll add setdash } bind def /Mfstroke { stroke currentdash pop 0 setdash } bind def /Mrotsboxa { gsave dup /Mrot exch def Mrotcheck Mtmatrix dup setmatrix 7 1 roll 4 index 4 index translate rotate 3 index -1 mul 3 index -1 mul translate /Mtmatrix matrix currentmatrix def grestore Msboxa 3 -1 roll /Mtmatrix exch def /Mrot 0 def } bind def /Msboxa { newpath 5 -1 roll Mvboxa pop Mboxout 6 -1 roll 5 -1 roll 4 -1 roll Msboxa1 5 -3 roll Msboxa1 Mboxrot [ 7 -2 roll 2 copy [ 3 1 roll 10 -1 roll 9 -1 roll ] 6 1 roll 5 -2 roll ] } bind def /Msboxa1 { sub 2 div dup 2 index 1 add mul 3 -1 roll -1 add 3 -1 roll mul } bind def /Mvboxa { Mfixwid { Mvboxa1 } { dup Mwidthcal 0 exch { add } forall exch Mvboxa1 4 index 7 -1 roll add 4 -1 roll pop 3 1 roll } ifelse } bind def /Mvboxa1 { gsave newpath [ true 3 -1 roll { Mbbox 5 -1 roll { 0 5 1 roll } { 7 -1 roll exch sub (m) stringwidth pop .3 mul sub 7 1 roll 6 -1 roll 4 -1 roll Mmin 3 -1 roll 5 index add 5 -1 roll 4 -1 roll Mmax 4 -1 roll } ifelse false } forall { stop } if counttomark 1 add 4 roll ] grestore } bind def /Mbbox { 1 dict begin 0 0 moveto /temp (T) def { gsave currentpoint newpath moveto temp 0 3 -1 roll put temp false charpath flattenpath currentpoint pathbbox grestore moveto lineto moveto} forall pathbbox newpath end } bind def /Mmin { 2 copy gt { exch } if pop } bind def /Mmax { 2 copy lt { exch } if pop } bind def /Mrotshowa { dup /Mrot exch def Mrotcheck Mtmatrix dup setmatrix 7 1 roll 4 index 4 index translate rotate 3 index -1 mul 3 index -1 mul translate /Mtmatrix matrix currentmatrix def Mgmatrix setmatrix Mshowa /Mtmatrix exch def /Mrot 0 def } bind def /Mshowa { 4 -2 roll moveto 2 index Mtmatrix setmatrix Mvboxa 7 1 roll Mboxout 6 -1 roll 5 -1 roll 4 -1 roll Mshowa1 4 1 roll Mshowa1 rmoveto currentpoint Mfixwid { Mshowax } { Mshoway } ifelse pop pop pop pop Mgmatrix setmatrix } bind def /Mshowax { 0 1 4 index length -1 add { 2 index 4 index 2 index get 3 index add moveto 4 index exch get Mfixdash { Mfixdashp } if show } for } bind def /Mfixdashp { dup length 1 gt 1 index true exch { 45 eq and } forall and { gsave (--) stringwidth pop (-) stringwidth pop sub 2 div 0 rmoveto dup length 1 sub { (-) show } repeat grestore } if } bind def /Mshoway { 3 index Mwidthcal 5 1 roll 0 1 4 index length -1 add { 2 index 4 index 2 index get 3 index add moveto 4 index exch get [ 6 index aload length 2 add -1 roll { pop Strform stringwidth pop neg exch add 0 rmoveto } exch kshow cleartomark } for pop } bind def /Mwidthcal { [ exch { Mwidthcal1 } forall ] [ exch dup Maxlen -1 add 0 1 3 -1 roll { [ exch 2 index { 1 index Mget exch } forall pop Maxget exch } for pop ] Mreva } bind def /Mreva { [ exch aload length -1 1 {1 roll} for ] } bind def /Mget { 1 index length -1 add 1 index ge { get } { pop pop 0 } ifelse } bind def /Maxlen { [ exch { length } forall Maxget } bind def /Maxget { counttomark -1 add 1 1 3 -1 roll { pop Mmax } for exch pop } bind def /Mwidthcal1 { [ exch { Strform stringwidth pop } forall ] } bind def /Strform { /tem (x) def tem 0 3 -1 roll put tem } bind def /Mshowa1 { 2 copy add 4 1 roll sub mul sub -2 div } bind def /MathScale { Mwidth Mheight Mlp translate scale /yscale exch def /ybias exch def /xscale exch def /xbias exch def /Momatrix xscale yscale matrix scale xbias ybias matrix translate matrix concatmatrix def /Mgmatrix matrix currentmatrix def } bind def /Mlp { 3 copy Mlpfirst { Mnodistort { Mmin dup } if 4 index 2 index 2 index Mlprun 11 index 11 -1 roll 10 -4 roll Mlp1 8 index 9 -5 roll Mlp1 4 -1 roll and { exit } if 3 -1 roll pop pop } loop exch 3 1 roll 7 -3 roll pop pop pop } bind def /Mlpfirst { 3 -1 roll dup length 2 copy -2 add get aload pop pop pop 4 -2 roll -1 add get aload pop pop pop 6 -1 roll 3 -1 roll 5 -1 roll sub div 4 1 roll exch sub div } bind def /Mlprun { 2 copy 4 index 0 get dup 4 1 roll Mlprun1 3 copy 8 -2 roll 9 -1 roll { 3 copy Mlprun1 3 copy 11 -3 roll /gt Mlpminmax 8 3 roll 11 -3 roll /lt Mlpminmax 8 3 roll } forall pop pop pop pop 3 1 roll pop pop aload pop 5 -1 roll aload pop exch 6 -1 roll Mlprun2 8 2 roll 4 -1 roll Mlprun2 6 2 roll 3 -1 roll Mlprun2 4 2 roll exch Mlprun2 6 2 roll } bind def /Mlprun1 { aload pop exch 6 -1 roll 5 -1 roll mul add 4 -2 roll mul 3 -1 roll add } bind def /Mlprun2 { 2 copy add 2 div 3 1 roll exch sub } bind def /Mlpminmax { cvx 2 index 6 index 2 index exec { 7 -3 roll 4 -1 roll } if 1 index 5 index 3 -1 roll exec { 4 1 roll pop 5 -1 roll aload pop pop 4 -1 roll aload pop [ 8 -2 roll pop 5 -2 roll pop 6 -2 roll pop 5 -1 roll ] 4 1 roll pop } { pop pop pop } ifelse } bind def /Mlp1 { 5 index 3 index sub 5 index 2 index mul 1 index le 1 index 0 le or dup not { 1 index 3 index div .99999 mul 8 -1 roll pop 7 1 roll } if 8 -1 roll 2 div 7 -2 roll pop sub 5 index 6 -3 roll pop pop mul sub exch } bind def /intop 0 def /inrht 0 def /inflag 0 def /outflag 0 def /xadrht 0 def /xadlft 0 def /yadtop 0 def /yadbot 0 def /Minner { outflag 1 eq { /outflag 0 def /intop 0 def /inrht 0 def } if 5 index gsave Mtmatrix setmatrix Mvboxa pop grestore 3 -1 roll pop dup intop gt { /intop exch def } { pop } ifelse dup inrht gt { /inrht exch def } { pop } ifelse pop /inflag 1 def } bind def /Mouter { /xadrht 0 def /xadlft 0 def /yadtop 0 def /yadbot 0 def inflag 1 eq { dup 0 lt { dup intop mul neg /yadtop exch def } if dup 0 gt { dup intop mul /yadbot exch def } if pop dup 0 lt { dup inrht mul neg /xadrht exch def } if dup 0 gt { dup inrht mul /xadlft exch def } if pop /outflag 1 def } { pop pop} ifelse /inflag 0 def /inrht 0 def /intop 0 def } bind def /Mboxout { outflag 1 eq { 4 -1 roll xadlft leadjust add sub 4 1 roll 3 -1 roll yadbot leadjust add sub 3 1 roll exch xadrht leadjust add add exch yadtop leadjust add add /outflag 0 def /xadlft 0 def /yadbot 0 def /xadrht 0 def /yadtop 0 def } if } bind def /leadjust { (m) stringwidth pop .5 mul } bind def /Mrotcheck { dup 90 eq { yadbot /yadbot xadrht def /xadrht yadtop def /yadtop xadlft def /xadlft exch def } if dup cos 1 index sin Checkaux dup cos 1 index sin neg exch Checkaux 3 1 roll pop pop } bind def /Checkaux { 4 index exch 4 index mul 3 1 roll mul add 4 1 roll } bind def /Mboxrot { Mrot 90 eq { brotaux 4 2 roll } if Mrot 180 eq { 4 2 roll brotaux 4 2 roll brotaux } if Mrot 270 eq { 4 2 roll brotaux } if } bind def /brotaux { neg exch neg } bind def /Mabsproc { 0 matrix defaultmatrix dtransform idtransform dup mul exch dup mul add sqrt } bind def /Mabswid { Mabsproc setlinewidth } bind def /Mabsdash { exch [ exch { Mabsproc } forall ] exch setdash } bind def /MBeginOrig { Momatrix concat} bind def /MEndOrig { Mgmatrix setmatrix} bind def /sampledsound where { pop} { /sampledsound { exch pop exch 5 1 roll mul 4 idiv mul 2 idiv exch pop exch /Mtempproc exch def { Mtempproc pop} repeat } bind def } ifelse /g { setgray} bind def /k { setcmykcolor} bind def /m { moveto} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /P { grestore} bind def /s { stroke} bind def /setcmykcolor where { pop} { /setcmykcolor { 4 1 roll [ 4 1 roll ] { 1 index sub 1 sub neg dup 0 lt { pop 0 } if dup 1 gt { pop 1 } if exch } forall pop setrgbcolor } bind def } ifelse /Mcharproc { currentfile (x) readhexstring pop 0 get exch div } bind def /Mshadeproc { dup 3 1 roll { dup Mcharproc 3 1 roll } repeat 1 eq { setgray } { 3 eq { setrgbcolor } { setcmykcolor } ifelse } ifelse } bind def /Mrectproc { 3 index 2 index moveto 2 index 3 -1 roll lineto dup 3 1 roll lineto lineto fill } bind def /Mcolorimage { 7 1 roll pop pop matrix invertmatrix concat 2 exch exp 1 sub 3 1 roll 1 1 2 index { 1 1 4 index { dup 1 sub exch 2 index dup 1 sub exch 7 index 9 index Mshadeproc Mrectproc } for pop } for pop pop pop pop } bind def /Mimage { pop matrix invertmatrix concat 2 exch exp 1 sub 3 1 roll 1 1 2 index { 1 1 4 index { dup 1 sub exch 2 index dup 1 sub exch 7 index Mcharproc setgray Mrectproc } for pop } for pop pop pop } bind def MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0 0.0666667 0.309017 0.103006 [ [(2)] .13333 0 0 2 Msboxa [(4)] .26667 0 0 2 Msboxa [(6)] .4 0 0 2 Msboxa [(8)] .53333 0 0 2 Msboxa [(10)] .66667 0 0 2 Msboxa [(12)] .8 0 0 2 Msboxa [(14)] .93333 0 0 2 Msboxa [(-3)] -0.0125 0 1 0 Msboxa [(-2)] -0.0125 .10301 1 0 Msboxa [(-1)] -0.0125 .20601 1 0 Msboxa [(0)] -0.0125 .30902 1 0 Msboxa [(1)] -0.0125 .41202 1 0 Msboxa [(2)] -0.0125 .51503 1 0 Msboxa [(3)] -0.0125 .61803 1 0 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 .61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash 0 g p p .002 w .13333 0 m .13333 .00625 L s P [(2)] .13333 0 0 2 Mshowa p .002 w .26667 0 m .26667 .00625 L s P [(4)] .26667 0 0 2 Mshowa p .002 w .4 0 m .4 .00625 L s P [(6)] .4 0 0 2 Mshowa p .002 w .53333 0 m .53333 .00625 L s P [(8)] .53333 0 0 2 Mshowa p .002 w .66667 0 m .66667 .00625 L s P [(10)] .66667 0 0 2 Mshowa p .002 w .8 0 m .8 .00625 L s P [(12)] .8 0 0 2 Mshowa p .002 w .93333 0 m .93333 .00625 L s P [(14)] .93333 0 0 2 Mshowa p .001 w .02667 0 m .02667 .00375 L s P p .001 w .05333 0 m .05333 .00375 L s P p .001 w .08 0 m .08 .00375 L s P p .001 w .10667 0 m .10667 .00375 L s P p .001 w .16 0 m .16 .00375 L s P p .001 w .18667 0 m .18667 .00375 L s P p .001 w .21333 0 m .21333 .00375 L s P p .001 w .24 0 m .24 .00375 L s P p .001 w .29333 0 m .29333 .00375 L s P p .001 w .32 0 m .32 .00375 L s P p .001 w .34667 0 m .34667 .00375 L s P p .001 w .37333 0 m .37333 .00375 L s P p .001 w .42667 0 m .42667 .00375 L s P p .001 w .45333 0 m .45333 .00375 L s P p .001 w .48 0 m .48 .00375 L s P p .001 w .50667 0 m .50667 .00375 L s P p .001 w .56 0 m .56 .00375 L s P p .001 w .58667 0 m .58667 .00375 L s P p .001 w .61333 0 m .61333 .00375 L s P p .001 w .64 0 m .64 .00375 L s P p .001 w .69333 0 m .69333 .00375 L s P p .001 w .72 0 m .72 .00375 L s P p .001 w .74667 0 m .74667 .00375 L s P p .001 w .77333 0 m .77333 .00375 L s P p .001 w .82667 0 m .82667 .00375 L s P p .001 w .85333 0 m .85333 .00375 L s P p .001 w .88 0 m .88 .00375 L s P p .001 w .90667 0 m .90667 .00375 L s P p .001 w .96 0 m .96 .00375 L s P p .001 w .98667 0 m .98667 .00375 L s P p .002 w 0 0 m 1 0 L s P p .002 w 0 0 m .00625 0 L s P [(-3)] -0.0125 0 1 0 Mshowa p .002 w 0 .10301 m .00625 .10301 L s P [(-2)] -0.0125 .10301 1 0 Mshowa p .002 w 0 .20601 m .00625 .20601 L s P [(-1)] -0.0125 .20601 1 0 Mshowa p .002 w 0 .30902 m .00625 .30902 L s P [(0)] -0.0125 .30902 1 0 Mshowa p .002 w 0 .41202 m .00625 .41202 L s P [(1)] -0.0125 .41202 1 0 Mshowa p .002 w 0 .51503 m .00625 .51503 L s P [(2)] -0.0125 .51503 1 0 Mshowa p .002 w 0 .61803 m .00625 .61803 L s P [(3)] -0.0125 .61803 1 0 Mshowa p .001 w 0 .0206 m .00375 .0206 L s P p .001 w 0 .0412 m .00375 .0412 L s P p .001 w 0 .0618 m .00375 .0618 L s P p .001 w 0 .0824 m .00375 .0824 L s P p .001 w 0 .12361 m .00375 .12361 L s P p .001 w 0 .14421 m .00375 .14421 L s P p .001 w 0 .16481 m .00375 .16481 L s P p .001 w 0 .18541 m .00375 .18541 L s P p .001 w 0 .22661 m .00375 .22661 L s P p .001 w 0 .24721 m .00375 .24721 L s P p .001 w 0 .26781 m .00375 .26781 L s P p .001 w 0 .28842 m .00375 .28842 L s P p .001 w 0 .32962 m .00375 .32962 L s P p .001 w 0 .35022 m .00375 .35022 L s P p .001 w 0 .37082 m .00375 .37082 L s P p .001 w 0 .39142 m .00375 .39142 L s P p .001 w 0 .43262 m .00375 .43262 L s P p .001 w 0 .45322 m .00375 .45322 L s P p .001 w 0 .47383 m .00375 .47383 L s P p .001 w 0 .49443 m .00375 .49443 L s P p .001 w 0 .53563 m .00375 .53563 L s P p .001 w 0 .55623 m .00375 .55623 L s P p .001 w 0 .57683 m .00375 .57683 L s P p .001 w 0 .59743 m .00375 .59743 L s P p .002 w 0 0 m 0 .61803 L s P P p p .002 w 0 .61178 m 0 .61803 L s P p .002 w .13333 .61178 m .13333 .61803 L s P p .002 w .26667 .61178 m .26667 .61803 L s P p .002 w .4 .61178 m .4 .61803 L s P p .002 w .53333 .61178 m .53333 .61803 L s P p .002 w .66667 .61178 m .66667 .61803 L s P p .002 w .8 .61178 m .8 .61803 L s P p .002 w .93333 .61178 m .93333 .61803 L s P p .001 w .02667 .61428 m .02667 .61803 L s P p .001 w .05333 .61428 m .05333 .61803 L s P p .001 w .08 .61428 m .08 .61803 L s P p .001 w .10667 .61428 m .10667 .61803 L s P p .001 w .16 .61428 m .16 .61803 L s P p .001 w .18667 .61428 m .18667 .61803 L s P p .001 w .21333 .61428 m .21333 .61803 L s P p .001 w .24 .61428 m .24 .61803 L s P p .001 w .29333 .61428 m .29333 .61803 L s P p .001 w .32 .61428 m .32 .61803 L s P p .001 w .34667 .61428 m .34667 .61803 L s P p .001 w .37333 .61428 m .37333 .61803 L s P p .001 w .42667 .61428 m .42667 .61803 L s P p .001 w .45333 .61428 m .45333 .61803 L s P p .001 w .48 .61428 m .48 .61803 L s P p .001 w .50667 .61428 m .50667 .61803 L s P p .001 w .56 .61428 m .56 .61803 L s P p .001 w .58667 .61428 m .58667 .61803 L s P p .001 w .61333 .61428 m .61333 .61803 L s P p .001 w .64 .61428 m .64 .61803 L s P p .001 w .69333 .61428 m .69333 .61803 L s P p .001 w .72 .61428 m .72 .61803 L s P p .001 w .74667 .61428 m .74667 .61803 L s P p .001 w .77333 .61428 m .77333 .61803 L s P p .001 w .82667 .61428 m .82667 .61803 L s P p .001 w .85333 .61428 m .85333 .61803 L s P p .001 w .88 .61428 m .88 .61803 L s P p .001 w .90667 .61428 m .90667 .61803 L s P p .001 w .96 .61428 m .96 .61803 L s P p .001 w .98667 .61428 m .98667 .61803 L s P p .002 w 0 .61803 m 1 .61803 L s P p .002 w .99375 0 m 1 0 L s P p .002 w .99375 .10301 m 1 .10301 L s P p .002 w .99375 .20601 m 1 .20601 L s P p .002 w .99375 .30902 m 1 .30902 L s P p .002 w .99375 .41202 m 1 .41202 L s P p .002 w .99375 .51503 m 1 .51503 L s P p .001 w .99625 .0206 m 1 .0206 L s P p .001 w .99625 .0412 m 1 .0412 L s P p .001 w .99625 .0618 m 1 .0618 L s P p .001 w .99625 .0824 m 1 .0824 L s P p .001 w .99625 .12361 m 1 .12361 L s P p .001 w .99625 .14421 m 1 .14421 L s P p .001 w .99625 .16481 m 1 .16481 L s P p .001 w .99625 .18541 m 1 .18541 L s P p .001 w .99625 .22661 m 1 .22661 L s P p .001 w .99625 .24721 m 1 .24721 L s P p .001 w .99625 .26781 m 1 .26781 L s P p .001 w .99625 .28842 m 1 .28842 L s P p .001 w .99625 .32962 m 1 .32962 L s P p .001 w .99625 .35022 m 1 .35022 L s P p .001 w .99625 .37082 m 1 .37082 L s P p .001 w .99625 .39142 m 1 .39142 L s P p .001 w .99625 .43262 m 1 .43262 L s P p .001 w .99625 .45322 m 1 .45322 L s P p .001 w .99625 .47383 m 1 .47383 L s P p .001 w .99625 .49443 m 1 .49443 L s P p .001 w .99625 .53563 m 1 .53563 L s P p .001 w .99625 .55623 m 1 .55623 L s P p .001 w .99625 .57683 m 1 .57683 L s P p .001 w .99625 .59743 m 1 .59743 L s P p .002 w 1 0 m 1 .61803 L s P P p p .002 w 0 .30902 m 1 .30902 L s P P 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath p p p .001 w 0 .34995 m .01042 .41987 L .01563 .44978 L .02083 .47493 L .02344 .48546 L .02604 .49448 L .02865 .50194 L .03125 .50777 L .03255 .51005 L .03385 .51191 L .03516 .51334 L .03646 .51433 L .03776 .51489 L .03906 .51502 L .04036 .51471 L .04167 .51396 L .04297 .51278 L .04427 .51117 L .04688 .50667 L .04948 .50049 L .05208 .49269 L .05729 .47251 L .0625 .44681 L .08333 .30826 L .09375 .23417 L .10417 .17011 L .10938 .14461 L .11198 .1339 L .11458 .12467 L .11719 .11699 L .11979 .11095 L .12109 .10855 L .1224 .10658 L .1237 .10504 L .125 .10393 L .1263 .10325 L .1276 .10301 L .12891 .1032 L .13021 .10383 L .13151 .1049 L .13281 .10639 L .13542 .11067 L .13802 .11663 L .14063 .12421 L .14583 .144 L .15625 .19944 L .16667 .26956 L .17708 .34498 L .1875 .41557 L .19271 .44604 L Mistroke .19792 .47189 L .20052 .48279 L .20313 .49223 L .20573 .50011 L .20833 .50637 L .20964 .50888 L .21094 .51097 L .21224 .51263 L .21354 .51385 L .21484 .51465 L .21615 .51501 L .21745 .51493 L .21875 .51441 L .22005 .51346 L .22135 .51208 L .22396 .50803 L .22656 .5023 L .22917 .49493 L .23438 .47554 L .23958 .45052 L .25 .38716 L .27083 .23891 L .28125 .17389 L .28646 .14771 L .28906 .13661 L .29167 .12698 L .29427 .11888 L .29688 .1124 L .29818 .10978 L .29948 .10758 L .30078 .10581 L .30208 .10446 L .30339 .10356 L .30469 .10308 L .30599 .10304 L .30729 .10344 L .30859 .10427 L .3099 .10554 L .3112 .10724 L .3125 .10936 L .3151 .11488 L .31771 .12203 L .32292 .14102 L .32813 .16568 L .33333 .19519 L .35417 .33999 L .36458 .41121 L .36979 .44223 L .375 .46874 L .38021 .48986 L Mistroke .38281 .49816 L .38542 .50487 L .38672 .5076 L .38802 .50991 L .38932 .5118 L .39063 .51325 L .39193 .51428 L .39323 .51487 L .39453 .51502 L .39583 .51474 L .39714 .51402 L .39844 .51287 L .39974 .51129 L .40104 .50928 L .40365 .50399 L .40625 .49705 L .41146 .47847 L .41667 .45416 L .4375 .31837 L .44792 .24368 L .45833 .17774 L .46354 .1509 L .46875 .1294 L .47135 .12089 L .47396 .11397 L .47526 .11112 L .47656 .1087 L .47786 .1067 L .47917 .10513 L .48047 .10399 L .48177 .10328 L .48307 .10301 L .48438 .10317 L .48568 .10378 L .48698 .10481 L .48828 .10628 L .48958 .10818 L .49219 .11324 L .49479 .11997 L .5 .13814 L .50521 .16209 L .51042 .19101 L .52083 .25969 L .53125 .33498 L .54167 .40679 L .54688 .43833 L .55208 .4655 L .55729 .48738 L .5599 .4961 L .5625 .50324 L Mistroke .5638 .50619 L .5651 .50873 L .56641 .51084 L .56771 .51253 L .56901 .51379 L .57031 .51461 L .57161 .515 L .57292 .51495 L .57422 .51446 L .57552 .51354 L .57682 .51219 L .57813 .5104 L .58073 .50556 L .58333 .49906 L .58854 .48129 L .59375 .4577 L .60417 .39642 L .625 .2485 L .63542 .18168 L .64063 .15419 L .64583 .13193 L .64844 .123 L .65104 .11565 L .65365 .10994 L .65495 .10771 L .65625 .10591 L .65755 .10454 L .65885 .1036 L .66016 .1031 L .66146 .10303 L .66276 .1034 L .66406 .10421 L .66536 .10544 L .66667 .10711 L .66927 .11173 L .67188 .11801 L .67708 .13537 L .68229 .15859 L .6875 .1869 L .70833 .32996 L .71875 .40231 L .72396 .43436 L .72917 .46217 L .73438 .4848 L .73698 .49393 L .73958 .50149 L .74219 .50743 L .74349 .50977 L .74479 .51168 L .74609 .51317 L Mistroke .7474 .51422 L .7487 .51484 L .75 .51503 L .7513 .51477 L .7526 .51409 L .75391 .51296 L .75521 .51141 L .75781 .50702 L .76042 .50095 L .76563 .48401 L .77083 .46116 L .78125 .40097 L .79167 .32846 L .80208 .25335 L .8125 .18569 L .81771 .15757 L .82292 .13457 L .82552 .12523 L .82813 .11746 L .83073 .1113 L .83203 .10885 L .83333 .10682 L .83464 .10522 L .83594 .10405 L .83724 .10331 L .83854 .10301 L .83984 .10315 L .84115 .10372 L .84245 .10473 L .84375 .10617 L .84635 .11033 L .84896 .11618 L .85417 .1327 L .85938 .15519 L .86458 .18287 L .875 .24994 L .88542 .32492 L .89583 .39778 L .90104 .43031 L .90625 .45874 L .91146 .48211 L .91406 .49164 L .91667 .49963 L .91927 .50601 L .92057 .50857 L .92188 .51072 L .92318 .51243 L .92448 .51372 L .92578 .51457 L .92708 .51498 L Mistroke .92839 .51496 L .92969 .51451 L .93099 .51362 L .93229 .51229 L .93359 .51054 L .9349 .50835 L .9375 .50273 L .9401 .49547 L .94271 .48663 L .94792 .46452 L .95833 .40547 L 1 .13731 L Mfstroke P P p [ .01 .01 ] 0 setdash .3 g p .003 w 0 .30902 m .02083 .34609 L .04167 .37819 L .05208 .39099 L .05729 .39638 L .0625 .40102 L .06771 .40489 L .07292 .40795 L .07552 .40916 L .07813 .41016 L .08073 .41095 L .08203 .41127 L .08333 .41153 L .08464 .41173 L .08594 .41188 L .08724 .41198 L .08854 .41202 L .08984 .41201 L .09115 .41194 L .09245 .41182 L .09375 .41164 L .09635 .41113 L .09896 .4104 L .10156 .40945 L .10417 .40829 L .10938 .40535 L .11458 .40159 L .125 .39175 L .14583 .36412 L .16667 .32911 L .1875 .29141 L .20833 .25606 L .21875 .24078 L .22917 .22781 L .23438 .22233 L .23958 .21759 L .24479 .21361 L .25 .21045 L .2526 .20918 L .25521 .20812 L .25781 .20727 L .25911 .20693 L .26042 .20664 L .26172 .2064 L .26302 .20623 L .26432 .2061 L .26563 .20603 L .26693 .20601 L .26823 .20605 L .26953 .20614 L Mistroke .27083 .20629 L .27214 .20649 L .27344 .20675 L .27604 .20742 L .27865 .20831 L .28125 .20941 L .28646 .21225 L .29167 .2159 L .30208 .22554 L .3125 .23799 L .33333 .2696 L .375 .34372 L .39583 .3763 L .40625 .38944 L .41667 .39986 L .42188 .40394 L .42708 .40721 L .42969 .40854 L .43229 .40966 L .4349 .41056 L .4362 .41093 L .4375 .41125 L .4388 .41151 L .4401 .41172 L .44141 .41187 L .44271 .41197 L .44401 .41202 L .44531 .41201 L .44661 .41195 L .44792 .41183 L .44922 .41166 L .45052 .41143 L .45313 .41081 L .45573 .40998 L .45833 .40894 L .46354 .40621 L .46875 .40267 L .47917 .39323 L .48958 .38095 L .5 .36624 L .54167 .2939 L .5625 .25825 L .57292 .2427 L .58333 .22939 L .59375 .21878 L .59896 .21459 L .60417 .21121 L .60677 .20983 L .60938 .20865 L .61198 .20769 L Mistroke .61458 .20695 L .61589 .20666 L .61719 .20642 L .61849 .20624 L .61979 .20611 L .62109 .20603 L .6224 .20601 L .6237 .20605 L .625 .20614 L .6263 .20628 L .6276 .20648 L .63021 .20704 L .63281 .20781 L .63542 .2088 L .64063 .21141 L .64583 .21485 L .65625 .22408 L .66667 .23618 L .70833 .30396 L .72917 .34133 L .75 .37436 L .76042 .38783 L .77083 .39864 L .77604 .40293 L .78125 .40642 L .78385 .40786 L .78646 .40909 L .78906 .4101 L .79167 .41091 L .79297 .41123 L .79427 .4115 L .79557 .41171 L .79688 .41187 L .79818 .41197 L .79948 .41202 L .80078 .41201 L .80208 .41195 L .80339 .41184 L .80469 .41167 L .80599 .41145 L .80729 .41117 L .8099 .41045 L .8125 .40952 L .81771 .40702 L .82292 .40369 L .83333 .39466 L .84375 .38274 L .85417 .36833 L .875 .33405 L .89583 .29641 L Mistroke .91667 .26046 L .92708 .24465 L .9375 .23102 L .94792 .22002 L .95313 .21563 L .95833 .21203 L .96094 .21054 L .96354 .20925 L .96615 .20818 L .96875 .20732 L .97005 .20697 L .97135 .20667 L .97266 .20643 L .97396 .20625 L .97526 .20611 L .97656 .20604 L .97786 .20601 L .97917 .20604 L .98047 .20613 L .98177 .20627 L .98307 .20646 L .98438 .20671 L .98698 .20737 L .98958 .20824 L .99479 .21063 L 1 .21385 L Mfstroke P P p [ .01 .01 ] 0 setdash p .001 w 0 .41202 m .04167 .31911 L .05208 .28154 L .0625 .24766 L .06771 .23355 L .07292 .22199 L .07552 .2173 L .07813 .21338 L .08073 .21027 L .08203 .20902 L .08333 .20799 L .08464 .20717 L .08594 .20657 L .08724 .20619 L .08854 .20602 L .08984 .20607 L .09115 .20634 L .09245 .20683 L .09375 .20753 L .09635 .20958 L .09896 .21247 L .10417 .22067 L .10938 .23185 L .11458 .24564 L .125 .27912 L .13542 .31659 L .14583 .35306 L .15104 .36936 L .15625 .38362 L .16146 .39536 L .16406 .40016 L .16667 .40418 L .16927 .4074 L .17057 .4087 L .17188 .40979 L .17318 .41066 L .17448 .41132 L .17578 .41177 L .17708 .41199 L .17839 .412 L .17969 .41179 L .18099 .41136 L .18229 .41071 L .18359 .40985 L .1849 .40878 L .1875 .406 L .1901 .4024 L .19271 .39801 L .19792 .38701 L .20833 .35757 L Mistroke .22917 .28399 L .23958 .24971 L .24479 .23529 L .25 .22337 L .2526 .21847 L .25521 .21434 L .25781 .21101 L .25911 .20966 L .26042 .20851 L .26172 .20758 L .26302 .20687 L .26432 .20636 L .26563 .20608 L .26693 .20602 L .26823 .20617 L .26953 .20654 L .27083 .20713 L .27214 .20793 L .27344 .20895 L .27604 .21161 L .27865 .21511 L .28125 .21939 L .29167 .24367 L .3125 .31407 L .32292 .35076 L .32813 .36729 L .33333 .38185 L .33854 .39395 L .34115 .39895 L .34375 .40319 L .34635 .40662 L .34766 .40803 L .34896 .40924 L .35026 .41022 L .35156 .411 L .35286 .41156 L .35417 .4119 L .35547 .41202 L .35677 .41193 L .35807 .41162 L .35938 .41109 L .36068 .41034 L .36198 .40938 L .36458 .40682 L .36719 .40344 L .36979 .39926 L .375 .38864 L .38542 .35979 L .39583 .32413 L .40625 .28645 L Mistroke .41667 .25179 L .42188 .23708 L .42708 .2248 L .42969 .21971 L .43229 .21537 L .4349 .21182 L .4362 .21036 L .4375 .2091 L .4388 .20805 L .4401 .20722 L .44141 .2066 L .44271 .20621 L .44401 .20602 L .44531 .20606 L .44661 .20631 L .44792 .20679 L .44922 .20747 L .45052 .20838 L .45313 .21082 L .45573 .2141 L .45833 .21817 L .46354 .2286 L .46875 .24174 L .47917 .27432 L .5 .34844 L .50521 .36519 L .51042 .38004 L .51563 .3925 L .51823 .39769 L .52083 .40213 L .52344 .40579 L .52474 .40731 L .52604 .40862 L .52734 .40972 L .52865 .41061 L .52995 .41129 L .53125 .41174 L .53255 .41198 L .53385 .41201 L .53516 .41181 L .53646 .4114 L .53776 .41076 L .53906 .40992 L .54167 .40759 L .54427 .40442 L .54688 .40045 L .55208 .39022 L .5625 .36197 L .58333 .28892 L .59375 .25391 L Mistroke .59896 .23891 L .60417 .22628 L .60677 .22099 L .60938 .21645 L .61198 .21269 L .61458 .20974 L .61589 .20858 L .61719 .20764 L .61849 .20691 L .61979 .20639 L .62109 .20609 L .6224 .20601 L .6237 .20615 L .625 .20651 L .6263 .20708 L .6276 .20787 L .63021 .21009 L .63281 .21314 L .63542 .21701 L .64063 .22704 L .64583 .23984 L .66667 .30902 L .67708 .34609 L .6875 .37819 L .69271 .39099 L .69531 .39638 L .69792 .40102 L .70052 .40489 L .70313 .40795 L .70443 .40916 L .70573 .41016 L .70703 .41095 L .70833 .41153 L .70964 .41188 L .71094 .41202 L .71224 .41194 L .71354 .41164 L .71484 .41113 L .71615 .4104 L .71875 .40829 L .72135 .40535 L .72396 .40159 L .72917 .39175 L .73958 .36412 L .75 .32911 L .76042 .29141 L .77083 .25606 L .77604 .24078 L .78125 .22781 L .78385 .22233 L Mistroke .78646 .21759 L .78906 .21361 L .79167 .21045 L .79297 .20918 L .79427 .20812 L .79557 .20727 L .79688 .20664 L .79818 .20623 L .79948 .20603 L .80078 .20605 L .80208 .20629 L .80339 .20675 L .80469 .20742 L .80599 .20831 L .80729 .20941 L .8099 .21225 L .8125 .2159 L .81771 .22554 L .82292 .23799 L .83333 .2696 L .85417 .34372 L .86458 .3763 L .86979 .38944 L .875 .39986 L .8776 .40394 L .88021 .40721 L .88151 .40854 L .88281 .40966 L .88411 .41056 L .88542 .41125 L .88672 .41172 L .88802 .41197 L .88932 .41201 L .89063 .41183 L .89193 .41143 L .89323 .41081 L .89453 .40998 L .89583 .40894 L .89844 .40621 L .90104 .40267 L .90625 .39323 L .91146 .38095 L .91667 .36624 L .9375 .2939 L .94792 .25825 L .95313 .2427 L .95833 .22939 L .96354 .21878 L .96615 .21459 L .96875 .21121 L Mistroke .97005 .20983 L .97135 .20865 L .97266 .20769 L .97396 .20695 L .97526 .20642 L .97656 .20611 L .97786 .20601 L .97917 .20614 L .98047 .20648 L .98177 .20704 L .98307 .20781 L .98438 .2088 L .98698 .21141 L .98958 .21485 L .99479 .22408 L 1 .23618 L Mfstroke P P p p .015 w .27733 .20807 Mdot .63333 .20807 Mdot .98667 .20807 Mdot P P P % End of Graphics MathPictureEnd end showpage %%EndDocument endTexFig 243 895 a Fl(Figure)20 b(4)p Ft(:)h(Three)16 b(sin)o(usoids.)21 b(The)16 b(blac)o(k)g(dots)h(mark)e(the)h(sampling)f(p)q(oin)o(ts.)35 1037 y(original)22 b(signal.)36 b(Consider)22 b(for)f(instance)g(the)g (three)g(sin)o(usoids)h(depicted)e(in)h(Figure)g(4.)36 b(Supp)q(ose)35 1100 y(w)o(e)18 b(sample)e(them)g(only)i(where)f(the)h (three)f(blac)o(k)g(dots)h(are)g(in)g(the)f(\014gure,)h(that)g(is,)g (at)g(the)g(in)o(tersec-)35 1162 y(tion)g(p)q(oin)o(ts)g(of)g(the)f (three)g(sequences.)24 b(Clearly)l(,)17 b(these)g(p)q(oin)o(ts)h(don't) g(ha)o(v)o(e)e(enough)j(information)d(to)35 1224 y(distinguish)i(one)h (sin)o(usoid)f(from)f(the)g(others.)27 b(Therefore,)18 b(if)g(w)o(e)f(w)o(ere)h(to)g(reconstruct)g(the)g(original)35 1287 y(sin)o(usoids)g(from)d(these)i(p)q(oin)o(ts,)g(at)g(b)q(est)h (one)f(of)g(them)e(w)o(ould)i(ha)o(v)o(e)g(b)q(een)f(reco)o(v)o(ered)g (correctly)l(.)21 b(The)35 1349 y(other)16 b(t)o(w)o(o)g(sin)o(usoids)g (could)g(not)g(ha)o(v)o(e)f(b)q(een)h(the)f(same)g(as)h(the)g(reco)o(v) o(ered)e(one.)21 b(W)l(e)16 b(will)e(see)i(what)g(a)35 1411 y(\\go)q(o)q(d")j(sampling)d(is)g(later)f(on)i(in)f(this)g (section.)35 1497 y(Giv)o(en)k(a)h(con)o(tin)o(uous)f(signal)g Fs(x)644 1504 y Fp(c)662 1497 y Ft(\()p Fs(t)p Ft(\),)g(w)o(e)g(\014x)g (a)h(time)d(in)o(terv)m(al)h(of)i(length)f Fs(T)27 b Ft(and)21 b(obtain)g(a)g(discrete)35 1559 y(signal)e Fs(x)p Ft([)p Fs(n)p Ft(])e(=)h Fs(x)362 1566 y Fp(c)379 1559 y Ft(\()p Fs(nT)7 b Ft(\))18 b(for)g Fm(\0001)g Fs(<)f(n)h(<)g Fm(1)p Ft(.)28 b Fs(T)d Ft(is)18 b(called)g(the)g Fv(sampling)i(p)n(erio)n(d)e Ft(and)h Fs(!)1745 1566 y Fp(s)1781 1559 y Ft(=)f(1)p Fs(=T)26 b Ft(is)35 1621 y(called)16 b(the)g Fv(sampling)i(fr)n(e)n(quency)p Ft(.)35 1707 y(A)o(t)12 b(the)g(conceptual)h(lev)o(el,)d(the)j(discrete)e (sequence)g Fs(x)p Ft([)p Fs(n)p Ft(])h(can)h(b)q(e)f(view)o(ed)f(as)j (though)f(it)f(is)h(a)g(con)o(tin)o(uous)35 1770 y(sequence)k Fs(x)267 1777 y Fp(s)285 1770 y Ft(\()p Fs(t)p Ft(\))f(with)i(v)m(alue) f(0)g(for)h(all)e Fs(t)f Fm(6)p Ft(=)h Fs(nT)24 b Ft(and)17 b(with)h(v)m(alue)f Fs(x)p Ft([)p Fs(n)p Ft(])f(at)h Fs(t)e Ft(=)h Fs(nT)7 b Ft(.)24 b(Putting)17 b(it)g(more)35 1832 y(formally)l(,)d(w)o(e)i(de\014ne:)513 1968 y Fs(s)p Ft(\()p Fs(t)p Ft(\))d(=)695 1914 y Fi(1)683 1926 y Fo(X)657 2016 y Fp(n)p Fn(=)p Fi(\0001)777 1968 y Fs(\016)r Ft(\()p Fs(t)d Fm(\000)h Fs(nT)c Ft(\))44 b(and)g Fs(x)1176 1975 y Fp(s)1195 1968 y Ft(\()p Fs(t)p Ft(\))13 b(=)h Fs(x)1344 1975 y Fp(c)1361 1968 y Ft(\()p Fs(t)p Ft(\))p Fs(s)p Ft(\()p Fs(t)p Ft(\))35 2115 y(where)22 b Fs(\016)h Ft(is)f(the)g (Dirac)g(delta)f(discussed)h(in)g(Section)f(4,)j(Example)c(2.)39 b(Th)o(us,)23 b Fs(x)1613 2122 y Fp(s)1631 2115 y Ft(\()p Fs(t)p Ft(\))e(is)h(the)g(result)35 2177 y(of)e(m)o(ultiplyi)o(ng)d (the)i(original)g(con)o(tin)o(uous)g(signal)h Fs(x)1040 2184 y Fp(c)1057 2177 y Ft(\()p Fs(t)p Ft(\))f(b)o(y)f(an)i(impulse)d (train,)j Fs(s)p Ft(\()p Fs(t)p Ft(\).)29 b(\(The)20 b(reason)35 2239 y(for)i(referring)e(to)h Fs(s)p Ft(\()p Fs(t)p Ft(\))g(as)h(\\an)g(impulse)d(train")i(is)g(ob)o(vious)g(from)f (lo)q(oking)i(at)f(its)g(graph,)i(giv)o(en)d(in)35 2301 y(Figure)c(5.\))254 2372 y 23681433 9472573 3354869 15919185 36837785 36179968 startTexFig 254 2372 a %%BeginDocument: imptrain.ps /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /l {lineto} bind def /m {moveto} bind def /s {stroke} bind def /n {newpath} bind def /gs {gsave} bind def /gr {grestore} bind def /clp {closepath} bind def /graycol {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul setrgbcolor} bind def /col-1 {} def /col0 {0 0 0 setrgbcolor} bind def /col1 {0 0 1 setrgbcolor} bind def /col2 {0 1 0 setrgbcolor} bind def /col3 {0 1 1 setrgbcolor} bind def /col4 {1 0 0 setrgbcolor} bind def /col5 {1 0 1 setrgbcolor} bind def /col6 {1 1 0 setrgbcolor} bind def /col7 {1 1 1 setrgbcolor} bind def /col8 {.68 .85 .9 setrgbcolor} bind def /col9 {0 .39 0 setrgbcolor} bind def /col10 {.65 .17 .17 setrgbcolor} bind def /col11 {1 .51 0 setrgbcolor} bind def /col12 {.63 .13 .94 setrgbcolor} bind def /col13 {1 .75 .8 setrgbcolor} bind def /col14 {.7 .13 .13 setrgbcolor} bind def /col15 {1 .84 0 setrgbcolor} bind def end /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin0setlinecap0setlinejoin2.5696.0translate0.900−0.900scale/Times−BoldItalicfindfont14.00scalefontsetfont603280mgs1−1scale(t)col−1showgr/Times−Italicfindfont14.00scalefontsetfont293282mgs1−1scale(0)col−1showgr/Times−Italicfindfont14.00scalefontsetfont378280mgs1−1scale(T)col−1showgr/Times−Italicfindfont14.00scalefontsetfont461282mgs1−1scale(2T)col−1showgr/Times−Italicfindfont14.00scalefontsetfont541282mgs1−1scale(3T)col−1showgr/Times−Italicfindfont14.00scalefontsetfont200280mgs1−1scale(−T)col−1showgr/Times−Italicfindfont14.00scalefontsetfont108283mgs1−1scale(−2T)col−1showgr0.500setlinewidthF2psBegin 0 setlinecap 0 setlinejoin 2.5 696.0 translate 0.900 -0.900 scale /Times-BoldItalic findfont 14.00 scalefont setfont 603 280 m gs 1 -1 scale (t) col-1 show gr /Times-Italic findfont 14.00 scalefont setfont 293 282 m gs 1 -1 scale (0) col-1 show gr /Times-Italic findfont 14.00 scalefont setfont 378 280 m gs 1 -1 scale (T) col-1 show gr /Times-Italic findfont 14.00 scalefont setfont 461 282 m gs 1 -1 scale (2T) col-1 show gr /Times-Italic findfont 14.00 scalefont setfont 541 282 m gs 1 -1 scale (3T) col-1 show gr /Times-Italic findfont 14.00 scalefont setfont 200 280 m gs 1 -1 scale (-T) col-1 show gr /Times-Italic findfont 14.00 scalefont setfont 108 283 m gs 1 -1 scale (-2T) col-1 show gr 0.500 setlinewidth % Polyline n 75 267 m 612 267 l gs col-1 s gr 1.000 setlinewidth % Polyline n 553 267 m 553 203 l gs col-1 s gr n 550.500 211.000 m 553.000 203.000 l 555.500 211.000 l gs 2 setlinejoin col-1 s gr % Polyline n 212 267 m 212 203 l gs col-1 s gr n 209.500 211.000 m 212.000 203.000 l 214.500 211.000 l gs 2 setlinejoin col-1 s gr % Polyline n 127 267 m 127 203 l gs col-1 s gr n 124.500 211.000 m 127.000 203.000 l 129.500 211.000 l gs 2 setlinejoin col-1 s gr % Polyline n 382 267 m 382 203 l gs col-1 s gr n 379.500 211.000 m 382.000 203.000 l 384.500 211.000 l gs 2 setlinejoin col-1 s gr % Polyline n 468 267 m 468 203 l gs col-1 s gr n 465.500 211.000 m 468.000 203.000 l 470.500 211.000 l gs 2 setlinejoin col-1 s gr % Polyline n 297 267 m 297 203 l gs col-1 s gr n 294.500 211.000 m 297.000 203.000 l 299.500 211.000 l gs 2 setlinejoin col-1 s gr /Times-BoldItalic findfont 14.00 scalefont setfont 309 191 m gs 1 -1 scale (\(t\)) col0 show gr /Times-BoldItalic findfont 14.00 scalefont setfont 300 191 m gs 1 -1 scale (s) col0 show gr 0.500 setlinewidth % Polyline n 297 183 m 297 267 l gs col-1 s gr % Polyline n 274 504 m 274 504 l 274 504 l 274 504 l clp gs col7 s gr % Polyline n 274 499 m 274 499 l 274 499 l 274 499 l clp gs col7 s gr % Polyline n 69 174 m 69 174 l 64 174 l 64 174 l clp gs col7 s gr % Polyline n 54 319 m 54 319 l 54 319 l 54 319 l clp gs col0 s gr % Polyline n 620 302 m 68 302 l 68 162 l 620 162 l clp gs col0 s gr showpage F2psBegin0setlinecap0setlinejoin2.5696.0translate0.900−0.900scale/Times−BoldItalicfindfont14.00scalefontsetfont603280mgs1−1scale(t)col−1showgr/Times−Italicfindfont14.00scalefontsetfont293282mgs1−1scale(0)col−1showgr/Times−Italicfindfont14.00scalefontsetfont378280mgs1−1scale(T)col−1showgr/Times−Italicfindfont14.00scalefontsetfont461282mgs1−1scale(2T)col−1showgr/Times−Italicfindfont14.00scalefontsetfont541282mgs1−1scale(3T)col−1showgr/Times−Italicfindfont14.00scalefontsetfont200280mgs1−1scale(−T)col−1showgr/Times−Italicfindfont14.00scalefontsetfont108283mgs1−1scale(−2T)col−1showgr0.500setlinewidthF2psEnd %%EndDocument endTexFig 645 2696 a Fl(Figure)j(5)p Ft(:)j(The)16 b(impulse)e(train)i Fs(s)p Ft(\()p Fs(t)p Ft(\))992 2841 y(7)p eop %%Page: 8 8 8 7 bop 35 -68 a Ft(Hence,)16 b(from)g(the)h Fv(Pr)n(o)n(duct)h(The)n (or)n(em)e Ft(of)i(T)l(able)f(3,)g(w)o(e)g(kno)o(w)g(that)h(the)f(F)l (ourier)f(transform)h(of)h Fs(x)1899 -61 y Fp(s)1917 -68 y Ft(\()p Fs(t)p Ft(\))35 -6 y(is)f(the)f(same)f(as)i(the)f Fv(c)n(onvolution)i Ft(of)e(the)g(F)l(ourier)g(transforms)g(of)h Fs(x)1328 1 y Fp(c)1345 -6 y Ft(\()p Fs(t)p Ft(\))f(and)h Fs(s)p Ft(\()p Fs(t)p Ft(\),)e(whic)o(h)h(w)o(e)g(denote)35 56 y(as)j Fs(X)137 63 y Fp(c)154 56 y Ft(\()p Fs(!)r Ft(\))f(and)g Fs(S)s Ft(\()p Fs(!)r Ft(\),)g(resp)q(ectiv)o(ely)l(.)k Fs(S)s Ft(\()p Fs(!)r Ft(\))c(is)f(the)g(F)l(ourier)g(transform)g(of)h (an)g(impulse)e(train,)h(whic)o(h)35 119 y(is)f(an)h(impulse)d(train)j (as)f(w)o(ell)f(\(see)h([OS89)q(])f(for)i(further)f(details\),)f(and)i (is)f(expressed)g(as:)719 236 y Fs(S)s Ft(\()p Fs(!)r Ft(\))e(=)898 202 y(1)p 892 224 36 2 v 892 270 a Fs(T)978 182 y Fi(1)966 194 y Fo(X)941 286 y Fp(k)q Fn(=)p Fi(\0001)1059 236 y Fs(\016)r Ft(\()p Fs(!)e Fm(\000)f Fs(k)r(!)1251 243 y Fp(s)1270 236 y Ft(\))35 361 y(Therefore,)16 b(w)o(e)g(obtain)g (the)g(follo)o(wing:)689 475 y Fs(X)729 482 y Fp(s)748 475 y Ft(\()p Fs(!)r Ft(\))d(=)894 442 y(1)p 888 464 V 888 510 a Fs(T)974 421 y Fi(1)962 434 y Fo(X)937 526 y Fp(k)q Fn(=)p Fi(\0001)1055 475 y Fs(X)1095 482 y Fp(c)1112 475 y Ft(\()p Fs(!)h Fm(\000)c Fs(k)r(!)1281 482 y Fp(s)1300 475 y Ft(\))35 601 y(Figure)16 b(6)h(sho)o(ws)g(the)f(relationship)g(b) q(et)o(w)o(een)f Fs(X)948 608 y Fp(c)982 601 y Ft(and)i Fs(X)1117 608 y Fp(s)1136 601 y Ft(.)35 687 y(Plot)h(\(a\))g(in)g(the)g (\014gure)g(sho)o(ws)g(the)g(result)f(of)h(the)g(F)l(ourier)f (transform)g(on)i(the)e(original)h(signal,)g(and)35 749 y(plot)g(\(b\))f(sho)o(ws)h(the)f(F)l(ourier)f(transform)h(of)h(the)f (impulse)e(train.)24 b(The)17 b(result)g(of)g(their)g(con)o(v)o (olution,)254 832 y 23681433 26049576 4210032 7564902 36114186 44468469 startTexFig 254 832 a %%BeginDocument: fig5.ps /$F2psDict 200 dict def F2psDictbeginF2psDict begin F2psDictbeginF2psDict /mtrx matrix put /l {lineto} bind def /m {moveto} bind def /s {stroke} bind def /n {newpath} bind def /gs {gsave} bind def /gr {grestore} bind def /clp {closepath} bind def /graycol {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul setrgbcolor} bind def /col-1 {} def /col0 {0 0 0 setrgbcolor} bind def /col1 {0 0 1 setrgbcolor} bind def /col2 {0 1 0 setrgbcolor} bind def /col3 {0 1 1 setrgbcolor} bind def /col4 {1 0 0 setrgbcolor} bind def /col5 {1 0 1 setrgbcolor} bind def /col6 {1 1 0 setrgbcolor} bind def /col7 {1 1 1 setrgbcolor} bind def /col8 {.68 .85 .9 setrgbcolor} bind def /col9 {0 .39 0 setrgbcolor} bind def /col10 {.65 .17 .17 setrgbcolor} bind def /col11 {1 .51 0 setrgbcolor} bind def /col12 {.63 .13 .94 setrgbcolor} bind def /col13 {1 .75 .8 setrgbcolor} bind def /col14 {.7 .13 .13 setrgbcolor} bind def /col15 {1 .84 0 setrgbcolor} bind def end /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def F2psBegin0setlinecap0setlinejoin−4.5686.5translate0.900−0.900scale0.500setlinewidthF2psBegin 0 setlinecap 0 setlinejoin -4.5 686.5 translate 0.900 -0.900 scale 0.500 setlinewidth % Polyline n 262 108 m 297 53 l 332 108 l gs col-1 s gr % Polyline n 147 109 m 446 109 l gs col-1 s gr % Polyline n 297 25 m 297 109 l gs col-1 s gr /Times-Roman findfont 14.00 scalefont setfont 300 31 m gs 1 -1 scale (X) col0 show gr /Times-Roman findfont 11.00 scalefont setfont 311 36 m gs 1 -1 scale (c) col-1 show gr /Symbol findfont 14.00 scalefont setfont 317 31 m gs 1 -1 scale (\(w\)) col0 show gr /Symbol findfont 14.00 scalefont setfont 244 121 m gs 1 -1 scale (-w) col0 show gr /Times-Roman findfont 9.00 scalefont setfont 264 124 m gs 1 -1 scale (N) col-1 show gr /Symbol findfont 14.00 scalefont setfont 328 121 m gs 1 -1 scale (w) col0 show gr /Times-Roman findfont 9.00 scalefont setfont 339 124 m gs 1 -1 scale (N) col-1 show gr /Times-Roman findfont 12.00 scalefont setfont 289 54 m gs 1 -1 scale (1) col-1 show gr /Symbol findfont 14.00 scalefont setfont 441 121 m gs 1 -1 scale (w) col0 show gr /Times-Roman findfont 16.00 scalefont setfont 289 139 m gs 1 -1 scale (\(a\)) col-1 show gr /Times-Roman findfont 14.00 scalefont setfont 300 191 m gs 1 -1 scale (S) col0 show gr /Symbol findfont 14.00 scalefont setfont 309 191 m gs 1 -1 scale (\(w\)) col0 show gr 1.000 setlinewidth % Polyline n 553 267 m 553 203 l gs col-1 s gr n 550.500 211.000 m 553.000 203.000 l 555.500 211.000 l gs 2 setlinejoin col-1 s gr % Polyline n 212 267 m 212 203 l gs col-1 s gr n 209.500 211.000 m 212.000 203.000 l 214.500 211.000 l gs 2 setlinejoin col-1 s gr % Polyline n 127 267 m 127 203 l gs col-1 s gr n 124.500 211.000 m 127.000 203.000 l 129.500 211.000 l gs 2 setlinejoin col-1 s gr % Polyline n 382 267 m 382 203 l gs col-1 s gr n 379.500 211.000 m 382.000 203.000 l 384.500 211.000 l gs 2 setlinejoin col-1 s gr % Polyline n 468 267 m 468 203 l gs col-1 s gr n 465.500 211.000 m 468.000 203.000 l 470.500 211.000 l gs 2 setlinejoin col-1 s gr % Polyline n 297 267 m 297 203 l gs col-1 s gr n 294.500 211.000 m 297.000 203.000 l 299.500 211.000 l gs 2 setlinejoin col-1 s gr 0.500 setlinewidth % Polyline n 75 267 m 612 267 l gs col-1 s gr /Symbol findfont 14.00 scalefont setfont 541 282 m gs 1 -1 scale (3w) col0 show gr /Times-Roman findfont 12.00 scalefont setfont 559 283 m gs 1 -1 scale (s) col-1 show gr /Symbol findfont 14.00 scalefont setfont 105 283 m gs 1 -1 scale (-2w) col0 show gr /Times-Roman findfont 12.00 scalefont setfont 131 286 m gs 1 -1 scale (s) col-1 show gr /Symbol findfont 14.00 scalefont setfont 197 280 m gs 1 -1 scale (-w) col0 show gr /Times-Roman findfont 12.00 scalefont setfont 216 283 m gs 1 -1 scale (s) col-1 show gr /Times-Roman findfont 12.00 scalefont setfont 389 283 m gs 1 -1 scale (s) col-1 show gr /Symbol findfont 14.00 scalefont setfont 378 280 m gs 1 -1 scale (w) col0 show gr /Symbol findfont 14.00 scalefont setfont 461 282 m gs 1 -1 scale (2w) col0 show gr /Times-Roman findfont 12.00 scalefont setfont 479 283 m gs 1 -1 scale (s) col-1 show gr /Times-Roman findfont 14.00 scalefont setfont 293 282 m gs 1 -1 scale (0) col0 show gr % Polyline n 297 183 m 297 267 l gs col-1 s gr /Times-Roman findfont 12.00 scalefont setfont 279 204 m gs 1 -1 scale (1/T) col-1 show gr /Symbol findfont 14.00 scalefont setfont 603 280 m gs 1 -1 scale (w) col0 show gr /Times-Roman findfont 16.00 scalefont setfont 289 304 m gs 1 -1 scale (\(b\)) col-1 show gr % Polyline n 297 348 m 297 433 l gs col-1 s gr % Polyline n 75 433 m 612 433 l gs col-1 s gr % Polyline n 432 434 m 468 379 l 503 434 l gs col-1 s gr % Polyline n 517 433 m 553 378 l 589 433 l gs col-1 s gr % Polyline n 347 433 m 382 378 l 418 433 l gs col-1 s gr % Polyline n 261 433 m 297 378 l 333 433 l gs col-1 s gr % Polyline n 176 433 m 212 378 l 248 433 l gs col-1 s gr % Polyline n 91 433 m 127 378 l 163 433 l gs col-1 s gr /Times-Roman findfont 14.00 scalefont setfont 300 356 m gs 1 -1 scale (X) col0 show gr /Times-Roman findfont 11.00 scalefont setfont 311 361 m gs 1 -1 scale (s) col-1 show gr /Symbol findfont 14.00 scalefont setfont 317 356 m gs 1 -1 scale (\(w\)) col0 show gr /Times-Roman findfont 9.00 scalefont setfont 269 449 m gs 1 -1 scale (N) col-1 show gr /Symbol findfont 14.00 scalefont setfont 249 446 m gs 1 -1 scale (-w) col0 show gr /Times-Roman findfont 9.00 scalefont setfont 334 449 m gs 1 -1 scale (N) col-1 show gr /Symbol findfont 14.00 scalefont setfont 323 446 m gs 1 -1 scale (w) col0 show gr /Times-Roman findfont 12.00 scalefont setfont 389 449 m gs 1 -1 scale (s) col-1 show gr /Symbol findfont 14.00 scalefont setfont 378 446 m gs 1 -1 scale (w) col0 show gr % Polyline n 382 433 m 382 428 l gs col-1 s gr /Times-Roman findfont 12.00 scalefont setfont 279 377 m gs 1 -1 scale (1/T) col-1 show gr /Symbol findfont 14.00 scalefont setfont 603 445 m gs 1 -1 scale (w) col0 show gr /Times-Roman findfont 16.00 scalefont setfont 289 469 m gs 1 -1 scale (\(c\)) col-1 show gr % Polyline n 338 578 m 359 546 l 379 578 l gs col-1 s gr % Polyline n 399 578 m 420 546 l 441 578 l gs col-1 s gr % Polyline n 276 578 m 297 546 l 318 578 l gs col-1 s gr % Polyline n 460 578 m 481 546 l 502 578 l gs col-1 s gr % Polyline n 521 578 m 542 546 l 563 578 l gs col-1 s gr % Polyline n 215 578 m 236 546 l 256 578 l gs col-1 s gr % Polyline n 93 578 m 114 546 l 134 578 l gs col-1 s gr % Polyline n 154 578 m 175 546 l 195 578 l gs col-1 s gr % Polyline n 379 578 m 399 578 l gs col-1 s gr % Polyline n 502 578 m 522 578 l gs col-1 s gr % Polyline n 441 578 m 461 578 l gs col-1 s gr % Polyline n 134 578 m 154 578 l gs col-1 s gr % Polyline n 195 578 m 215 578 l gs col-1 s gr % Polyline n 256 578 m 276 578 l gs col-1 s gr % Polyline n 318 578 m 338 578 l gs col-1 s gr /Times-Roman findfont 12.00 scalefont setfont 279 544 m gs 1 -1 scale (1/T) col-1 show gr % Polyline n 75 600 m 612 600 l gs col-1 s gr 1 setlinecap [1 4.000000] 4.000000 setdash % Polyline n 385 600 m 420 546 l 455 600 l gs col-1 s gr [] 0 setdash 0 setlinecap 1 setlinecap [1 4.000000] 4.000000 setdash % Polyline n 446 600 m 481 546 l 516 600 l gs col-1 s gr [] 0 setdash 0 setlinecap 1 setlinecap [1 4.000000] 4.000000 setdash % Polyline n 262 600 m 297 546 l 332 600 l gs col-1 s gr [] 0 setdash 0 setlinecap 1 setlinecap [1 4.000000] 4.000000 setdash % Polyline n 324 600 m 359 546 l 393 600 l gs col-1 s gr [] 0 setdash 0 setlinecap 1 setlinecap [1 4.000000] 4.000000 setdash % Polyline n 507 600 m 542 546 l 577 600 l gs col-1 s gr [] 0 setdash 0 setlinecap 1 setlinecap [1 4.000000] 4.000000 setdash % Polyline n 201 600 m 236 546 l 270 600 l gs col-1 s gr [] 0 setdash 0 setlinecap 1 setlinecap [1 4.000000] 4.000000 setdash % Polyline n 140 600 m 175 546 l 209 600 l gs col-1 s gr [] 0 setdash 0 setlinecap 1 setlinecap [1 4.000000] 4.000000 setdash % Polyline n 79 600 m 114 546 l 148 600 l gs col-1 s gr [] 0 setdash 0 setlinecap /Times-Roman findfont 12.00 scalefont setfont 364 615 m gs 1 -1 scale (s) col-1 show gr /Symbol findfont 14.00 scalefont setfont 353 612 m gs 1 -1 scale (w) col0 show gr /Times-Roman findfont 14.00 scalefont setfont 300 521 m gs 1 -1 scale (X) col0 show gr /Times-Roman findfont 11.00 scalefont setfont 311 526 m gs 1 -1 scale (s) col-1 show gr /Symbol findfont 14.00 scalefont setfont 317 521 m gs 1 -1 scale (\(w\)) col0 show gr % Polyline n 297 515 m 297 600 l gs col-1 s gr % Polyline n 359 599 m 359 594 l gs col-1 s gr /Symbol findfont 14.00 scalefont setfont 603 612 m gs 1 -1 scale (w) col0 show gr /Times-Roman findfont 16.00 scalefont setfont 289 634 m gs 1 -1 scale (\(d\)) col-1 show gr showpage F2psBegin0setlinecap0setlinejoin−4.5686.5translate0.900−0.900scale0.500setlinewidthF2psEnd %%EndDocument endTexFig 35 2584 a Fl(Figure)28 b(6)p Ft(:)35 b(The)23 b(frequency-domain)e (e\013ects)i(of)h(sampling)e Fs(x)1265 2591 y Fp(c)1282 2584 y Ft(\()p Fs(t)p Ft(\).)42 b(\(a\))24 b(The)f(sp)q(ectrum)f(plot)h (for)35 2644 y Fs(x)63 2651 y Fp(c)81 2644 y Ft(\()p Fs(t)p Ft(\).)f Fs(!)203 2651 y Fp(N)253 2644 y Ft(is)17 b(its)f(maxim)o(um)d(frequency)l(.)21 b(\(b\))16 b(The)h(sp)q(ectrum)f (plot)g(for)h(the)g(impulse)d(train.)23 b(\(c\))16 b(The)35 2704 y(sp)q(ectrum)f(of)i(the)f(sampled)f(signal,)h(where)g Fs(!)901 2711 y Fp(s)933 2704 y Fs(>)e Ft(2)p Fs(!)1039 2711 y Fp(N)1074 2704 y Ft(.)21 b(\(d\))16 b(Aliasing)g(when)g Fs(!)1536 2711 y Fp(s)1569 2704 y Fs(<)d Ft(2)p Fs(!)1674 2711 y Fp(N)992 2841 y Ft(8)p eop %%Page: 9 9 9 8 bop 35 -68 a Ft(whic)o(h)22 b(is)g(the)f(F)l(ourier)h(transform)f (of)i(the)f(sampled)e(signal,)j(is)f(sho)o(wn)h(in)f(plot)g(\(c\).)38 b(W)l(e)22 b(can)g(see)35 -6 y(that)16 b(sampling)f(of)h(a)f(signal)h Fs(x)606 1 y Fp(c)623 -6 y Ft(\()p Fs(t)p Ft(\))f(in)g(the)h(time)d (domain,)h(corresp)q(onds)j(in)e(the)g(frequency)f(domain)h(to)35 56 y(duplication)d(of)h(the)g(original)f(signal's)h(sp)q(ectrum,)e Fs(X)1022 63 y Fp(c)1040 56 y Ft(\()p Fs(!)r Ft(\),)i(cen)o(tered)e (around)j(in)o(teger)d(m)o(ultiples)f(of)j(the)35 119 y(sampling)j(frequency)g Fs(!)494 126 y Fp(s)512 119 y Ft(.)23 b(Th)o(us,)17 b(all)f(w)o(e)h(need)f(to)h(do)h(in)e(order)h (to)g(reco)o(v)o(er)e(the)i(original)g(con)o(tin)o(uous)35 181 y(signal)h(from)e(the)h(sampled)g(one,)g(is)g(to)h(\\get)g(rid")f (of)h(the)f(frequencies)e(in)o(tro)q(duced)i(b)o(y)g(the)g(sampling)35 243 y(\(whic)o(h)i(corresp)q(ond)h(to)g(the)f(duplications\),)g(and)h (k)o(eep)e(only)h(the)g(frequencies)e(cen)o(tered)h(around)j(0,)35 305 y(whic)o(h)13 b(are)g(the)g(original)g(frequencies.)19 b(\(In)13 b(terms)f(of)h(the)g(triangles)g(of)h(Figure)e(6\(c\),)i(w)o (e)f(w)o(an)o(t)g(to)g(erase)35 368 y(all)j(triangles)h(except)e(for)i (the)f(one)h(cen)o(tered)e(around)j(0,)e(so)i(that)f(w)o(e)f(are)g (left)g(with)h(the)f(sp)q(ectrum)f(of)35 430 y Fs(x)63 437 y Fp(c)81 430 y Ft(\()p Fs(t)p Ft(\)\).)35 516 y(This)k(can)g(b)q (e)g(ac)o(hiev)o(ed)e(b)o(y)h(\014ltering)h(the)f(sampled)g(signal)h Fs(x)1212 523 y Fp(s)1230 516 y Ft(\()p Fs(t)p Ft(\),)f(using)h(a)g Fv(low-p)n(ass)h Ft(\014lter.)28 b(Suc)o(h)18 b(a)35 578 y(\014lter)13 b(tak)o(es)g(a)h(signal)g Fs(x)p Ft(\()p Fs(t)p Ft(\),)f(and)h(eliminates)d(from)h(it)h(all)g(frequencies)f(of)i (absolute)g(v)m(alue)f(greater)h(than)35 640 y(some)j(threshold)h Fs(!)405 647 y Fp(f)428 640 y Ft(.)26 b(Th)o(us,)18 b(it)f(pro)q(duces) i(a)f(signal)g Fs(y)r Ft(\()p Fs(t)p Ft(\))f(whose)h(sp)q(ectrum)f(is)g (the)h(same)f(as)h(that)g(of)35 703 y Fs(x)p Ft(\()p Fs(t)p Ft(\))e(for)g(all)g(frequencies)f(b)q(et)o(w)o(een)g([)p Fm(\000)p Fs(!)798 710 y Fp(f)820 703 y Fs(;)8 b(!)872 710 y Fp(f)895 703 y Ft(],)16 b(but)g(with)g(no)h(frequencies)e(ab)q(o) o(v)o(e)h Fs(!)1625 710 y Fp(f)1664 703 y Ft(or)h(b)q(elo)o(w)f Fm(\000)p Fs(!)1931 710 y Fp(f)35 788 y Ft(By)i(applying)h(suc)o(h)f(a) h(\014lter)f(with)h Fs(!)734 795 y Fp(N)786 788 y Fm(\024)f Fs(!)873 795 y Fp(f)914 788 y Fm(\024)f Ft(\()p Fs(!)1019 795 y Fp(s)1051 788 y Fm(\000)12 b Fs(!)1132 795 y Fp(N)1166 788 y Ft(\))19 b(to)g(the)f(sampled)g(signal)h(\(padded)g(with)35 851 y(0's)f(on)g(the)f(unsampled)f(in)o(terv)m(als\),)g(w)o(e)h(obtain) h(the)f(original)g(signal,)h(giv)o(en)e(that)i(precautions)f(w)o(ere)35 913 y(tak)o(en)i(to)g(sample)e(frequen)o(tly)g(enough,)j(suc)o(h)f (that)g Fs(!)1067 920 y Fp(N)1119 913 y Fm(\024)f Ft(\()p Fs(!)1225 920 y Fp(s)1257 913 y Fm(\000)12 b Fs(!)1338 920 y Fp(N)1372 913 y Ft(\),)19 b(or)h(equiv)m(alen)o(tly)l(,)c(suc)o (h)j(that)35 975 y(2)p Fs(!)89 982 y Fp(N)138 975 y Fm(\024)13 b Fs(!)220 982 y Fp(s)239 975 y Ft(.)35 1061 y(Figure)19 b(6\(d\))g(demonstrates)f(what)h(happ)q(ens)h(if)e(the)h(ab)q(o)o(v)o (e)f(requiremen)o(t)e(is)i(not)i(met.)26 b(W)l(e)19 b(can)g(see)35 1123 y(\(lo)q(oking)13 b(at)f(the)g(dashed)g(lines\))g(that)g(the)g (duplications)f(of)i Fs(x)1171 1130 y Fp(c)1188 1123 y Ft('s)e(sp)q(ectrum)g(o)o(v)o(erlap)g(eac)o(h)h(other,)g(whic)o(h)35 1186 y(means)j(that)g(the)g(sp)q(ectrum)f(of)i(the)f(sampled)f(signal)h (\(sho)o(wn)h(as)g(the)f(solid)g(line\))f(con)o(tains)h(frequency)35 1248 y(amplitudes)h(that)j(w)o(ere)d(not)j(there)e(to)h(b)q(egin)g (with,)f(while)g(original)g(amplitudes)f(of)i(frequencies)e(are)35 1310 y(lost.)30 b(Hence,)18 b(faithful)g(reconstruction)h(of)g(the)f (original)h(signal)g(from)f(its)h(samples)f(is)g(not)i(p)q(ossible.)35 1372 y(This)12 b(phenomenon,)g(of)g(ha)o(ving)f(original)h(amplitudes)e (of)i(frequencies)e(replaced)h(b)o(y)g(b)q(ogus)i(amplitudes)35 1435 y(is)j(kno)o(wn)h(as)g Fv(aliasing)p Ft(.)35 1521 y(The)c(fact)g(w)o(e)g(ha)o(v)o(e)f(stated)h(ab)q(o)o(v)o(e,)g(that)h (if)e(our)h(sampling)f(frequency)g Fs(!)1373 1528 y Fp(s)1404 1521 y Ft(is)h(at)g(least)g(t)o(wice)f(the)g(highest)35 1583 y(frequency)g(of)i(the)f(original)g(signal,)h Fs(!)740 1590 y Fp(n)764 1583 y Ft(,)f(a)h(faithful)f(reconstruction)g(of)h(the) f(signal)g(from)f(its)h(samples)g(is)35 1645 y(p)q(ossible,)j(is)g (exactly)f(the)h(con)o(ten)o(ts)g(of)g Fv(Nyquist's)i(The)n(or)n(em)p Ft(,)d(and)h(a)h(sampling)e(frequency)g Fs(!)1800 1652 y Fp(s)1832 1645 y Ft(=)f(2)p Fs(!)1938 1652 y Fp(N)35 1707 y Ft(is)i(called)g(the)g Fv(Nyquist)i(fr)n(e)n(quency)p Ft(.)35 1793 y(It)h(is)g(imp)q(ortan)o(t)f(to)h(note)h(that)f(our)g (reasoning)h(ab)q(out)h(the)d(frequencies)g(of)h(the)g(sampled)f (sequence)35 1856 y(with)13 b(resp)q(ect)g(to)h(the)f(original)g (sequence)f(is)h(a)g Fv(mental)j(exer)n(cise)e Ft(rather)g(than)f(an)h Fv(algorithmic)h(metho)n(d)p Ft(.)35 1918 y(In)h(order)g(to)g(reco)o(v) o(er)e(the)i(original)g(sequence)e(from)h(the)h(sampled)e(one,)i(w)o(e) f(don't)h(need)g(to)g(apply)g(the)35 1980 y(F)l(ourier)k(transform)g (to)h(the)f(sampled)f(sequence,)h(cut)g(o\013)h(its)g(high)f (frequencies,)f(and)i(p)q(erform)f(the)35 2042 y(in)o(v)o(erse)c(F)l (ourier)h(transform.)24 b(W)l(e)17 b(simply)f(tak)o(e)g(the)i(sampled)e (sequence)g(and)i(feed)f(it)g(to)h(a)f(lo)o(w-pass)35 2105 y(\014lter,)d(whic)o(h)g(pro)q(cesses)h(it)f(and)h(reconstructs)g (the)f(original)g(signal)h(from)e(it.)21 b(The)14 b(frequency)f(domain) 35 2167 y(reasoning)20 b(just)f(sho)o(w)o(ed)g(us)g(wh)o(y)f(a)h(lo)o (w-pass)h(\014lter)e(is)g(a)h(to)q(ol)h(for)e(reco)o(v)o(ering)g(a)h (con)o(tin)o(uous)f(signal)35 2229 y(from)e(its)g(samples.)35 2315 y(Once)11 b(a)g(signal)g(is)g(sampled,)f(w)o(e)h(ha)o(v)o(e)f(a)h Fv(discr)n(ete)g Ft(sequence,)g(whic)o(h)f(is)h(either)e(a)j(faithful)e (represen)o(tation)35 2377 y(\(if)18 b(the)h(sampling)e(frequency)g(w)o (as)i(at)g(least)f(the)g(Nyquist)g(frequency\),)f(or)i(an)g(unfaithful) f(represen-)35 2440 y(tation)g(of)f(it,)e(\(if)i(a)g(lo)o(w)o(er)f (sampling)f(frequency)h(w)o(as)h(used\).)23 b(In)16 b(an)o(y)h(case,)f (a)h(discrete)f(sequence)f(can)35 2502 y(b)q(e)k(pro)q(cessed)g(using)f (discrete)g(metho)q(ds,)g(whic)o(h)f(facilitate)g(the)h(usage)i(of)e (digital)g(computers.)26 b(The)35 2564 y(discrete)19 b(form)g(of)g(the)h(F)l(ourier)f(transform,)h(\(kno)o(wn)f(as)i(the)e (DFT\))h(is)f(discussed)h(in)f(the)h(follo)o(wing)35 2626 y(sections.)992 2841 y(9)p eop %%Page: 10 10 10 9 bop 35 -68 a Fu(6)81 b(The)27 b(Discrete)f(F)-7 b(ourier)26 b(T)-7 b(ransform)35 79 y Fb(6.1)67 b(De\014nition)23 b(of)f(the)h(DFT)35 197 y Ft(The)18 b(Discrete)e(F)l(ourier)g(T)l (ransform)h(\(DFT\))h(maps)e(a)i(discrete)e(p)q(erio)q(dic)h(sequence)f Fs(f)5 b Ft([)p Fs(k)r Ft(])17 b(\(where)f Fs(k)k Ft(is)35 260 y(an)14 b(in)o(teger,)f(and)h(the)f(p)q(erio)q(d)h(is)g Fs(N)5 b Ft(\),)14 b(to)f(another)i(discrete)d(sequence)g Fs(F)7 b Ft([)p Fs(j)s Ft(],)12 b(of)i(frequency)e(co)q(e\016cien)o (ts.)35 346 y(It)k(is)g(de\014ned)g(as:)362 328 y Fn(3)490 470 y Fs(F)7 b Ft([)p Fs(j)s Ft(])40 b(=)699 416 y Fp(N)t Fi(\000)p Fn(1)708 429 y Fo(X)705 521 y Fp(k)q Fn(=0)784 470 y Fs(f)5 b Ft([)p Fs(k)r Ft(])p Fs(e)891 450 y Fi(\000)p Fn(2)p Fp(\031)q(ik)q(j)r(=)n(N)1197 470 y Ft(0)15 b Fm(\024)e Fs(j)k Fm(\024)d Fs(N)i Fm(\000)11 b Ft(1)379 b(\(11\))495 622 y Fs(f)5 b Ft([)p Fs(k)r Ft(])41 b(=)714 589 y(1)p 704 611 45 2 v 704 657 a Fs(N)762 568 y Fp(N)t Fi(\000)p Fn(1)770 581 y Fo(X)769 672 y Fp(j)r Fn(=0)847 622 y Fs(F)7 b Ft([)p Fs(j)s Ft(])p Fs(e)960 602 y Fn(2)p Fp(\031)q(ik)q(j)r(=)n(N)1204 622 y Ft(0)14 b Fm(\024)g Fs(k)i Fm(\024)e Fs(N)i Fm(\000)11 b Ft(1)368 b(\(12\))35 764 y(The)20 b(in)o(terpretation)e(of)h(the)g(ab)q(o)o(v)o(e)g (equations)g(is)g(that)h(at)f(p)q(oin)o(t)g Fs(k)r Ft(,)h(the)f (sequence)f(v)m(alue)h Fs(f)5 b Ft([)p Fs(k)r Ft(])18 b(is)h(a)35 826 y(linear)e(com)o(bination)f(of)i(the)f(v)m(alues)h(of)f (N)g(sin)o(usoids,)h Fs(e)1094 808 y Fn(0)1113 826 y Fs(;)8 b(:::;)g(e)1222 808 y Fn(\(2)p Fp(\031)q(=)n(N)t Fn(\))p Fp(k)q Fn(\()p Fp(N)t Fi(\000)p Fn(1\))1459 826 y Ft(.)25 b(The)18 b(co)q(e\016cien)o(ts)e(of)i(the)35 888 y(sin)o(usoids)d(are)f Fs(F)7 b Ft([0])p Fs(;)h(:::;)g(F)f Ft([)o Fs(N)i Fm(\000)e Ft(1])14 b(resp)q(ectiv)o(ely)l(,)e(and)j (their)f(frequencies)e(are)i Fs(j)s(=)m(N)21 b Ft(cycles)12 b(p)q(er)j(sample)35 950 y(or)i(2)p Fs(\031)r(j)s(=)m(N)22 b Ft(radians)17 b(p)q(er)f(sample)f(\(where)h(0)e Fm(\024)g Fs(j)j Fm(\024)c Ft(\()p Fs(N)k Fm(\000)10 b Ft(1\).)22 b(W)l(e)16 b(should)h(note)f(that:)742 1052 y Fs(e)765 1032 y Fi(\000)p Fn(2)p Fp(\031)q(ik)q(j)r(=)n(N)942 1052 y Ft(=)e Fs(e)1017 1032 y Fi(\000)p Fn(2)p Fp(\031)q(ik)q Fn(\()p Fp(j)r Fn(+)p Fp(N)t Fn(\))p Fp(=)n(N)35 1154 y Ft(Th)o(us)k(the)f(function)g Fs(F)7 b Ft([)p Fs(j)s Ft(],)16 b(lik)o(e)f(the)j(original)f Fs(f)5 b Ft([)p Fs(k)r Ft(],)16 b(is)i(p)q(erio)q(dic)f(with)g(p)q(erio)q(d)h Fs(N)5 b Ft(,)17 b(and)h(therefore)f(the)35 1216 y(frequency)e(range)i (to)g(b)q(e)f(considered)g(is)g(0)p Fs(::)p Ft(2)p Fs(\031)h Ft(radians/sample,)f(or)h(0)p Fs(::N)k Ft(cycles/sample.)35 1302 y(It)14 b(is)g(also)h(in)o(teresting)f(to)g(note)h(that)f(for)h (an)o(y)f(frequency)f(other)i(than)g(the)f Fs(j)s(=)m(N)5 b Ft('s,)15 b(a)f(discrete)g(sin)o(usoid)35 1364 y(is)f(not)g(p)q(erio) q(dic.)20 b(F)l(or)12 b(a)h(discrete)f(cosine)g(\(or)h(sine\))f Fs(f)5 b Ft([)p Fs(k)r Ft(])13 b(=)h Fs(Acos)p Ft(\(2)p Fs(\031)r(!)1349 1371 y Fn(0)1369 1364 y Fs(k)r Ft(\))f(to)f(b)q(e)h(p) q(erio)q(dic)g(with)f(p)q(erio)q(d)35 1427 y Fs(N)5 b Ft(,)17 b(it)e(m)o(ust)g(satisfy:)627 1489 y Fs(Acos)p Ft(\(2)p Fs(\031)r(!)834 1496 y Fn(0)854 1489 y Ft(\()p Fs(k)e Ft(+)e Fs(N)5 b Ft(\)\))14 b(=)g Fs(Acos)p Ft(\(2)p Fs(\031)r(!)1315 1496 y Fn(0)1335 1489 y Fs(k)r Ft(\))35 1574 y(whic)o(h)19 b(means:)27 b(2)p Fs(\031)r(!)437 1581 y Fn(0)457 1574 y Fs(N)e Ft(=)19 b(2)p Fs(\031)r(j)s Ft(,)h(or)f(equiv)m(alen)o(tly)l(,)f Fs(!)1066 1581 y Fn(0)1086 1574 y Fs(N)25 b Ft(=)19 b Fs(j)s Ft(,)h(for)g(some)e(in)o (teger)h Fs(j)s Ft(.)31 b(The)19 b(equalit)o(y)35 1636 y(holds)e(only)f(for)h(the)f(frequencies)e(of)j(the)f(form)f Fs(j)s(=)m(N)22 b Ft(\(in)16 b(units)g(of)h(cycles/samples\).)35 1722 y(Here)f(are)g(some)f(examples)f(of)j(applying)f(the)g(DFT)h(to)f (discrete)f(sequences:)35 1850 y Fl(Example)k(4)24 b Ft(Let)16 b Fs(p)p Ft([)p Fs(k)r Ft(])g(b)q(e)h(a)f(discrete)f(pulse)h (function,)g(with)g(p)q(erio)q(dicit)o(y)f(10,)i(de\014ned)f(as:)344 2008 y Fs(p)p Ft([)p Fs(k)r Ft(])e(=)488 1908 y Fo(8)488 1946 y(>)488 1958 y(<)488 2033 y(>)488 2045 y(:)546 1948 y Ft(1)97 b(0)12 b(+)f(10)p Fs(m)j Fm(\024)g Fs(k)i Fm(\024)d Ft(4)f(+)f(10)p Fs(m)44 b Ft(F)l(or)20 b(some)e(in)o(teger)10 b Fs(m)546 2038 y Ft(0)97 b Fs(other)q(w)q(ise)35 2187 y Ft(Its)16 b(F)l(ourier)g(transform)g(is:)355 2310 y Fs(P)7 b Ft([)p Fs(j)s Ft(])13 b(=)524 2256 y Fn(9)502 2269 y Fo(X)501 2361 y Fp(k)q Fn(=0)573 2310 y Fs(p)p Ft([)p Fs(k)r Ft(])p Fs(e)675 2290 y Fi(\000)p Fn(2)p Fp(\031)q(ij)r(k)q(=)p Fn(10)857 2310 y Ft(=)932 2256 y Fn(4)911 2269 y Fo(X)909 2361 y Fp(k)q Fn(=0)981 2310 y Fs(e)1004 2290 y Fi(\000)p Fn(2)p Fp(\031)q(ij)r(k)q(=)p Fn(10)1187 2310 y Ft(=)h Fs(e)1262 2290 y Fi(\000)p Fn(4)p Fp(\031)q(ij)r(=)p Fn(10)1428 2276 y Fs(sin)p Ft(\()p Fs(\031)r(j)s(=)p Ft(2\))p 1416 2298 233 2 v 1416 2344 a Fs(sin)p Ft(\()p Fs(\031)r(j)s(=)p Ft(10\))35 2470 y(The)j(resp)q(ectiv)o(e)d(graphs)k(for)e Fs(p)p Ft([)p Fs(k)r Ft(])g(and)h Fs(P)7 b Ft([)p Fs(j)s Ft(])15 b(are)i(sho)o(wn)g (in)f(Figure)f(7.)p 35 2513 775 2 v 92 2544 a Ff(3)110 2559 y Fr(The)f(exact)h(form)o(ulation)10 b(of)j(the)i(DFT)e(v)n(aries) h(sligh)o(tly)e(in)h(b)q(o)q(oks.)18 b(Some)13 b(ha)o(v)o(e)g(the)1483 2543 y Ff(1)p 1477 2550 30 2 v 1477 2573 a Fa(N)1525 2559 y Fr(co)q(e\016cien)o(t)h(in)f(fron)o(t)h(of)f(the)35 2609 y(expression)j(for)e Fd(F)6 b Fr([)p Fd(j)r Fr(])14 b(rather)h(than)g(for)f Fd(f)t Fr([)p Fd(k)q Fr(],)g(while)g(others)h (ha)o(v)o(e)g(a)f(co)q(e\016cien)o(t)1359 2593 y Ff(1)p 1339 2600 57 2 v 1339 2604 a Fc(p)p 1367 2604 30 2 v 1367 2629 a Fa(N)1416 2609 y Fr(rather)h(than)1650 2593 y Ff(1)p 1643 2600 V 1643 2623 a Fa(N)1692 2609 y Fr(and)g(use)g(it)f (b)q(oth)35 2667 y(for)g Fd(F)6 b Fr([)p Fd(j)r Fr(])13 b(and)h(for)g Fd(f)t Fr([)p Fd(k)q Fr(].)19 b(The)14 b(latter)h(is)f(the)h(form)d(Mathematica)h(uses.)20 b(All)13 b(3)h(forms)f(are)i(correct)h(as)e(long)f(as)h(they)h(are)35 2717 y(used)g(consisten)o(tly)m(.)980 2841 y Ft(10)p eop %%Page: 11 11 11 10 bop 104 -1004 a 28417720 37890293 4736286 4736286 35522150 47362867 startTexFig 104 -1004 a %%BeginDocument: fig6.ps /Mathdict 150 dict def Mathdict begin /Mlmarg 1.0 72 mul def /Mrmarg 1.0 72 mul def /Mbmarg 1.0 72 mul def /Mtmarg 1.0 72 mul def /Mwidth 8.5 72 mul def /Mheight 11 72 mul def /Mtransform { } bind def /Mnodistort true def /Mfixwid true def /Mfixdash false def /Mrot 0 def /Mpstart { MathPictureStart } bind def /Mpend { MathPictureEnd } bind def /Mscale { 0 1 0 1 5 -1 roll MathScale } bind def /ISOLatin1Encoding dup where { pop pop } { [ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright /parenleft /parenright /asterisk /plus /comma /minus /period /slash /zero /one /two /three /four /five /six /seven /eight /nine /colon /semicolon /less /equal /greater /question /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore /quoteleft /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar /braceright /asciitilde /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright /ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron /degree /plusminus /twosuperior /threesuperior /acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf /threequarters /questiondown /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis ] def } ifelse /MFontDict 50 dict def /MStrCat { exch dup length 2 index length add string dup 3 1 roll copy length exch dup 4 2 roll exch putinterval } def /MCreateEncoding { 1 index 255 string cvs (-) MStrCat 1 index MStrCat cvn exch (Encoding) MStrCat cvn dup where { exch get } { pop StandardEncoding } ifelse 3 1 roll dup MFontDict exch known not { 1 index findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding 3 index def currentdict end 1 index exch definefont pop MFontDict 1 index null put } if exch pop exch pop } def /ISOLatin1 { (ISOLatin1) MCreateEncoding } def /ISO8859 { (ISOLatin1) MCreateEncoding } def /Mcopyfont { dup maxlength dict exch { 1 index /FID eq { pop pop } { 2 index 3 1 roll put } ifelse } forall } def /Plain /Courier findfont Mcopyfont definefont pop /Bold /Courier-Bold findfont Mcopyfont definefont pop /Italic /Courier-Oblique findfont Mcopyfont definefont pop /MathPictureStart { gsave Mtransform Mlmarg Mbmarg translate Mwidth Mlmarg Mrmarg add sub /Mwidth exch def Mheight Mbmarg Mtmarg add sub /Mheight exch def /Mtmatrix matrix currentmatrix def /Mgmatrix matrix currentmatrix def } bind def /MathPictureEnd { grestore } bind def /MFill { 0 0 moveto Mwidth 0 lineto Mwidth Mheight lineto 0 Mheight lineto fill } bind def /MPlotRegion { 3 index Mwidth mul 2 index Mheight mul translate exch sub Mheight mul /Mheight exch def exch sub Mwidth mul /Mwidth exch def } bind def /MathSubStart { Momatrix Mgmatrix Mtmatrix Mwidth Mheight 7 -2 roll moveto Mtmatrix setmatrix currentpoint Mgmatrix setmatrix 9 -2 roll moveto Mtmatrix setmatrix currentpoint 2 copy translate /Mtmatrix matrix currentmatrix def 3 -1 roll exch sub /Mheight exch def sub /Mwidth exch def } bind def /MathSubEnd { /Mheight exch def /Mwidth exch def /Mtmatrix exch def dup setmatrix /Mgmatrix exch def /Momatrix exch def } bind def /Mdot { moveto 0 0 rlineto stroke } bind def /Mtetra { moveto lineto lineto lineto fill } bind def /Metetra { moveto lineto lineto lineto closepath gsave fill grestore 0 setgray stroke } bind def /Mistroke { flattenpath 0 0 0 { 4 2 roll pop pop } { 4 -1 roll 2 index sub dup mul 4 -1 roll 2 index sub dup mul add sqrt 4 -1 roll add 3 1 roll } { stop } { stop } pathforall pop pop currentpoint stroke moveto currentdash 3 -1 roll add setdash } bind def /Mfstroke { stroke currentdash pop 0 setdash } bind def /Mrotsboxa { gsave dup /Mrot exch def Mrotcheck Mtmatrix dup setmatrix 7 1 roll 4 index 4 index translate rotate 3 index -1 mul 3 index -1 mul translate /Mtmatrix matrix currentmatrix def grestore Msboxa 3 -1 roll /Mtmatrix exch def /Mrot 0 def } bind def /Msboxa { newpath 5 -1 roll Mvboxa pop Mboxout 6 -1 roll 5 -1 roll 4 -1 roll Msboxa1 5 -3 roll Msboxa1 Mboxrot [ 7 -2 roll 2 copy [ 3 1 roll 10 -1 roll 9 -1 roll ] 6 1 roll 5 -2 roll ] } bind def /Msboxa1 { sub 2 div dup 2 index 1 add mul 3 -1 roll -1 add 3 -1 roll mul } bind def /Mvboxa { Mfixwid { Mvboxa1 } { dup Mwidthcal 0 exch { add } forall exch Mvboxa1 4 index 7 -1 roll add 4 -1 roll pop 3 1 roll } ifelse } bind def /Mvboxa1 { gsave newpath [ true 3 -1 roll { Mbbox 5 -1 roll { 0 5 1 roll } { 7 -1 roll exch sub (m) stringwidth pop .3 mul sub 7 1 roll 6 -1 roll 4 -1 roll Mmin 3 -1 roll 5 index add 5 -1 roll 4 -1 roll Mmax 4 -1 roll } ifelse false } forall { stop } if counttomark 1 add 4 roll ] grestore } bind def /Mbbox { 1 dict begin 0 0 moveto /temp (T) def { gsave currentpoint newpath moveto temp 0 3 -1 roll put temp false charpath flattenpath currentpoint pathbbox grestore moveto lineto moveto} forall pathbbox newpath end } bind def /Mmin { 2 copy gt { exch } if pop } bind def /Mmax { 2 copy lt { exch } if pop } bind def /Mrotshowa { dup /Mrot exch def Mrotcheck Mtmatrix dup setmatrix 7 1 roll 4 index 4 index translate rotate 3 index -1 mul 3 index -1 mul translate /Mtmatrix matrix currentmatrix def Mgmatrix setmatrix Mshowa /Mtmatrix exch def /Mrot 0 def } bind def /Mshowa { 4 -2 roll moveto 2 index Mtmatrix setmatrix Mvboxa 7 1 roll Mboxout 6 -1 roll 5 -1 roll 4 -1 roll Mshowa1 4 1 roll Mshowa1 rmoveto currentpoint Mfixwid { Mshowax } { Mshoway } ifelse pop pop pop pop Mgmatrix setmatrix } bind def /Mshowax { 0 1 4 index length -1 add { 2 index 4 index 2 index get 3 index add moveto 4 index exch get Mfixdash { Mfixdashp } if show } for } bind def /Mfixdashp { dup length 1 gt 1 index true exch { 45 eq and } forall and { gsave (--) stringwidth pop (-) stringwidth pop sub 2 div 0 rmoveto dup length 1 sub { (-) show } repeat grestore } if } bind def /Mshoway { 3 index Mwidthcal 5 1 roll 0 1 4 index length -1 add { 2 index 4 index 2 index get 3 index add moveto 4 index exch get [ 6 index aload length 2 add -1 roll { pop Strform stringwidth pop neg exch add 0 rmoveto } exch kshow cleartomark } for pop } bind def /Mwidthcal { [ exch { Mwidthcal1 } forall ] [ exch dup Maxlen -1 add 0 1 3 -1 roll { [ exch 2 index { 1 index Mget exch } forall pop Maxget exch } for pop ] Mreva } bind def /Mreva { [ exch aload length -1 1 {1 roll} for ] } bind def /Mget { 1 index length -1 add 1 index ge { get } { pop pop 0 } ifelse } bind def /Maxlen { [ exch { length } forall Maxget } bind def /Maxget { counttomark -1 add 1 1 3 -1 roll { pop Mmax } for exch pop } bind def /Mwidthcal1 { [ exch { Strform stringwidth pop } forall ] } bind def /Strform { /tem (x) def tem 0 3 -1 roll put tem } bind def /Mshowa1 { 2 copy add 4 1 roll sub mul sub -2 div } bind def /MathScale { Mwidth Mheight Mlp translate scale /yscale exch def /ybias exch def /xscale exch def /xbias exch def /Momatrix xscale yscale matrix scale xbias ybias matrix translate matrix concatmatrix def /Mgmatrix matrix currentmatrix def } bind def /Mlp { 3 copy Mlpfirst { Mnodistort { Mmin dup } if 4 index 2 index 2 index Mlprun 11 index 11 -1 roll 10 -4 roll Mlp1 8 index 9 -5 roll Mlp1 4 -1 roll and { exit } if 3 -1 roll pop pop } loop exch 3 1 roll 7 -3 roll pop pop pop } bind def /Mlpfirst { 3 -1 roll dup length 2 copy -2 add get aload pop pop pop 4 -2 roll -1 add get aload pop pop pop 6 -1 roll 3 -1 roll 5 -1 roll sub div 4 1 roll exch sub div } bind def /Mlprun { 2 copy 4 index 0 get dup 4 1 roll Mlprun1 3 copy 8 -2 roll 9 -1 roll { 3 copy Mlprun1 3 copy 11 -3 roll /gt Mlpminmax 8 3 roll 11 -3 roll /lt Mlpminmax 8 3 roll } forall pop pop pop pop 3 1 roll pop pop aload pop 5 -1 roll aload pop exch 6 -1 roll Mlprun2 8 2 roll 4 -1 roll Mlprun2 6 2 roll 3 -1 roll Mlprun2 4 2 roll exch Mlprun2 6 2 roll } bind def /Mlprun1 { aload pop exch 6 -1 roll 5 -1 roll mul add 4 -2 roll mul 3 -1 roll add } bind def /Mlprun2 { 2 copy add 2 div 3 1 roll exch sub } bind def /Mlpminmax { cvx 2 index 6 index 2 index exec { 7 -3 roll 4 -1 roll } if 1 index 5 index 3 -1 roll exec { 4 1 roll pop 5 -1 roll aload pop pop 4 -1 roll aload pop [ 8 -2 roll pop 5 -2 roll pop 6 -2 roll pop 5 -1 roll ] 4 1 roll pop } { pop pop pop } ifelse } bind def /Mlp1 { 5 index 3 index sub 5 index 2 index mul 1 index le 1 index 0 le or dup not { 1 index 3 index div .99999 mul 8 -1 roll pop 7 1 roll } if 8 -1 roll 2 div 7 -2 roll pop sub 5 index 6 -3 roll pop pop mul sub exch } bind def /intop 0 def /inrht 0 def /inflag 0 def /outflag 0 def /xadrht 0 def /xadlft 0 def /yadtop 0 def /yadbot 0 def /Minner { outflag 1 eq { /outflag 0 def /intop 0 def /inrht 0 def } if 5 index gsave Mtmatrix setmatrix Mvboxa pop grestore 3 -1 roll pop dup intop gt { /intop exch def } { pop } ifelse dup inrht gt { /inrht exch def } { pop } ifelse pop /inflag 1 def } bind def /Mouter { /xadrht 0 def /xadlft 0 def /yadtop 0 def /yadbot 0 def inflag 1 eq { dup 0 lt { dup intop mul neg /yadtop exch def } if dup 0 gt { dup intop mul /yadbot exch def } if pop dup 0 lt { dup inrht mul neg /xadrht exch def } if dup 0 gt { dup inrht mul /xadlft exch def } if pop /outflag 1 def } { pop pop} ifelse /inflag 0 def /inrht 0 def /intop 0 def } bind def /Mboxout { outflag 1 eq { 4 -1 roll xadlft leadjust add sub 4 1 roll 3 -1 roll yadbot leadjust add sub 3 1 roll exch xadrht leadjust add add exch yadtop leadjust add add /outflag 0 def /xadlft 0 def /yadbot 0 def /xadrht 0 def /yadtop 0 def } if } bind def /leadjust { (m) stringwidth pop .5 mul } bind def /Mrotcheck { dup 90 eq { yadbot /yadbot xadrht def /xadrht yadtop def /yadtop xadlft def /xadlft exch def } if dup cos 1 index sin Checkaux dup cos 1 index sin neg exch Checkaux 3 1 roll pop pop } bind def /Checkaux { 4 index exch 4 index mul 3 1 roll mul add 4 1 roll } bind def /Mboxrot { Mrot 90 eq { brotaux 4 2 roll } if Mrot 180 eq { 4 2 roll brotaux 4 2 roll brotaux } if Mrot 270 eq { 4 2 roll brotaux } if } bind def /brotaux { neg exch neg } bind def /Mabsproc { 0 matrix defaultmatrix dtransform idtransform dup mul exch dup mul add sqrt } bind def /Mabswid { Mabsproc setlinewidth } bind def /Mabsdash { exch [ exch { Mabsproc } forall ] exch setdash } bind def /MBeginOrig { Momatrix concat} bind def /MEndOrig { Mgmatrix setmatrix} bind def /sampledsound where { pop} { /sampledsound { exch pop exch 5 1 roll mul 4 idiv mul 2 idiv exch pop exch /Mtempproc exch def { Mtempproc pop} repeat } bind def } ifelse /g { setgray} bind def /k { setcmykcolor} bind def /m { moveto} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /P { grestore} bind def /s { stroke} bind def /setcmykcolor where { pop} { /setcmykcolor { 4 1 roll [ 4 1 roll ] { 1 index sub 1 sub neg dup 0 lt { pop 0 } if dup 1 gt { pop 1 } if exch } forall pop setrgbcolor } bind def } ifelse /Mcharproc { currentfile (x) readhexstring pop 0 get exch div } bind def /Mshadeproc { dup 3 1 roll { dup Mcharproc 3 1 roll } repeat 1 eq { setgray } { 3 eq { setrgbcolor } { setcmykcolor } ifelse } ifelse } bind def /Mrectproc { 3 index 2 index moveto 2 index 3 -1 roll lineto dup 3 1 roll lineto lineto fill } bind def /Mcolorimage { 7 1 roll pop pop matrix invertmatrix concat 2 exch exp 1 sub 3 1 roll 1 1 2 index { 1 1 4 index { dup 1 sub exch 2 index dup 1 sub exch 7 index 9 index Mshadeproc Mrectproc } for pop } for pop pop pop pop } bind def /Mimage { pop matrix invertmatrix concat 2 exch exp 1 sub 3 1 roll 1 1 2 index { 1 1 4 index { dup 1 sub exch 2 index dup 1 sub exch 7 index Mcharproc setgray Mrectproc } for pop } for pop pop pop } bind def MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.47619 0.00700719 0.47619 [ [ -0.001 -0.001 0 0 ] [ 1.001 .2953 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash 0 g p p .002 w 0 0 m 1 0 L s P p .002 w 0 0 m 0 .2943 L s P P p p .002 w 0 .2943 m 1 .2943 L s P p .002 w 1 0 m 1 .2943 L s P P p P 0 0 m 1 0 L 1 .2943 L 0 .2943 L closepath clip newpath p p % Start of sub-graphic p 0.0238095 0.00700719 0.477324 0.287295 MathSubStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.44 0.04 0 0.412023 [ [(0)] .44 0 0 2 Msboxa [(1)] .48 0 0 2 Msboxa [(2)] .52 0 0 2 Msboxa [(3)] .56 0 0 2 Msboxa [(4)] .6 0 0 2 Msboxa [(5)] .64 0 0 2 Msboxa [(6)] .68 0 0 2 Msboxa [(7)] .72 0 0 2 Msboxa [(8)] .76 0 0 2 Msboxa [(9)] .8 0 0 2 Msboxa [(10)] .84 0 0 2 Msboxa [(-10)] .04 0 0 2 Msboxa [(k)] 1.025 0 -1 0 Msboxa [(1)] .4275 .41202 1 0 Msboxa [(p[k])] .44 .61803 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 .61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash p p .002 w .44 0 m .44 .00625 L s P [(0)] .44 0 0 2 Mshowa p .002 w .48 0 m .48 .00625 L s P [(1)] .48 0 0 2 Mshowa p .002 w .52 0 m .52 .00625 L s P [(2)] .52 0 0 2 Mshowa p .002 w .56 0 m .56 .00625 L s P [(3)] .56 0 0 2 Mshowa p .002 w .6 0 m .6 .00625 L s P [(4)] .6 0 0 2 Mshowa p .002 w .64 0 m .64 .00625 L s P [(5)] .64 0 0 2 Mshowa p .002 w .68 0 m .68 .00625 L s P [(6)] .68 0 0 2 Mshowa p .002 w .72 0 m .72 .00625 L s P [(7)] .72 0 0 2 Mshowa p .002 w .76 0 m .76 .00625 L s P [(8)] .76 0 0 2 Mshowa p .002 w .8 0 m .8 .00625 L s P [(9)] .8 0 0 2 Mshowa p .002 w .84 0 m .84 .00625 L s P [(10)] .84 0 0 2 Mshowa p .002 w .04 0 m .04 .00625 L s P [(-10)] .04 0 0 2 Mshowa [(k)] 1.025 0 -1 0 Mshowa p .002 w 0 0 m 1 0 L s P p .002 w .44 .41202 m .44625 .41202 L s P [(1)] .4275 .41202 1 0 Mshowa [(p[k])] .44 .61803 0 -4 Mshowa p .002 w .44 0 m .44 .61803 L s P P 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath p p p .025 w .04 .41202 Mdot .08 .41202 Mdot .12 .41202 Mdot .16 .41202 Mdot .2 .41202 Mdot .24 0 Mdot .28 0 Mdot .32 0 Mdot .36 0 Mdot .4 0 Mdot .44 .41202 Mdot .48 .41202 Mdot .52 .41202 Mdot .56 .41202 Mdot .6 .41202 Mdot .64 0 Mdot .68 0 Mdot .72 0 Mdot .76 0 Mdot .8 0 Mdot .84 .41202 Mdot .88 .41202 Mdot .92 .41202 Mdot .96 .41202 Mdot P P .004 w .04 0 m .04 .41202 L s .08 0 m .08 .41202 L s .12 0 m .12 .41202 L s .16 0 m .16 .41202 L s .2 0 m .2 .41202 L s .44 0 m .44 .41202 L s .48 0 m .48 .41202 L s .52 0 m .52 .41202 L s .56 0 m .56 .41202 L s .6 0 m .6 .41202 L s .84 0 m .84 .41202 L s .88 0 m .88 .41202 L s .92 0 m .92 .41202 L s .96 0 m .96 .41202 L s P MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.522676 0.00700719 0.97619 0.287295 MathSubStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.0833333 0.0833333 0 0.103006 [ [(0)] .16667 0 0 2 Msboxa [(1)] .25 0 0 2 Msboxa [(2)] .33333 0 0 2 Msboxa [(3)] .41667 0 0 2 Msboxa [(4)] .5 0 0 2 Msboxa [(5)] .58333 0 0 2 Msboxa [(6)] .66667 0 0 2 Msboxa [(7)] .75 0 0 2 Msboxa [(8)] .83333 0 0 2 Msboxa [(9)] .91667 0 0 2 Msboxa [(j)] 1.025 0 -1 0 Msboxa [(5)] .15417 .51503 1 0 Msboxa [(|P[j]|)] .16667 .61803 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 .61903 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash p p .002 w .16667 0 m .16667 .00625 L s P [(0)] .16667 0 0 2 Mshowa p .002 w .25 0 m .25 .00625 L s P [(1)] .25 0 0 2 Mshowa p .002 w .33333 0 m .33333 .00625 L s P [(2)] .33333 0 0 2 Mshowa p .002 w .41667 0 m .41667 .00625 L s P [(3)] .41667 0 0 2 Mshowa p .002 w .5 0 m .5 .00625 L s P [(4)] .5 0 0 2 Mshowa p .002 w .58333 0 m .58333 .00625 L s P [(5)] .58333 0 0 2 Mshowa p .002 w .66667 0 m .66667 .00625 L s P [(6)] .66667 0 0 2 Mshowa p .002 w .75 0 m .75 .00625 L s P [(7)] .75 0 0 2 Mshowa p .002 w .83333 0 m .83333 .00625 L s P [(8)] .83333 0 0 2 Mshowa p .002 w .91667 0 m .91667 .00625 L s P [(9)] .91667 0 0 2 Mshowa [(j)] 1.025 0 -1 0 Mshowa p .002 w 0 0 m 1 0 L s P p .002 w .16667 .51503 m .17292 .51503 L s P [(5)] .15417 .51503 1 0 Mshowa [(|P[j]|)] .16667 .61803 0 -4 Mshowa p .002 w .16667 0 m .16667 .61803 L s P P 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath p p p .025 w .16667 .51503 Mdot .25 .33333 Mdot .33333 0 Mdot .41667 .12732 Mdot .5 0 Mdot .58333 .10301 Mdot .66667 0 Mdot .75 .12732 Mdot .83333 0 Mdot .91667 .33333 Mdot P P .004 w .16667 0 m .16667 .51503 L s .25 0 m .25 .33333 L s .41667 0 m .41667 .12732 L s .58333 0 m .58333 .10301 L s .75 0 m .75 .12732 L s .91667 0 m .91667 .33333 L s P MathSubEnd P % End of sub-graphic P P % End of Graphics MathPictureEnd end showpage %%EndDocument endTexFig 334 553 a Fl(Figure)19 b(7)p Ft(:)i(A)16 b(plot)g(of)h Fs(p)p Ft([)p Fs(k)r Ft(],)e(and)i(the)f(amplitude)e(of)j(its)f(DFT)h Fm(j)p Fs(P)7 b Ft([)p Fs(j)s Ft(])p Fm(j)p Ft(.)35 690 y Fl(Example)19 b(5)24 b Ft(W)l(e)d(ha)o(v)o(e)f(de\014ned)h(the)g(con) o(tin)o(uous)g Fs(\016)i Ft(function)e(in)g(Example)e(2,)k(and)e(ha)o (v)o(e)g(used)g(it)35 753 y(in)d(the)g(previous)f(section.)26 b(Its)18 b(m)o(uc)o(h)e(simpler)f(discrete)i(coun)o(terpart,)h(the)g Fv(discr)n(ete)g Fs(\016)h Ft(function,)f(for)35 815 y Fs(N)i Ft(=)13 b(10)k(is)f(de\014ned)g(as:)696 921 y Fs(\016)r Ft([)p Fs(k)r Ft(])c(=)839 821 y Fo(8)839 859 y(>)839 871 y(<)839 946 y(>)839 958 y(:)897 861 y Ft(1)97 b Fs(k)16 b Ft(=)e(0)d(+)g(10)p Fs(m)897 951 y Ft(0)97 b Fs(other)q(w)q(ise)35 1081 y Ft(Its)16 b(F)l(ourier)g (transform)g(is:)660 1225 y(\001[)p Fs(j)s Ft(])d(=)831 1171 y Fn(9)810 1184 y Fo(X)809 1276 y Fp(k)q Fn(=0)881 1225 y Fs(\016)r Ft([)p Fs(k)r Ft(])p Fs(e)983 1205 y Fi(\000)p Fn(2)p Fp(\031)q(ij)r(k)q(=)p Fn(10)1164 1225 y Ft(=)h Fs(e)1239 1205 y Fn(0)1272 1225 y Ft(=)f(1)35 1382 y(The)k(resp)q(ectiv)o(e)d(graphs)k(for)e Fs(\016)r Ft([)p Fs(k)r Ft(])f(and)i(\001[)p Fs(j)s Ft(]\()p Fs(!)r Ft(\))e(are)h(sho)o(wn)h(in)f(Figure)g(8.)254 972 y 23681433 25575919 4736286 4736286 35522150 47362867 startTexFig 254 972 a %%BeginDocument: fig7.ps /Mathdict 150 dict def Mathdict begin /Mlmarg 1.0 72 mul def /Mrmarg 1.0 72 mul def /Mbmarg 1.0 72 mul def /Mtmarg 1.0 72 mul def /Mwidth 8.5 72 mul def /Mheight 11 72 mul def /Mtransform { } bind def /Mnodistort true def /Mfixwid true def /Mfixdash false def /Mrot 0 def /Mpstart { MathPictureStart } bind def /Mpend { MathPictureEnd } bind def /Mscale { 0 1 0 1 5 -1 roll MathScale } bind def /ISOLatin1Encoding dup where { pop pop } { [ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright /parenleft /parenright /asterisk /plus /comma /minus /period /slash /zero /one /two /three /four /five /six /seven /eight /nine /colon /semicolon /less /equal /greater /question /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore /quoteleft /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar /braceright /asciitilde /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright /ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron /degree /plusminus /twosuperior /threesuperior /acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf /threequarters /questiondown /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis ] def } ifelse /MFontDict 50 dict def /MStrCat { exch dup length 2 index length add string dup 3 1 roll copy length exch dup 4 2 roll exch putinterval } def /MCreateEncoding { 1 index 255 string cvs (-) MStrCat 1 index MStrCat cvn exch (Encoding) MStrCat cvn dup where { exch get } { pop StandardEncoding } ifelse 3 1 roll dup MFontDict exch known not { 1 index findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding 3 index def currentdict end 1 index exch definefont pop MFontDict 1 index null put } if exch pop exch pop } def /ISOLatin1 { (ISOLatin1) MCreateEncoding } def /ISO8859 { (ISOLatin1) MCreateEncoding } def /Mcopyfont { dup maxlength dict exch { 1 index /FID eq { pop pop } { 2 index 3 1 roll put } ifelse } forall } def /Plain /Courier findfont Mcopyfont definefont pop /Bold /Courier-Bold findfont Mcopyfont definefont pop /Italic /Courier-Oblique findfont Mcopyfont definefont pop /MathPictureStart { gsave Mtransform Mlmarg Mbmarg translate Mwidth Mlmarg Mrmarg add sub /Mwidth exch def Mheight Mbmarg Mtmarg add sub /Mheight exch def /Mtmatrix matrix currentmatrix def /Mgmatrix matrix currentmatrix def } bind def /MathPictureEnd { grestore } bind def /MFill { 0 0 moveto Mwidth 0 lineto Mwidth Mheight lineto 0 Mheight lineto fill } bind def /MPlotRegion { 3 index Mwidth mul 2 index Mheight mul translate exch sub Mheight mul /Mheight exch def exch sub Mwidth mul /Mwidth exch def } bind def /MathSubStart { Momatrix Mgmatrix Mtmatrix Mwidth Mheight 7 -2 roll moveto Mtmatrix setmatrix currentpoint Mgmatrix setmatrix 9 -2 roll moveto Mtmatrix setmatrix currentpoint 2 copy translate /Mtmatrix matrix currentmatrix def 3 -1 roll exch sub /Mheight exch def sub /Mwidth exch def } bind def /MathSubEnd { /Mheight exch def /Mwidth exch def /Mtmatrix exch def dup setmatrix /Mgmatrix exch def /Momatrix exch def } bind def /Mdot { moveto 0 0 rlineto stroke } bind def /Mtetra { moveto lineto lineto lineto fill } bind def /Metetra { moveto lineto lineto lineto closepath gsave fill grestore 0 setgray stroke } bind def /Mistroke { flattenpath 0 0 0 { 4 2 roll pop pop } { 4 -1 roll 2 index sub dup mul 4 -1 roll 2 index sub dup mul add sqrt 4 -1 roll add 3 1 roll } { stop } { stop } pathforall pop pop currentpoint stroke moveto currentdash 3 -1 roll add setdash } bind def /Mfstroke { stroke currentdash pop 0 setdash } bind def /Mrotsboxa { gsave dup /Mrot exch def Mrotcheck Mtmatrix dup setmatrix 7 1 roll 4 index 4 index translate rotate 3 index -1 mul 3 index -1 mul translate /Mtmatrix matrix currentmatrix def grestore Msboxa 3 -1 roll /Mtmatrix exch def /Mrot 0 def } bind def /Msboxa { newpath 5 -1 roll Mvboxa pop Mboxout 6 -1 roll 5 -1 roll 4 -1 roll Msboxa1 5 -3 roll Msboxa1 Mboxrot [ 7 -2 roll 2 copy [ 3 1 roll 10 -1 roll 9 -1 roll ] 6 1 roll 5 -2 roll ] } bind def /Msboxa1 { sub 2 div dup 2 index 1 add mul 3 -1 roll -1 add 3 -1 roll mul } bind def /Mvboxa { Mfixwid { Mvboxa1 } { dup Mwidthcal 0 exch { add } forall exch Mvboxa1 4 index 7 -1 roll add 4 -1 roll pop 3 1 roll } ifelse } bind def /Mvboxa1 { gsave newpath [ true 3 -1 roll { Mbbox 5 -1 roll { 0 5 1 roll } { 7 -1 roll exch sub (m) stringwidth pop .3 mul sub 7 1 roll 6 -1 roll 4 -1 roll Mmin 3 -1 roll 5 index add 5 -1 roll 4 -1 roll Mmax 4 -1 roll } ifelse false } forall { stop } if counttomark 1 add 4 roll ] grestore } bind def /Mbbox { 1 dict begin 0 0 moveto /temp (T) def { gsave currentpoint newpath moveto temp 0 3 -1 roll put temp false charpath flattenpath currentpoint pathbbox grestore moveto lineto moveto} forall pathbbox newpath end } bind def /Mmin { 2 copy gt { exch } if pop } bind def /Mmax { 2 copy lt { exch } if pop } bind def /Mrotshowa { dup /Mrot exch def Mrotcheck Mtmatrix dup setmatrix 7 1 roll 4 index 4 index translate rotate 3 index -1 mul 3 index -1 mul translate /Mtmatrix matrix currentmatrix def Mgmatrix setmatrix Mshowa /Mtmatrix exch def /Mrot 0 def } bind def /Mshowa { 4 -2 roll moveto 2 index Mtmatrix setmatrix Mvboxa 7 1 roll Mboxout 6 -1 roll 5 -1 roll 4 -1 roll Mshowa1 4 1 roll Mshowa1 rmoveto currentpoint Mfixwid { Mshowax } { Mshoway } ifelse pop pop pop pop Mgmatrix setmatrix } bind def /Mshowax { 0 1 4 index length -1 add { 2 index 4 index 2 index get 3 index add moveto 4 index exch get Mfixdash { Mfixdashp } if show } for } bind def /Mfixdashp { dup length 1 gt 1 index true exch { 45 eq and } forall and { gsave (--) stringwidth pop (-) stringwidth pop sub 2 div 0 rmoveto dup length 1 sub { (-) show } repeat grestore } if } bind def /Mshoway { 3 index Mwidthcal 5 1 roll 0 1 4 index length -1 add { 2 index 4 index 2 index get 3 index add moveto 4 index exch get [ 6 index aload length 2 add -1 roll { pop Strform stringwidth pop neg exch add 0 rmoveto } exch kshow cleartomark } for pop } bind def /Mwidthcal { [ exch { Mwidthcal1 } forall ] [ exch dup Maxlen -1 add 0 1 3 -1 roll { [ exch 2 index { 1 index Mget exch } forall pop Maxget exch } for pop ] Mreva } bind def /Mreva { [ exch aload length -1 1 {1 roll} for ] } bind def /Mget { 1 index length -1 add 1 index ge { get } { pop pop 0 } ifelse } bind def /Maxlen { [ exch { length } forall Maxget } bind def /Maxget { counttomark -1 add 1 1 3 -1 roll { pop Mmax } for exch pop } bind def /Mwidthcal1 { [ exch { Strform stringwidth pop } forall ] } bind def /Strform { /tem (x) def tem 0 3 -1 roll put tem } bind def /Mshowa1 { 2 copy add 4 1 roll sub mul sub -2 div } bind def /MathScale { Mwidth Mheight Mlp translate scale /yscale exch def /ybias exch def /xscale exch def /xbias exch def /Momatrix xscale yscale matrix scale xbias ybias matrix translate matrix concatmatrix def /Mgmatrix matrix currentmatrix def } bind def /Mlp { 3 copy Mlpfirst { Mnodistort { Mmin dup } if 4 index 2 index 2 index Mlprun 11 index 11 -1 roll 10 -4 roll Mlp1 8 index 9 -5 roll Mlp1 4 -1 roll and { exit } if 3 -1 roll pop pop } loop exch 3 1 roll 7 -3 roll pop pop pop } bind def /Mlpfirst { 3 -1 roll dup length 2 copy -2 add get aload pop pop pop 4 -2 roll -1 add get aload pop pop pop 6 -1 roll 3 -1 roll 5 -1 roll sub div 4 1 roll exch sub div } bind def /Mlprun { 2 copy 4 index 0 get dup 4 1 roll Mlprun1 3 copy 8 -2 roll 9 -1 roll { 3 copy Mlprun1 3 copy 11 -3 roll /gt Mlpminmax 8 3 roll 11 -3 roll /lt Mlpminmax 8 3 roll } forall pop pop pop pop 3 1 roll pop pop aload pop 5 -1 roll aload pop exch 6 -1 roll Mlprun2 8 2 roll 4 -1 roll Mlprun2 6 2 roll 3 -1 roll Mlprun2 4 2 roll exch Mlprun2 6 2 roll } bind def /Mlprun1 { aload pop exch 6 -1 roll 5 -1 roll mul add 4 -2 roll mul 3 -1 roll add } bind def /Mlprun2 { 2 copy add 2 div 3 1 roll exch sub } bind def /Mlpminmax { cvx 2 index 6 index 2 index exec { 7 -3 roll 4 -1 roll } if 1 index 5 index 3 -1 roll exec { 4 1 roll pop 5 -1 roll aload pop pop 4 -1 roll aload pop [ 8 -2 roll pop 5 -2 roll pop 6 -2 roll pop 5 -1 roll ] 4 1 roll pop } { pop pop pop } ifelse } bind def /Mlp1 { 5 index 3 index sub 5 index 2 index mul 1 index le 1 index 0 le or dup not { 1 index 3 index div .99999 mul 8 -1 roll pop 7 1 roll } if 8 -1 roll 2 div 7 -2 roll pop sub 5 index 6 -3 roll pop pop mul sub exch } bind def /intop 0 def /inrht 0 def /inflag 0 def /outflag 0 def /xadrht 0 def /xadlft 0 def /yadtop 0 def /yadbot 0 def /Minner { outflag 1 eq { /outflag 0 def /intop 0 def /inrht 0 def } if 5 index gsave Mtmatrix setmatrix Mvboxa pop grestore 3 -1 roll pop dup intop gt { /intop exch def } { pop } ifelse dup inrht gt { /inrht exch def } { pop } ifelse pop /inflag 1 def } bind def /Mouter { /xadrht 0 def /xadlft 0 def /yadtop 0 def /yadbot 0 def inflag 1 eq { dup 0 lt { dup intop mul neg /yadtop exch def } if dup 0 gt { dup intop mul /yadbot exch def } if pop dup 0 lt { dup inrht mul neg /xadrht exch def } if dup 0 gt { dup inrht mul /xadlft exch def } if pop /outflag 1 def } { pop pop} ifelse /inflag 0 def /inrht 0 def /intop 0 def } bind def /Mboxout { outflag 1 eq { 4 -1 roll xadlft leadjust add sub 4 1 roll 3 -1 roll yadbot leadjust add sub 3 1 roll exch xadrht leadjust add add exch yadtop leadjust add add /outflag 0 def /xadlft 0 def /yadbot 0 def /xadrht 0 def /yadtop 0 def } if } bind def /leadjust { (m) stringwidth pop .5 mul } bind def /Mrotcheck { dup 90 eq { yadbot /yadbot xadrht def /xadrht yadtop def /yadtop xadlft def /xadlft exch def } if dup cos 1 index sin Checkaux dup cos 1 index sin neg exch Checkaux 3 1 roll pop pop } bind def /Checkaux { 4 index exch 4 index mul 3 1 roll mul add 4 1 roll } bind def /Mboxrot { Mrot 90 eq { brotaux 4 2 roll } if Mrot 180 eq { 4 2 roll brotaux 4 2 roll brotaux } if Mrot 270 eq { 4 2 roll brotaux } if } bind def /brotaux { neg exch neg } bind def /Mabsproc { 0 matrix defaultmatrix dtransform idtransform dup mul exch dup mul add sqrt } bind def /Mabswid { Mabsproc setlinewidth } bind def /Mabsdash { exch [ exch { Mabsproc } forall ] exch setdash } bind def /MBeginOrig { Momatrix concat} bind def /MEndOrig { Mgmatrix setmatrix} bind def /sampledsound where { pop} { /sampledsound { exch pop exch 5 1 roll mul 4 idiv mul 2 idiv exch pop exch /Mtempproc exch def { Mtempproc pop} repeat } bind def } ifelse /g { setgray} bind def /k { setcmykcolor} bind def /m { moveto} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /P { grestore} bind def /s { stroke} bind def /setcmykcolor where { pop} { /setcmykcolor { 4 1 roll [ 4 1 roll ] { 1 index sub 1 sub neg dup 0 lt { pop 0 } if dup 1 gt { pop 1 } if exch } forall pop setrgbcolor } bind def } ifelse /Mcharproc { currentfile (x) readhexstring pop 0 get exch div } bind def /Mshadeproc { dup 3 1 roll { dup Mcharproc 3 1 roll } repeat 1 eq { setgray } { 3 eq { setrgbcolor } { setcmykcolor } ifelse } ifelse } bind def /Mrectproc { 3 index 2 index moveto 2 index 3 -1 roll lineto dup 3 1 roll lineto lineto fill } bind def /Mcolorimage { 7 1 roll pop pop matrix invertmatrix concat 2 exch exp 1 sub 3 1 roll 1 1 2 index { 1 1 4 index { dup 1 sub exch 2 index dup 1 sub exch 7 index 9 index Mshadeproc Mrectproc } for pop } for pop pop pop pop } bind def /Mimage { pop matrix invertmatrix concat 2 exch exp 1 sub 3 1 roll 1 1 2 index { 1 1 4 index { dup 1 sub exch 2 index dup 1 sub exch 7 index Mcharproc setgray Mrectproc } for pop } for pop pop pop } bind def MathPictureStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.47619 0.0113379 0.47619 [ [ -0.001 -0.001 0 0 ] [ 1.001 .47719 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash 0 g p p .002 w 0 0 m 1 0 L s P p .002 w 0 0 m 0 .47619 L s P P p p .002 w 0 .47619 m 1 .47619 L s P p .002 w 1 0 m 1 .47619 L s P P p P 0 0 m 1 0 L 1 .47619 L 0 .47619 L closepath clip newpath p p % Start of sub-graphic p 0.0238095 0.0113379 0.477324 0.464853 MathSubStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.176471 0.0588235 0 0.666667 [ [(0)] .17647 0 0 2 Msboxa [(1)] .23529 0 0 2 Msboxa [(2)] .29412 0 0 2 Msboxa [(3)] .35294 0 0 2 Msboxa [(4)] .41176 0 0 2 Msboxa [(5)] .47059 0 0 2 Msboxa [(6)] .52941 0 0 2 Msboxa [(7)] .58824 0 0 2 Msboxa [(8)] .64706 0 0 2 Msboxa [(9)] .70588 0 0 2 Msboxa [(10)] .76471 0 0 2 Msboxa [(k)] 1.025 0 -1 0 Msboxa [(1)] .16397 .66667 1 0 Msboxa [(d[k])] .17647 1 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 1.001 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash p p .002 w .17647 0 m .17647 .00625 L s P [(0)] .17647 0 0 2 Mshowa p .002 w .23529 0 m .23529 .00625 L s P [(1)] .23529 0 0 2 Mshowa p .002 w .29412 0 m .29412 .00625 L s P [(2)] .29412 0 0 2 Mshowa p .002 w .35294 0 m .35294 .00625 L s P [(3)] .35294 0 0 2 Mshowa p .002 w .41176 0 m .41176 .00625 L s P [(4)] .41176 0 0 2 Mshowa p .002 w .47059 0 m .47059 .00625 L s P [(5)] .47059 0 0 2 Mshowa p .002 w .52941 0 m .52941 .00625 L s P [(6)] .52941 0 0 2 Mshowa p .002 w .58824 0 m .58824 .00625 L s P [(7)] .58824 0 0 2 Mshowa p .002 w .64706 0 m .64706 .00625 L s P [(8)] .64706 0 0 2 Mshowa p .002 w .70588 0 m .70588 .00625 L s P [(9)] .70588 0 0 2 Mshowa p .002 w .76471 0 m .76471 .00625 L s P [(10)] .76471 0 0 2 Mshowa [(k)] 1.025 0 -1 0 Mshowa p .002 w 0 0 m 1 0 L s P p .002 w .17647 .66667 m .18272 .66667 L s P [(1)] .16397 .66667 1 0 Mshowa [(d[k])] .17647 1 0 -4 Mshowa p .002 w .17647 0 m .17647 1 L s P P 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath p p p .025 w .05882 0 Mdot .11765 0 Mdot .17647 .66667 Mdot .23529 0 Mdot .29412 0 Mdot .35294 0 Mdot .41176 0 Mdot .47059 0 Mdot .52941 0 Mdot .58824 0 Mdot .64706 0 Mdot .70588 0 Mdot .76471 .66667 Mdot .82353 0 Mdot .88235 0 Mdot .94118 0 Mdot P P .004 w .17647 0 m .17647 .66667 L s .76471 0 m .76471 .66667 L s P MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.522676 0.0113379 0.97619 0.464853 MathSubStart /Courier findfont 10 scalefont setfont % Scaling calculations 0.0833333 0.0833333 0 0.666667 [ [(0)] .16667 0 0 2 Msboxa [(1)] .25 0 0 2 Msboxa [(2)] .33333 0 0 2 Msboxa [(3)] .41667 0 0 2 Msboxa [(4)] .5 0 0 2 Msboxa [(5)] .58333 0 0 2 Msboxa [(6)] .66667 0 0 2 Msboxa [(7)] .75 0 0 2 Msboxa [(8)] .83333 0 0 2 Msboxa [(9)] .91667 0 0 2 Msboxa [(j)] 1.025 0 -1 0 Msboxa [(1)] .15417 .66667 1 0 Msboxa [(D[j])] .16667 1 0 -4 Msboxa [ -0.001 -0.001 0 0 ] [ 1.001 1.001 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath [ ] 0 setdash p p .002 w .16667 0 m .16667 .00625 L s P [(0)] .16667 0 0 2 Mshowa p .002 w .25 0 m .25 .00625 L s P [(1)] .25 0 0 2 Mshowa p .002 w .33333 0 m .33333 .00625 L s P [(2)] .33333 0 0 2 Mshowa p .002 w .41667 0 m .41667 .00625 L s P [(3)] .41667 0 0 2 Mshowa p .002 w .5 0 m .5 .00625 L s P [(4)] .5 0 0 2 Mshowa p .002 w .58333 0 m .58333 .00625 L s P [(5)] .58333 0 0 2 Mshowa p .002 w .66667 0 m .66667 .00625 L s P [(6)] .66667 0 0 2 Mshowa p .002 w .75 0 m .75 .00625 L s P [(7)] .75 0 0 2 Mshowa p .002 w .83333 0 m .83333 .00625 L s P [(8)] .83333 0 0 2 Mshowa p .002 w .91667 0 m .91667 .00625 L s P [(9)] .91667 0 0 2 Mshowa [(j)] 1.025 0 -1 0 Mshowa p .002 w 0 0 m 1 0 L s P p .002 w .16667 .66667 m .17292 .66667 L s P [(1)] .15417 .66667 1 0 Mshowa [(D[j])] .16667 1 0 -4 Mshowa p .002 w .16667 0 m .16667 1 L s P P 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath p p p .025 w .16667 .66667 Mdot .25 .66667 Mdot .33333 .66667 Mdot .41667 .66667 Mdot .5 .66667 Mdot .58333 .66667 Mdot .66667 .66667 Mdot .75 .66667 Mdot .83333 .66667 Mdot .91667 .66667 Mdot P P .004 w .16667 0 m .16667 .66667 L s .25 0 m .25 .66667 L s .33333 0 m .33333 .66667 L s .41667 0 m .41667 .66667 L s .5 0 m .5 .66667 L s .58333 0 m .58333 .66667 L s .66667 0 m .66667 .66667 L s .75 0 m .75 .66667 L s .83333 0 m .83333 .66667 L s .91667 0 m .91667 .66667 L s P MathSubEnd P % End of sub-graphic P P % End of Graphics MathPictureEnd end showpage %%EndDocument endTexFig 532 2162 a Fl(Figure)j(8)p Ft(:)i(A)16 b(plot)g(of)h Fs(\016)r Ft([)p Fs(k)r Ft(],)d(and)j(its)f(DFT)h(\001[)p Fs(j)s Ft(].)35 2337 y(T)l(o)h(mak)o(e)e(notation)i(simpler,)d (throughout)k(the)e(rest)g(of)h(this)f(section)g(w)o(e)g(denote)g Fs(e)1627 2319 y Fn(2)p Fp(\031)q(i=)n(N)1743 2337 y Ft(=)f Fs(W)1843 2344 y Fp(N)1894 2337 y Ft(and)35 2399 y(obtain:)486 2521 y Fs(F)7 b Ft([)p Fs(j)s Ft(])40 b(=)695 2467 y Fp(N)t Fi(\000)p Fn(1)704 2479 y Fo(X)701 2571 y Fp(k)q Fn(=0)780 2521 y Fs(f)5 b Ft([)p Fs(k)r Ft(]\()p Fs(W)929 2528 y Fp(N)962 2521 y Ft(\))981 2500 y Fi(\000)p Fp(k)q(j)1201 2521 y Ft(0)15 b Fm(\024)e Fs(j)k Fm(\024)d Fs(N)i Fm(\000)11 b Ft(1)375 b(\(13\))491 2673 y Fs(f)5 b Ft([)p Fs(k)r Ft(])41 b(=)710 2639 y(1)p 700 2661 45 2 v 700 2707 a Fs(N)758 2619 y Fp(N)t Fi(\000)p Fn(1)766 2631 y Fo(X)766 2723 y Fp(j)r Fn(=0)843 2673 y Fs(F)7 b Ft([)p Fs(j)s Ft(]\()p Fs(W)998 2680 y Fp(N)1030 2673 y Ft(\))1049 2652 y Fp(k)q(j)1208 2673 y Ft(0)14 b Fm(\024)g Fs(k)i Fm(\024)d Fs(N)k Fm(\000)11 b Ft(1)364 b(\(14\))980 2841 y(11)p eop %%Page: 12 12 12 11 bop 35 -68 a Fs(W)81 -61 y Fp(N)132 -68 y Ft(is)17 b(called)e(the)i Fv(princip)n(al)h Fs(N)652 -86 y Fp(th)705 -68 y Fv(r)n(o)n(ot)f(of)g(unity)h Ft(since)e(\()p Fs(W)1173 -61 y Fp(N)1206 -68 y Ft(\))1225 -86 y Fp(N)1274 -68 y Ft(=)e Fs(e)1349 -86 y Fn(2)p Fp(\031)q(i)1417 -68 y Ft(=)h Fs(cos)p Ft(\(2)p Fs(\031)r Ft(\))c(+)h Fs(isin)p Ft(\(2)p Fs(\031)r Ft(\))i(=)h(1.)35 -6 y(Similarly)l(,)e(\()p Fs(W)317 1 y Fp(N)351 -6 y Ft(\))370 -24 y Fp(k)391 -6 y Ft(,)j(where)g(0)e Fm(\024)g Fs(k)i Fm(\024)d Fs(N)j Fm(\000)11 b Ft(1)17 b(are)f(all)g(the)g Fs(N)21 b Ft(distinct)16 b(complex)e(ro)q(ots)j(of)g(unit)o(y)l(.)35 159 y Fb(6.2)67 b(DFT)22 b(Prop)r(erties)35 277 y Ft(Before)15 b(pro)o(viding)h(the)f (prop)q(erties)h(of)g(the)g(DFT,)g(some)f(subtleties)f(that)j(arise)e (from)g(the)h(p)q(erio)q(dicit)o(y)35 339 y(of)h(the)f(sequences,)f(m)o (ust)g(b)q(e)h(addressed.)35 425 y(First,)f(w)o(e)h(m)o(ust)e(remem)o (b)q(er)f(that)j(an)o(y)g(sequence)e(w)o(e)i(are)g(dealing)f(with)h(in) g(the)f(con)o(text)g(of)i(the)e(DFT)35 487 y(is)g(p)q(erio)q(dic,)e (with)i(some)e(in)o(teger)g(p)q(erio)q(dicit)o(y)g Fs(N)5 b Ft(.)21 b(Giv)o(en)13 b(a)i(\014nite)f(\(non-p)q(erio)q(dic\))g (discrete)g(sequence)35 549 y Fs(x)p Ft([)p Fs(k)r Ft(])h(of)i(length)e Fs(n)p Ft(,)h(\(i.e.)k(0)14 b Fm(\024)g Fs(k)i Fm(\024)d Fs(n)e Fm(\000)f Ft(1\),)16 b(to)h(whic)o(h)e(w)o(e)g(w)o(an)o(t)h(to)h (apply)f(the)f(F)l(ourier)h(transform,)f(w)o(e)35 612 y(regard)i(it)e(as)i(though)g(it)e(is)h(p)q(erio)q(dic)g(with)f(p)q (erio)q(dicit)o(y)g Fs(N)k Ft(=)14 b Fs(n)p Ft(.)21 b(Th)o(us,)16 b(w)o(e)f(e\013ectiv)o(ely)f(de\014ne)h(a)h(new)35 674 y(sequence,)f Fs(y)r Ft([)p Fs(m)p Ft(])g(for)h Fv(al)r(l)i Ft(in)o(teger)d Fs(m)p Ft(:)724 656 y Fn(4)436 764 y Fs(y)r Ft([)p Fs(m)p Ft(])e(=)g Fs(x)p Ft([)p Fs(m)g Ft(mo)q(d)g Fs(n)p Ft(])44 b(where)g Fs(m)14 b Ft(mo)q(d)f Fs(n)h Ft(=)g Fs(m)d Fm(\000)f Fs(n)p Fm(b)p Fs(x=y)r Fm(c)35 853 y Ft(and)17 b(apply)f(the)g(DFT)h(to)g(one)f(p)q(erio)q(d)h (of)f Fs(y)r Ft([)p Fs(m)p Ft(].)35 939 y(Hence,)g(if)h(w)o(e)g(regard) h(an)o(y)g(sequence)e Fs(x)p Ft([)p Fs(k)r Ft(])h(\(and)h(its)f(DFT)h Fs(X)t Ft([)p Fs(j)s Ft(]\),)e(as)j(p)q(erio)q(dic)e(with)g(p)q(erio)q (d)h Fs(N)5 b Ft(,)18 b(the)35 1001 y Fv(shift)e Ft(of)g Fs(x)p Ft([)p Fs(k)r Ft(])f(b)o(y)g Fs(l)i Ft(is)e(in)o(terpreted)g (as:)21 b Fs(x)p Ft([)p Fs(k)12 b Ft(+)e Fs(l)q Ft(])j(=)h Fs(x)p Ft([\()p Fs(k)d Ft(+)g Fs(l)q Ft(\))i(mo)q(d)g Fs(N)5 b Ft(])16 b(and)g(is)g(called)f(a)h Fv(cir)n(cular)h(shift)p Ft(.)35 1063 y(The)g(same)e(con)o(v)o(en)o(tion)g(holds)h(for)h (shifting)f Fs(X)t Ft([)p Fs(j)s Ft(].)35 1149 y(Second,)24 b(when)e(applying)h(the)f(DFT)h(to)f(a)h(com)o(bination)e(of)i(t)o(w)o (o)f(p)q(erio)q(dic)g(sequences,)h Fs(x)1798 1156 y Fn(1)1817 1149 y Ft([)p Fs(k)r Ft(])f(and)35 1212 y Fs(x)63 1219 y Fn(2)83 1212 y Ft([)p Fs(m)p Ft(],)c(w)o(e)h(m)o(ust)e(accoun)o(t)i (for)h(the)e(p)q(erio)q(dicit)o(y)g(of)h(the)g(com)o(bination.)28 b(Since)19 b(the)f(DFT)i(is)f(de\014ned)35 1274 y(o)o(v)o(er)13 b(a)g(single)g(p)q(erio)q(d,)h(for)f(the)g(DFT)h(of)f(the)g(com)o (bination)f(to)h(b)q(e)h(w)o(ell)d(de\014ned,)j(it)e(m)o(ust)g(ha)o(v)o (e)g(a)i(single)35 1336 y(p)q(erio)q(dicit)o(y)l(.)24 b(There)18 b(are)f(three)g(forms)g(of)h(com)o(binations)e(w)o(e)h(ha)o (v)o(e)g(encoun)o(tered)g(in)g(the)h(con)o(tin)o(uous)35 1398 y(case,)g(namely)l(,)e Fv(line)n(ar)j(c)n(ombination)g Ft(\()p Fs(ax)823 1405 y Fn(1)854 1398 y Ft(+)13 b Fs(bx)954 1405 y Fn(2)973 1398 y Ft(\),)18 b Fv(multiplic)n(ation)h Fs(x)1360 1405 y Fn(1)1379 1398 y Fs(x)1407 1405 y Fn(2)1427 1398 y Ft(,)f(and)g Fv(c)n(onvolution)i Fs(x)1843 1405 y Fn(1)1874 1398 y Fm(\003)12 b Fs(x)1939 1405 y Fn(2)1959 1398 y Ft(.)35 1461 y(Both)19 b(linear)f(com)o(bination)e(and)j(m)o (ultiplication)d(for)i(the)g(con)o(tin)o(uous)h(case,)f(are)h (de\014ned)f(suc)o(h)g(that)35 1523 y Fs(x)63 1530 y Fn(1)83 1523 y Ft(\()p Fs(t)p Ft(\))c(is)g(paired)h(with)f(the)g (corresp)q(onding)i Fs(x)879 1530 y Fn(2)898 1523 y Ft(\()p Fs(t)p Ft(\).)k(Similarly)l(,)12 b(in)i(the)g(discrete)g(case)g(eac)o (h)g Fs(x)1756 1530 y Fn(1)1776 1523 y Ft([)p Fs(i)p Ft(])f(should)35 1585 y(b)q(e)j(com)o(bined)e(with)i(the)g(corresp)q (onding)h Fs(x)855 1592 y Fn(2)874 1585 y Ft([)p Fs(i)p Ft(].)j(Th)o(us)c Fs(x)1104 1592 y Fn(1)1140 1585 y Ft(and)g Fs(x)1262 1592 y Fn(2)1297 1585 y Ft(m)o(ust)f(b)q(e)h(of)g(the)g(same) f(p)q(erio)q(dicit)o(y)35 1647 y Fs(N)5 b Ft(,)20 b(and)f(the)g (resulting)f(sequence)g(is)g(of)h(p)q(erio)q(dicit)o(y)f Fs(N)5 b Ft(,)19 b(as)g(w)o(ell.)28 b(Ho)o(w)o(ev)o(er,)17 b(if)h(the)h(t)o(w)o(o)f(sequences)35 1710 y(are)k(of)f(t)o(w)o(o)h (di\013eren)o(t)e(p)q(erio)q(dicities,)h Fs(N)810 1717 y Fn(1)830 1710 y Fs(;)8 b(N)891 1717 y Fn(2)910 1710 y Ft(,)22 b(\(assume,)g(without)f(loss)h(of)g(generalit)o(y)l(,)f Fs(N)1779 1717 y Fn(1)1821 1710 y Fs(<)h(N)1920 1717 y Fn(2)1940 1710 y Ft(\),)35 1772 y(either)c(w)o(e)h(disallo)o(w)f (their)g(com)o(bination,)g(and)h(term)e(it)h(\\unde\014ned",)i(or)f(w)o (e)g(pad)g(the)f(sequence)g(of)35 1834 y(the)g(p)q(erio)q(dicit)o(y)f Fs(N)406 1841 y Fn(1)443 1834 y Ft(with)h(0's)g(at)g(the)g(end)g(of)g (eac)o(h)f(p)q(erio)q(d,)i(th)o(us)f(practically)e(con)o(v)o(erting)h (it)g(in)o(to)h(a)35 1897 y(sequence)g(of)h(p)q(erio)q(dicit)o(y)f Fs(N)584 1904 y Fn(2)604 1897 y Ft(,)h(and)g(therefore)g(the)f(com)o (bination)g(is)g(w)o(ell)g(de\014ned.)29 b(Whether)18 b(the)h(0)35 1959 y(padding)f(is)f(reasonable)g(or)g(not)g(dep)q(ends)g (mostly)f(on)h(the)f(application.)23 b(Suc)o(h)16 b(padding)i(is)f (used,)f(for)35 2021 y(instance,)g(for)g(supp)q(orting)i(the)e(F)l(ast) h(F)l(ourier)e(T)l(ransform.)35 2107 y(The)h(last)h(kind)e(of)i(com)o (bination)d(that)j(needs)e(to)i(b)q(e)f(addressed)g(is)g(the)g(con)o(v) o(olution.)k(W)l(e)c(recall)f(that)35 2169 y(one)j(of)g(the)f(imp)q (ortan)o(t)g(prop)q(erties)h(of)g(the)f(con)o(tin)o(uous)g(transform)h (is)f(the)g(dualit)o(y)g(b)q(et)o(w)o(een)g(con)o(v)o(o-)35 2232 y(lution)g(in)f(the)h(time)e(domain)g(and)j(m)o(ultipli)o(cation)c (in)j(the)f(frequency)g(domain,)f(and)j(vice)d(v)o(ersa.)23 b(W)l(e)35 2294 y(w)o(an)o(t)12 b(to)g(retain)f(this)h(prop)q(ert)o(y)f (in)h(the)f(discrete)g(case.)19 b(Th)o(us,)13 b(giv)o(en)d(t)o(w)o(o)i (p)q(erio)q(dic)f(discrete)g(sequences,)35 2356 y Fs(x)63 2363 y Fn(1)83 2356 y Fs(;)d(x)133 2363 y Fn(2)152 2356 y Ft(,)14 b(of)g(p)q(erio)q(dicit)o(y)462 2338 y Fn(5)481 2356 y Fs(N)5 b Ft(,)14 b(with)f(resp)q(ectiv)o(e)g(DFTs)h Fs(X)1063 2363 y Fn(1)1083 2356 y Ft([)p Fs(j)s Ft(])p Fs(;)8 b(X)1196 2363 y Fn(2)1215 2356 y Ft([)p Fs(j)s Ft(],)13 b(w)o(e)h(w)o(an)o(t)g(their)f(con)o(v)o(olution)g(result)35 2418 y Fs(x)63 2425 y Fn(3)99 2418 y Ft(to)k(ha)o(v)o(e)e(DFT)i Fs(X)432 2425 y Fn(3)466 2418 y Ft(=)d Fs(X)558 2425 y Fn(1)578 2418 y Fs(X)618 2425 y Fn(2)638 2418 y Ft(.)21 b(By)16 b(de\014ning)g(the)g Fv(cir)n(cular)h(c)n(onvolution)h Ft(of)f Fs(x)1539 2425 y Fn(1)1558 2418 y Fs(;)8 b(x)1608 2425 y Fn(2)1644 2418 y Ft(to)16 b(b)q(e:)615 2540 y Fs(x)643 2547 y Fn(3)662 2540 y Ft([)p Fs(k)r Ft(])d(=)782 2486 y Fp(N)t Fi(\000)p Fn(1)791 2499 y Fo(X)782 2589 y Fp(m)p Fn(=0)867 2540 y Fs(x)895 2547 y Fn(1)915 2540 y Ft([)p Fs(m)p Ft(])p Fs(x)1014 2547 y Fn(2)1032 2540 y Ft([\()p Fs(k)f Fm(\000)f Fs(m)p Ft(\))j(mo)q(d)f Fs(N)5 b Ft(])493 b(\(15\))p 35 2621 775 2 v 92 2652 a Ff(4)110 2667 y Fr(See)15 b([GKP91)o(])e(for)h(details)g(on)f(the)k(mo)q(d)e(op) q(eration.)92 2701 y Ff(5)110 2717 y Fr(The)f(p)q(erio)q(d)h(m)o(ust)e (b)q(e)h(the)h(same)e(in)g(order)i(for)e(the)i(\(dual\))e(m)o (ultiplication)e(to)i(b)q(e)i(w)o(ell)e(de\014ned.)980 2841 y Ft(12)p eop %%Page: 13 13 13 12 bop 35 -68 a Ft(w)o(e)12 b(obtain)g(the)g(desired)f(corresp)q (ondence)h([OS75].)19 b(As)12 b(an)g(example)e(of)i(circular)f(con)o(v) o(olution)g(consider)35 -6 y(the)16 b(t)o(w)o(o)h(p)q(erio)q(dic)f (sequences,)e(with)j Fs(N)i Ft(=)13 b(3:)338 106 y Fs(<)h(a)416 113 y Fn(0)435 106 y Fs(;)8 b(a)483 113 y Fn(1)502 106 y Fs(;)g(a)550 113 y Fn(2)570 106 y Fs(;)g(a)618 113 y Fn(0)637 106 y Fs(;)g(a)685 113 y Fn(1)704 106 y Fs(;)g(a)752 113 y Fn(2)771 106 y Fs(;)g(a)819 113 y Fn(0)838 106 y Fs(:::)13 b(>)47 b Ft(and)33 b Fs(<)14 b(b)1162 113 y Fp(0)1182 106 y Fs(;)8 b(b)1225 113 y Fp(1)1244 106 y Fs(;)g(b)1287 113 y Fp(2)1306 106 y Fs(;)g(b)1349 113 y Fp(0)1369 106 y Fs(;)g(b)1412 113 y Fp(1)1431 106 y Fs(;)g(b)1474 113 y Fp(2)1493 106 y Fs(;)g(b)1536 113 y Fp(0)1556 106 y Fs(;)g(:::)k(>)35 218 y Ft(Their)k(circular)f(con)o (v)o(olution)h(is)g(the)g(sequence:)342 330 y Fs(<)e(a)420 337 y Fn(0)439 330 y Fs(b)460 337 y Fn(0)491 330 y Ft(+)d Fs(a)566 337 y Fn(1)585 330 y Fs(b)606 337 y Fn(2)636 330 y Ft(+)g Fs(a)711 337 y Fn(2)731 330 y Fs(b)752 337 y Fn(1)771 330 y Fs(;)30 b(a)841 337 y Fn(0)861 330 y Fs(b)882 337 y Fn(1)912 330 y Ft(+)11 b Fs(a)987 337 y Fn(1)1006 330 y Fs(b)1027 337 y Fn(0)1058 330 y Ft(+)g Fs(a)1133 337 y Fn(2)1152 330 y Fs(b)1173 337 y Fn(2)1193 330 y Fs(;)30 b(a)1263 337 y Fn(0)1282 330 y Fs(b)1303 337 y Fn(2)1334 330 y Ft(+)11 b Fs(a)1409 337 y Fn(1)1428 330 y Fs(b)1449 337 y Fn(1)1479 330 y Ft(+)g Fs(a)1554 337 y Fn(2)1574 330 y Fs(b)1595 337 y Fn(0)1628 330 y Fs(>)35 442 y Ft(whic)o(h)i(is)g(also)h(regarded)f(as)h(a)g(discrete)e (p)q(erio)q(dic)h(sequence)f(with)h Fs(N)19 b Ft(=)14 b(3,)g(b)o(y)f(rep)q(eatedly)f(duplicating)35 505 y(these)17 b(3)h(elemen)o(ts,)d(while)h(preserving)h(the)g(ab)q(o)o(v)o(e)g (order.)25 b(Th)o(us,)17 b(the)g(circular)g(con)o(v)o(olution)f(maps)h (a)35 567 y(pair)g(of)g(sequences)f(of)h(p)q(erio)q(dicit)o(y)f Fs(N)22 b Ft(to)17 b(a)g(third)g(sequence)f(of)h(the)f(same)g(p)q(erio) q(dicit)o(y)l(.)22 b(\(W)l(e)16 b(extend)35 629 y(the)c(de\014nition)f (to)h(non-p)q(erio)q(dic)g(sequences)f(of)g(the)h(same)e(length)i Fs(N)5 b Ft(,)12 b(b)o(y)f(regarding)h(them)e(as)i(p)q(erio)q(dic,)35 691 y(as)17 b(de\014ned)f(earlier)f(in)h(this)g(section\).)35 777 y(T)l(able)h(4)f(lists)g(the)g(discrete)f(coun)o(terparts)i(of)f (the)g(prop)q(erties)h(giv)o(en)e(in)h(T)l(able)g(3)h(for)g(the)f(con)o (tin)o(uous)35 840 y(case.)22 b(W)l(e)16 b(assume)f(that)i(w)o(e)f(are) g(dealing)g(only)g(with)g(w)o(ell)f(de\014ned)h(com)o(binations.)p 174 909 1660 2 v 287 951 a Fl(Prop)r(ert)n(y)313 b Fk(f)6 b Fl([)p Fk(k)q Fl(])581 b Fk(F)8 b Fl([)p Fk(j)s Fl(])p 174 971 V 199 1013 a Ft(1.)50 b(Linearit)o(y)340 b Fs(af)871 1020 y Fn(1)891 1013 y Ft([)p Fs(k)r Ft(])10 b(+)h Fs(bf)1050 1020 y Fn(2)1069 1013 y Ft([)p Fs(k)r Ft(])375 b Fs(aF)1557 1020 y Fn(1)1576 1013 y Ft([)p Fs(j)s Ft(])11 b(+)g Fs(bF)1740 1020 y Fn(2)1759 1013 y Ft([)p Fs(j)s Ft(])199 1073 y(2.)50 b(Con)o(v)o(olution)546 1055 y Fn(6)582 1073 y Ft(Theorem)e Fs(f)845 1080 y Fn(1)865 1073 y Ft([)p Fs(k)r Ft(])10 b Fm(\003)h Fs(f)990 1080 y Fn(2)1010 1073 y Ft([)p Fs(k)r Ft(])434 b Fs(F)1531 1080 y Fn(1)1551 1073 y Ft([)p Fs(j)s Ft(])p Fs(F)1634 1080 y Fn(2)1652 1073 y Ft([)p Fs(j)s Ft(])199 1133 y(3.)50 b(Pro)q(duct)17 b(Theorem)154 b Fs(f)845 1140 y Fn(1)865 1133 y Ft([)p Fs(k)r Ft(])p Fs(f)944 1140 y Fn(2)963 1133 y Ft([)p Fs(k)r Ft(])481 b Fs(F)1531 1140 y Fn(1)1551 1133 y Ft([)p Fs(j)s Ft(])10 b Fm(\003)h Fs(F)1680 1140 y Fn(2)1699 1133 y Ft([)p Fs(j)s Ft(])1750 1115 y Fn(6)199 1198 y Ft(4.)50 b(Time)14 b(Shifting)581 1180 y Fn(7)821 1198 y Fs(f)5 b Ft([)p Fs(k)13 b Fm(\000)e Fs(k)977 1205 y Fn(0)997 1198 y Ft(])488 b Fs(F)7 b Ft([)p Fs(j)s Ft(])p Fs(W)1642 1174 y Fi(\000)p Fp(j)r(k)1703 1179 y Fg(0)1635 1210 y Fp(N)199 1263 y Ft(5.)50 b(F)l(requency)15 b(Shifting)688 1245 y Fn(7)821 1263 y Fs(f)5 b Ft([)p Fs(k)r Ft(])p Fs(W)958 1239 y Fp(k)q(j)991 1244 y Fg(0)951 1275 y Fp(N)1499 1263 y Fs(F)i Ft([)p Fs(j)13 b Fm(\000)e Fs(j)1655 1270 y Fn(0)1675 1263 y Ft(])199 1324 y(7.)50 b(P)o(arsev)m(al's)16 b(Theorem)821 1291 y Fo(P)865 1304 y Fp(N)t Fi(\000)p Fn(1)865 1337 y Fp(k)q Fn(=0)952 1324 y Fm(j)p Fs(f)5 b Ft([)p Fs(k)r Ft(])p Fm(j)1064 1306 y Fn(2)1097 1324 y Ft(=)1160 1305 y Fn(1)p 1154 1313 32 2 v 1154 1341 a Fp(N)1198 1291 y Fo(P)1242 1304 y Fp(N)1242 1336 y(j)r Fn(=0)1314 1324 y Fm(j)p Fs(F)i Ft([)p Fs(j)s Ft(])p Fm(j)1432 1306 y Fn(2)p 174 1345 1660 2 v 355 1425 a Fl(T)-5 b(able)19 b(4)p Ft(:)j(Basic)15 b(Prop)q(erties)i(of)f(the)g(Discrete)f(F)l (ourier)h(T)l(ransform)35 1627 y Fb(6.3)67 b(The)22 b(F)-6 b(ast)22 b(F)-6 b(ourier)25 b(T)-6 b(ransform)35 1745 y Ft(One)16 b(of)g(the)g(most)f(app)q(ealing)i(asp)q(ects)g(of)f(the)f (DFT)i(is)f(the)f(existence)g(of)h(an)g(e\016cien)o(t)e(pro)q(cedure)i (for)35 1808 y(calculating)e(it,)g(using)h Fs(O)q Ft(\()p Fs(N)5 b(l)q(og)r(N)g Ft(\))16 b(complex)d(op)q(erations,)i(rather)g (than)g Fs(O)q Ft(\()p Fs(N)1508 1790 y Fn(2)1528 1808 y Ft(\))g(op)q(erations)h(required)35 1870 y(for)h(the)f(naiv)o(e)f (algorithm.)35 1956 y(The)k(algorithm)e(for)i(fast)g(DFT,)f(is)g(kno)o (wn)h(as)g(the)f Fv(FFT)g Ft(\(the)g(F)l(ast)h(F)l(ourier)e(T)l (ransform\).)28 b(It)18 b(tak)o(es)35 2018 y(adv)m(an)o(tage)f(of)f (symmetry)c(prop)q(erties)j(of)h(the)f(complex)f(ro)q(ots)i(of)g(unit)o (y)f(\(the)g Fs(W)1556 2025 y Fp(N)1590 2018 y Ft('s)g(w)o(e)g(ha)o(v)o (e)g(de\014ned)35 2080 y(earlier\),)j(and)h(uses)g(rep)q(eated)g(clev)o (er)d(partitioning)j(of)g(the)f(input)g(sequence)g(in)o(to)g(t)o(w)o(o) h(equally)e(long)35 2143 y(subsequences,)d(eac)o(h)g(of)h(whic)o(h)e (can)i(b)q(e)f(separately)g(\(and)h(quic)o(kly\))d(pro)q(cessed.)21 b(In)14 b(order)h(to)g(tak)o(e)e(full)35 2205 y(adv)m(an)o(tage)j(of)g (the)f(rep)q(etitiv)o(e)d(partitioning)j(in)o(to)g(equal)f(t)o(w)o(o)h (parts,)h(the)f(original)f(sequence)g(needs)h(to)35 2267 y(b)q(e)h(of)g(length)g(or)g(p)q(erio)q(dicit)o(y)e(whic)o(h)h(is)h(a)g (p)q(o)o(w)o(er)g(of)g(2.)21 b(If)16 b(it)f(is)g(not)i(originally)e (so,)h(it)f(is)g(padded)i(with)35 2329 y(0's)i({)f(as)h(men)o(tioned)c (earlier)i(in)h(Section)f(6.1.)27 b(The)18 b(full)f(details)h(of)g(the) g(algorithm)f(are)h(b)q(ey)o(ond)g(the)35 2392 y(scop)q(e)13 b(of)g(this)f(pap)q(er.)20 b(An)12 b(excellen)o(t)e(presen)o(tation)i (of)g(it,)g(including)g(the)g(fundamen)o(tal)f(mathematical)35 2454 y(bac)o(kground)18 b(can)e(b)q(e)h(found)g(in)f([Sa)o(v96].)22 b(Other)16 b(go)q(o)q(d)j(sources)e(for)f(discussion)h(of)g(the)f(FFT)h (and)g(its)35 2516 y(applications)g(are)f([CLR89)q(,)g(OS75)q(,)f(W)l (ea83)q(].)p 35 2563 775 2 v 92 2593 a Ff(6)110 2608 y Fr(Circular)f(con)o(v)o(olution)92 2643 y Ff(7)110 2658 y Fr(Circular)g(shift)980 2841 y Ft(13)p eop %%Page: 14 14 14 13 bop 35 -68 a Ft(The)24 b(FFT)g(algorithm)f(giv)o(es)g(rise)g(to)h (an)h(e\016cien)o(t)d(con)o(v)o(olution)h(algorithm,)h(due)g(to)g(the)f (dualit)o(y)35 -6 y(b)q(et)o(w)o(een)15 b(con)o(v)o(olution)h(in)f(the) h(time)e(domain)h(and)i(m)o(ultipli)o(cation)c(in)j(the)g(frequency)e (domain.)20 b(Con-)35 56 y(v)o(olution)f(can)h(b)q(e)f(implem)o(en)o (ted)d(b)o(y)j(applying)g(the)g(FFT)h(to)f(the)g(original)h(sequences,) f(m)o(ultiply)o(ing)35 119 y(the)g(results,)g(and)g(p)q(erforming)f (the)h(in)o(v)o(erse)e(FFT)h(to)h(obtain)h(the)e(results)h(of)g(the)g (con)o(v)o(olution.)28 b(W)l(e)35 181 y(should)18 b(note)f(that)h(in)e (man)o(y)g(real)g(applications)h(whic)o(h)g(require)e(con)o(v)o (olution,)h(\(suc)o(h)h(as)h(p)q(olynomial)35 243 y(m)o(ultiplication)i (or)j(\014ltering)f(of)g(signals\),)i(the)f(con)o(v)o(olution)f(is)g (not)h(circular,)g(it)f(do)q(es)h(not)g(regard)35 305 y(sequences)18 b(as)i(p)q(erio)q(dic,)e(and)i(do)q(es)f(not)h(require)d (the)i(sequences)e(to)j(b)q(e)e(of)i(the)e(same)g(length.)28 b(This)35 368 y(form)13 b(of)i(con)o(v)o(olution)e(is)h(kno)o(wn)g(as)h Fv(line)n(ar)g(c)n(onvolution)p Ft(.)22 b(Giv)o(en)13 b(2)i(sequences)e Fs(x)1554 375 y Fn(1)1573 368 y Fs(;)8 b(x)1623 375 y Fn(2)1657 368 y Ft(of)14 b(length)g Fs(M)r(;)8 b(N)35 430 y Ft(resp)q(ectiv)o(ely)l(,)14 b(their)h(linear)h(con)o(v)o (olution)f Fs(x)852 437 y Fn(3)888 430 y Ft(of)h(length)h Fs(M)f Ft(+)11 b Fs(N)16 b Fm(\000)11 b Ft(1)17 b(is)f(de\014ned)g(as:) 465 568 y Fs(x)493 575 y Fn(3)513 568 y Ft([)p Fs(k)r Ft(])d(=)661 514 y Fp(k)641 526 y Fo(X)633 617 y Fp(m)p Fn(=0)717 568 y Fs(x)745 575 y Fn(1)765 568 y Ft([)p Fs(m)p Ft(])p Fs(x)864 575 y Fn(2)882 568 y Ft([)p Fs(k)f Fm(\000)f Fs(m)p Ft(])77 b(0)14 b Fm(\024)g Fs(k)i(<)d(M)k Ft(+)11 b Fs(N)16 b Fm(\000)11 b Ft(1)35 705 y(where)16 b Fs(x)204 712 y Fn(1)224 705 y Ft([)p Fs(m)p Ft(])f(is)h(tak)o(en)g (to)g(b)q(e)h(0)f(for)h Fs(m)c(>)h(M)22 b Ft(and)17 b Fs(x)1033 712 y Fn(2)1052 705 y Ft([)p Fs(m)p Ft(])e(is)h(tak)o(en)g (as)h(0)f(for)h Fs(m)c(>)h(N)5 b Ft(.)35 791 y(F)l(or)17 b(example,)c(consider)j(the)g(t)o(w)o(o)g(sequences,)f(of)i(length)f(4) h(and)f(2,)h(resp)q(ectiv)o(ely:)646 896 y Fs(<)d(a)724 903 y Fn(0)743 896 y Fs(;)8 b(a)791 903 y Fn(1)810 896 y Fs(;)g(a)858 903 y Fn(2)878 896 y Fs(;)g(a)926 903 y Fn(3)959 896 y Fs(>)47 b Ft(and)33 b Fs(<)14 b(b)1228 903 y Fp(0)1248 896 y Fs(;)8 b(b)1291 903 y Fp(1)1324 896 y Fs(>)35 1002 y Ft(Their)16 b(linear)g(con)o(v)o(olution)f(is:)431 1107 y Fs(<)f(a)509 1114 y Fn(0)528 1107 y Fs(b)549 1114 y Fn(0)569 1107 y Fs(;)30 b(a)639 1114 y Fn(0)658 1107 y Fs(b)679 1114 y Fn(1)709 1107 y Ft(+)11 b Fs(a)784 1114 y Fn(1)804 1107 y Fs(b)825 1114 y Fn(0)844 1107 y Fs(;)30 b(a)914 1114 y Fn(1)933 1107 y Fs(b)954 1114 y Fn(1)985 1107 y Ft(+)11 b Fs(a)1060 1114 y Fn(2)1079 1107 y Fs(b)1100 1114 y Fn(0)1120 1107 y Fs(;)30 b(a)1190 1114 y Fn(2)1209 1107 y Fs(b)1230 1114 y Fn(1)1261 1107 y Ft(+)11 b Fs(a)1336 1114 y Fn(3)1355 1107 y Fs(b)1376 1114 y Fn(0)1395 1107 y Fs(;)30 b(a)1465 1114 y Fn(3)1485 1107 y Fs(b)1506 1114 y Fn(1)1539 1107 y Fs(>)35 1236 y Ft(This)23 b(sort)h(of)f(con)o(v)o(olution,)g(do)q(es)h(not)f (preserv)o(e)f(the)h(dualit)o(y)e(with)i(m)o(ultiplic)o(ation)e(b)q(et) o(w)o(een)h(the)35 1298 y(time/frequency)14 b(domains.)21 b(In)c(order)f(to)h(b)q(ene\014t)g(from)e(the)i(dualit)o(y)l(,)e(the)h (linear)g(con)o(v)o(olution)g(needs)35 1360 y(to)k(b)q(e)f(expressed)g (as)h(a)f(circular)f(one.)30 b(The)19 b(transformation)g(from)f(linear) h(to)g(circular)f(con)o(v)o(olution)35 1422 y(can)e(b)q(e)f(ac)o(hiev)o (ed)e(through)j(the)e(padding)i(of)f(the)g(t)o(w)o(o)g(sequences)f (with)h(0's)g(at)g(their)g(resp)q(ectiv)o(e)e(ends,)35 1485 y(th)o(us)18 b(making)f(them)g(b)q(oth)h(in)o(to)g(sequences)f(of) h(length)g Fs(M)g Ft(+)12 b Fs(N)17 b Fm(\000)12 b Ft(1.)27 b(The)18 b(resulting)f(sequences)g(are)35 1547 y(b)q(oth)g(regarded)e (as)h(p)q(erio)q(dic)f(with)h(p)q(erio)q(dicit)o(y)e Fs(M)g Ft(+)9 b Fs(N)15 b Fm(\000)9 b Ft(1,)15 b(and)h(their)f (circular)f(con)o(v)o(olution)h(is)g(the)35 1609 y(same)i(as)i(the)e (linear)g(con)o(v)o(olution)g(of)i(the)e(original)h(sequences.)25 b(More)17 b(detailed)g(description)g(of)i(this)35 1671 y(metho)q(d)d(can)g(b)q(e)h(found)g(in)e([OS75)q(,)h(T)l(AL89)q(].)35 1860 y Fu(7)81 b(Some)28 b(Applications)d(and)i(Conclusions)35 1996 y Ft(The)22 b(former)e(sections)h(pro)o(vided)g(an)h(in)o(tro)q (duction)f(to)h(the)f(F)l(ourier)g(transform.)36 b(The)21 b(motiv)m(ation)35 2058 y(b)q(ehind)15 b(it,)g(w)o(as)g(the)g(wide)f (use)h(of)g(the)g(transform)f(and)i(its)e(prop)q(erties)h(in)g(v)m (arious)g(and)h(div)o(erse)d(areas.)35 2120 y(In)g(what)h(follo)o(ws)g (w)o(e)f(demonstrate)f(sev)o(eral)g(distinct)h(w)o(a)o(ys)g(in)g(whic)o (h)g(the)g(transform)g(is)g(applied.)19 b(The)35 2182 y(examples)c(di\013er)h(in)g(the)g(use)g(of)g(DFT)h(prop)q(erties,)f (and)h(in)f(the)g(resulting)f(b)q(ene\014ts.)35 2349 y Fb(7.1)67 b(P)n(olynomial)24 b(Multiplicati)q(on)35 2467 y Ft(The)e(canonical)f(example)e(for)i(using)h(the)f(FFT)g(in)g (computer)f(science,)g(is)h(for)h(fast)g(m)o(ultipli)o(cation)35 2530 y(of)e(p)q(olynomials)e([CLR89)q(,)g(AHU74].)29 b(The)19 b(observ)m(ation)g(underlying)g(the)f(algorithm)g(is)h(that)g (when)35 2592 y(m)o(ultiplying)8 b(t)o(w)o(o)j(p)q(olynomials,)g Fs(P)689 2599 y Fn(1)720 2592 y Ft(and)h Fs(P)841 2599 y Fn(2)872 2592 y Ft(of)f(degrees)g Fs(N)6 b Fm(\000)p Ft(1)11 b(and)g Fs(M)6 b Fm(\000)p Ft(1)12 b(resp)q(ectiv)o(ely)l(,)d (the)h Fs(M)c Ft(+)p Fs(N)g Fm(\000)p Ft(1)35 2654 y(co)q(e\016cien)o (ts)15 b(of)h(the)g(resulting)f(p)q(olynomial)f Fs(Q)p Ft(,)i(are)f(the)h(result)f(of)h(con)o(v)o(olving)f(the)h(co)q (e\016cien)o(ts)e(of)i Fs(P)1952 2661 y Fn(1)35 2717 y Ft(and)h Fs(P)161 2724 y Fn(2)181 2717 y Ft(.)980 2841 y(14)p eop %%Page: 15 15 15 14 bop 35 -68 a Ft(Using)16 b(the)f(con)o(v)o(olution)g(theorem)f (of)i(the)f(DFT,)g(one)h(can)g(execute)e(the)h(p)q(olynomial)f(m)o (ultiplicati)o(on,)35 -6 y(b)o(y)22 b(treating)g(the)f(co)q(e\016cien)o (ts)g(of)h Fs(P)733 1 y Fn(1)775 -6 y Ft(and)h Fs(P)907 1 y Fn(2)949 -6 y Ft(as)f(t)o(w)o(o)g(discrete)f(sequences)g(of)h (length)g Fs(N)27 b Ft(and)c Fs(M)5 b Ft(,)35 56 y(resp)q(ectiv)o(ely)l (.)37 b(The)23 b(sequences)e(are)h(padded)h(with)f(0's)h(at)f(their)g (ends,)h(to)g(obtain)g(length)f(that)h(is)35 119 y(of)d(the)g(smallest) e(p)q(o)o(w)o(er)h(of)h(2)g(that)h(is)e(greater)h(than)g Fs(N)f Ft(+)13 b Fs(M)19 b Fm(\000)13 b Ft(1.)32 b(Then)20 b(the)f(FFT)g(is)h(applied)f(to)35 181 y(b)q(oth)14 b(sequences,)f(and) g(p)q(oin)o(t)o(wise)g(m)o(ultipli)o(cation)d(of)k(resp)q(ectiv)o(e)d (results)i(is)f(carried)h(out.)20 b(The)13 b(in)o(v)o(erse)35 243 y(FFT)g(maps)f(the)g(obtained)h(results)f(to)h(the)f(actual)g(co)q (e\016cien)o(ts)f(of)i(the)f(result)g(p)q(olynomial.)19 b(The)13 b(whole)35 305 y(pro)q(cess)j(tak)o(es)f(time)e(whic)o(h)h(is) h Fs(O)q Ft(\(\()p Fs(N)g Ft(+)8 b Fs(M)14 b Fm(\000)9 b Ft(1\))p Fs(l)q(og)r Ft(\()p Fs(N)14 b Ft(+)9 b Fs(M)14 b Fm(\000)8 b Ft(1\)\),)15 b(rather)h(than)f Fs(O)q Ft(\(\()p Fs(N)g Ft(+)8 b Fs(M)14 b Fm(\000)9 b Ft(1\))1920 287 y Fn(2)1940 305 y Ft(\).)35 391 y(W)l(e)17 b(note)g(that)h(in)e(this)h (case,)g(the)f(executions)g(of)i(b)q(oth)g(the)e(FFT)h(and)h(the)e(in)o (v)o(erse)g(FFT)g(are)h(actual)35 453 y(steps)g(of)f(the)g(algorithm.) 35 622 y Fb(7.2)67 b(Sequences)22 b(Retriev)l(al)35 740 y Ft(A)15 b(v)o(ery)f(di\013eren)o(t)g(use)i(of)f(the)g(FFT)g(w)o(as)h (recen)o(tly)d(demonstrated)h(for)i(fast)f(retriev)m(al)f(of)i(an)f (explicitly)35 802 y(giv)o(en)i(sequence,)g(from)f(a)i(large)g (database)h(of)f(stored)g(sequences)f([AFS93,)g(FRM94].)25 b(The)18 b(problem)35 864 y(addressed)j(in)f(this)g(case)g(is)g(the)g (need)f(to)i(compare)e(the)h(whole)g(giv)o(en)f(query)g(sequence)g(to)i (eac)o(h)e(of)35 926 y(the)f(whole)g(stored)h(sequences,)e(retrieving)f (the)i(sequences)f(whic)o(h)h(are)g(within)f(a)i(certain)e(Euclidean)35 989 y(distance)f(from)g(the)g(query)l(.)35 1075 y(Suc)o(h)e(comparison) f(o)o(v)o(er)g(a)h(large)f(database)i(with)f(long)g(sequences,)f(tak)o (es)g(to)q(o)i(m)o(uc)o(h)d(time,)f(and)j(is)g(not)35 1137 y(feasible.)20 b(T)l(o)14 b(a)o(v)o(oid)f(it,)g(rather)h(than)g (conducting)g(searc)o(h)f(o)o(v)o(er)g(the)g(whole)h(sequences,)e(eac)o (h)i(sequence)35 1199 y(in)21 b(the)f(database)i(is)e(represen)o(ted)g (b)o(y)g(its)g(\\\014ngerprin)o(ts")i(whic)o(h)d(are)i(the)g(\014rst)f (few)h(co)q(e\016cien)o(ts)e(of)35 1261 y(its)j(DFT.)g(The)g(query)f (sequence)g(is)g(also)i(transformed,)f(and)g(its)g(\014rst)g(few)g(DFT) g(co)q(e\016cien)o(ts)e(are)35 1324 y(compared)c(against)h(the)f(co)q (e\016cien)o(ts)f(stored)h(in)g(the)g(databases.)35 1409 y(Since)11 b(most)g(sequen)o(tial)g(data)h(stored)g(in)g(databases)h (can)f(b)q(e)g(w)o(ell)e(c)o(haracterized)g(b)o(y)i(its)f(lo)o(w)o(er)g (frequen-)35 1472 y(cies,)k(suc)o(h)h(represen)o(tativ)o(es)e(are)i (indeed)f(a)h(reliable)f(criteria)f(for)j(comparing)e(sequences.)20 b(P)o(arsev)m(al's')35 1534 y(theorem)12 b(guaran)o(tees)i(that)f (sequences)g(that)g(are)h(almost)e(the)h(same)f(in)h(the)g(time)e (domain,)h(are)h(also)h(al-)35 1596 y(most)g(the)g(same)g(in)g(the)g (frequency)f(domain.)20 b(This)15 b(ensures)f(that)h(if)f(the)h(searc)o (h)f(results)g(in)g(sequences)35 1659 y(that)h(matc)o(h)d(the)i(query)g (sequence)f(up)h(to)g(some)f(error)h(tolerance,)p Fv(al)r(l)h Ft(the)e(correct)h(matc)o(hes)e(ha)o(v)o(e)i(b)q(een)35 1721 y(retriev)o(ed,)g(with)i(the)g(p)q(ossibilit)o(y)g(of)g(some)f (false)h(matc)o(hes,)e(whic)o(h)i(can)g(b)q(e)h(discarded)f(later)g (on.)35 1807 y(The)k(FFT)g(is)g(used)g(here)f(as)i(a)f(prepro)q (cessing)h(step)f(b)q(efore)g(storing)g(a)h(sequence)d(in)i(the)g (database,)35 1869 y(and)e(for)f(con)o(v)o(erting)e(the)i(query)f (sequence)f(in)o(to)i(a)g(represen)o(tation)f(compatible)f(with)h(the)h (database,)35 1931 y(b)q(efore)g(the)f(searc)o(h)g(is)g(executed.)k (The)c(in)o(v)o(erse)e(FFT)j(is)f(not)g(used.)35 2099 y Fb(7.3)67 b(Filtering)35 2217 y Ft(The)13 b(last)f(example)e(for)i (using)h(the)e(DFT,)h(is)g(for)h(reducing)e(noise)h(from)f(data,)j(as)e (is)g(done)h(in)e(the)h(con)o(text)35 2280 y(of)23 b(constructing)g(a)g (mo)q(del)e(through)j(dela)o(y)o(ed)d(co)q(ordinate)i(em)o(b)q(edding)e ([Sau93].)40 b(The)23 b(algorithm)35 2342 y(presen)o(ted)f(in)h(the)f (pap)q(er)h(constructs)g(a)g(m)o(ulti-dim)o(ensional)d(mo)q(del)h(for)i (a)g(giv)o(en)f(sequence)g(of)h(1-)35 2404 y(dimensional)16 b(observ)m(ations.)25 b(An)17 b(initial)f(step)h(in)g(obtaining)h(the)f (higher)g(dimensionalit)o(y)d(is)j(the)g(use)35 2466 y(of)g(a)f(sliding)g(windo)o(w)g(o)o(v)o(er)f(the)h(observ)m(ation)h (sequence,)d(whic)o(h)i(results)f(in)h(v)o(ectors)g(of)g(observ)m (ations.)35 2552 y(T)l(o)d(\014lter)e(out)h(noise)g(from)f(the)g (observ)m(ation)i(v)o(ectors)e(b)q(efore)h(further)g(pro)q(cessing)g (them,)f(a)h(transforma-)35 2615 y(tion)k(is)f(applied)g(to)h(eac)o(h)e (v)o(ector,)h(whic)o(h)f(eliminates)f(the)i(high)h(frequency)e(comp)q (onen)o(ts)g(of)i(the)f(data.)35 2677 y(\(Usually)g(\\noise")h(corresp) q(onds)h(to)f(high)g(frequency)e(data,)i(while)e(the)i(actual)f(data)i (is)e(c)o(haracterized)980 2841 y(15)p eop %%Page: 16 16 16 15 bop 35 -68 a Ft(b)o(y)16 b(lo)o(w)h(frequency\).)k(The)16 b(transformation)h(is)f(equiv)m(alen)o(t)f(to)i(applying)f(the)h(DFT,)f (m)o(ultiplying)e(the)35 -6 y(resulting)e(v)o(ector)f(b)o(y)g(a)i (sequence)e(suc)o(h)g(that)i(the)e(lo)o(w)o(er)g(co)q(e\016cien)o(ts)g (\(the)h(lo)o(w)f(frequency)g(co)q(e\016cien)o(ts\))35 56 y(are)21 b(m)o(ultipli)o(ed)c(b)o(y)j(n)o(um)o(b)q(ers)e(close)i(to) g(1)h(and)g(the)f(higher)f(frequency)g(co)q(e\016cien)o(ts)g(are)h(m)o (ultiplie)o(d)35 119 y(b)o(y)e(n)o(um)o(b)q(ers)e(close)h(to)h(0.)25 b(The)18 b(in)o(v)o(erse)e(DFT)i(is)f(applied)g(to)h(the)f(result.)25 b(The)18 b(o)o(v)o(erall)e(e\013ect)h(of)h(the)35 181 y(three)e(op)q(erators,)h(is)f(equiv)m(alen)o(t)f(to)i(a)f(single)g (transformation)h(\(matrix\))d(whic)o(h)i(is)g(a)g(lo)o(w-pass)i (\014lter.)35 243 y(Multiplying)h(eac)o(h)i(v)o(ector)f(b)o(y)g(this)h (matrix)e(results)h(in)h(a)g(new)g(v)o(ector)e(whic)o(h)h(is)h(the)g (same)e(as)j(the)35 305 y(original)17 b(in)f(its)g(lo)o(w)o(er)g (frequencies)f(but)i(missing)e(the)h(higher)h(frequencies,)d(th)o(us)j (it)f(is)g(a)h(less)g(\\noisy")35 368 y(v)o(ector)166 349 y Fn(8)185 368 y Ft(.)35 453 y(W)l(e)h(note)f(that)h(in)f(this)g (case)g(w)o(e)g(don't)h(algorithmically)d(apply)i(the)g(FFT)g(and)h (the)f(in)o(v)o(erse)f(FFT)h(to)35 516 y(eac)o(h)g(v)o(ector.)24 b(The)17 b(F)l(ourier)g(transform)g(calculations)g(w)o(ere)g(done)g(in) g(order)h(to)f(obtain)h(the)f(lo)o(w-pass)35 578 y(\014lter)j(matrix,)g (and)h(m)o(ultiplyi)o(ng)d(a)j(v)o(ector)f(b)o(y)g(this)g(matrix)f(has) i(an)g(equiv)m(alen)o(t)e(e\013ect)h(to)h(that)g(of)35 640 y(applying)e(the)f(FFT,)g(m)o(ultiply)o(ing)e(b)o(y)i(a)g(sequence) g(that)g(eliminates)e(high)j(frequency)e(comp)q(onen)o(ts,)35 703 y(and)g(applying)f(the)g(in)o(v)o(erse)f(transform.)35 835 y Fb(7.4)67 b(Concluding)24 b(Remarks)35 930 y Ft(Throughout)16 b(the)d(pap)q(er,)i(w)o(e)e(ha)o(v)o(e)g(demonstrated)g(and)h (emphasized)e(that)j(the)e(F)l(ourier)g(transform)h(is)35 992 y(a)e(w)o(a)o(y)g(to)g(represen)o(t)e(functions)i(and)g(sequences,) f(as)h(a)g(com)o(bination)e(of)i(sin)o(usoids.)20 b(That)12 b(is,)g(sequences)35 1054 y(and)i(functions)g(are)f(spanned)h(using)g (sin)o(usoids)f(as)h(a)g(basis.)21 b(Sin)o(usoids)13 b(are)h(a)f(go)q(o)q(d)j(c)o(hoice)c(of)h(basis)h(for)35 1116 y(smo)q(oth)f(\\rounded)h(")g(functions,)f(whic)o(h)f(are)h(p)q (erio)q(dic,)g(con)o(tin)o(uous)g(and)g(di\013eren)o(tiable)f(at)h(all) g(p)q(oin)o(ts.)35 1179 y(Ho)o(w)o(ev)o(er,)h(for)i(functions)f(and)i (sequences)d(whic)o(h)h(corresp)q(ond)i(to)f(square)f(w)o(a)o(v)o(es,)g (\(suc)o(h)g(as)h(the)g(pulse)35 1241 y(functions)22 b(w)o(e)g(ha)o(v)o(e)f(seen)g(in)g(the)h(examples\),)f(or)h (demonstrate)f(non-p)q(erio)q(dic)h(lo)q(cal)g(phenomena,)35 1303 y(other)13 b(forms)e(of)h(bases)h(ma)o(y)d(pro)o(v)o(e)h(simpler)f (to)j(use.)19 b(The)12 b(Haar)h(w)o(a)o(v)o(elets,)e(whic)o(h)g(are)h (squared-shap)q(ed)35 1365 y(and)19 b(compactly-supp)q(orted)e (functions,)h(form)f(a)i(basis)f(whic)o(h)g(spans)h(square)f(functions) g(easily)l(,)f(and)35 1428 y(can)j(b)q(e)f(used)g(con)o(v)o(enien)o (tly)d(to)k(express)e Fv(lo)n(c)n(al)i Ft(\(non-p)q(erio)q(dic\))f (high-frequency)f(\015uctuations.)30 b(The)35 1490 y(w)o(a)o(v)o(elet) 17 b(transform)i(is)f(a)h(generalization)f(of)h(the)f(F)l(ourier)h (transform,)f(and)h(is)g(actually)f(a)h(family)d(of)35 1552 y(transforms.)34 b(It)20 b(allo)o(ws)g(a)h(wide)f(v)m(ariet)o(y)f (of)i(function)f(forms)f(to)i(serv)o(e)e(as)i(basis)g(functions.)34 b(F)l(or)20 b(a)35 1615 y(quic)o(k)13 b(in)o(tro)q(duction)h(on)h(the)f (W)l(a)o(v)o(elet)f(transform)h(and)h(its)f(applications)h(see)e ([SDS94)q(].)20 b(An)14 b(extensiv)o(e)35 1677 y(discussion)j(on)g(w)o (a)o(v)o(elets)d(can)j(b)q(e)f(found)h(in)f([Dau92)q(,)g(Mal89].)35 1763 y(The)i(F)l(ourier)e(T)l(ransform)h(is)g(a)h(broad)g(sub)s(ject,)e (of)i(whic)o(h)e(w)o(e)h(ha)o(v)o(e)f(co)o(v)o(ered)g(only)h(a)g(small) f(fraction.)35 1825 y(W)l(e)f(ha)o(v)o(e)e(tak)o(en)h(a)h(rather)g (pragmatic)e(approac)o(h,)i(presen)o(ting)f(the)g(transform)g(from)g(a) h(mathematical)35 1887 y(p)q(oin)o(t)e(of)f(view,)g(and)g(pro)o(viding) g(in)o(tuition)f(through)i(examples)d(and)j(applications.)19 b(A)12 b(lot)g(of)g(the)g(math-)35 1949 y(ematical)i(detail)h(w)o(as)i (omitted.)i(Moreo)o(v)o(er,)14 b(w)o(e)i(ha)o(v)o(e)f(not)h(addressed)h (the)e(engineering)g(approac)o(h)i(to)35 2012 y(the)h(transform,)g (whic)o(h)f(uses)i(it)e(to)i(c)o(haracterize)d(systems.)25 b(A)18 b(discussion)g(of)h(what)f(\\systems")g(are,)35 2074 y(and)f(the)f(status)h(of)g(the)f(F)l(ourier)g(transform)f(with)i (resp)q(ect)e(to)i(them)e(can)h(b)q(e)h(found)f(in)g([OS89)q(].)35 2264 y Fu(References)35 2396 y Ft([AFS93])41 b(R.)17 b(Agra)o(w)o(al,)g(C.)g(F)l(aloutsos)h(and)g(A.)f(Sw)o(ami,)f Fv(E\016cient)j(Similarity)g(Se)n(ar)n(ch)f(In)g(Se)n(quenc)n(e)248 2459 y(Datab)n(ases)p Ft(,)h(In)f(The)h(F)l(ourth)g(In)o(ternational)f (Conference)g(on)h(F)l(oundations)h(of)f(Data)g(Or-)248 2521 y(ganization)e(and)g(Algorithms,)d(Ev)m(anston,)j(Illinois,)d (Octob)q(er)j(1993.)p 35 2565 775 2 v 92 2595 a Ff(8)110 2610 y Fr(Note)f(that)g(in)f(Sauer's)h(pap)q(er,)g(in)f(addition)g(to)g (\014ltering)h(out)f(noise,)h(there)h(is)e(also)g(a)g(reduction)i(in)e (the)h Fe(or)n(der)f Fr(of)35 2660 y(the)j(v)o(ector.)26 b(The)17 b(order)h(reduction)f(is)f(equiv)n(alen)o(t)g(to)g(applying)g (the)h(in)o(v)o(erse)g(DFT)f(only)g(to)g(part)h(of)f(the)h(frequency)35 2710 y(co)q(e\016cien)o(ts)f(\(after)e(eliminating)d(the)j(high)f (frequency)i(co)q(e\016cien)o(ts\).)980 2841 y Ft(16)p eop %%Page: 17 17 17 16 bop 35 -68 a Ft([AHU74])26 b(A.)11 b(V.)f(Aho,)i(J.)f(E.)g(Hop)q (croft)h(and)g(J.)f(D.)g(Ullman,)f Fv(The)j(Design)h(and)f(A)o(nalysis) g(of)g(Computer)248 -6 y(A)o(lgorithms)p Ft(.)j(Addison)g(&)h(W)l (esley)l(,)d(1974.)35 98 y([BP85])69 b(C.)18 b(S.)h(Burrus)f(and)h(T.)f (W.)h(P)o(arks,)f Fv(DFT/FFT)h(and)g(Convolution)j(A)o(lgorithms,)e (The)n(ory)248 160 y(and)e(Implementation)p Ft(.)f(John)g(Wiley)e(&)h (Sons,)h(1985.)35 264 y([Bra65])59 b(R.)16 b(Bracew)o(ell,)e Fv(The)j(F)l(ourier)g(T)l(r)n(ansform)f(and)i(Its)f(Applic)n(ations)p Ft(.)g(McGra)o(w-Hill,)d(1965.)35 368 y([CLR89])36 b(T.)23 b(H.)g(Cormen,)h(C.)f(E.)h(Leiserson)f(and)i(R.)e(L.)g(Riv)o(est,)h Fv(Intr)n(o)n(duction)g(to)g(A)o(lgorithms)p Ft(,)248 430 y(c)o(hap.)16 b(32.)g(McGra)o(w-Hill,)f(1989.)35 534 y([Dau92])49 b(I.)17 b(Daub)q(ec)o(hies,)g Fv(T)l(en)j(L)n(e)n (ctur)n(es)e(on)h(Wavelets)p Ft(,)g(Regional)f(Conference)f(Series)f (in)i(Applied)248 596 y(Mathematics.)c(So)q(ciet)o(y)i(for)g (Industrial)g(and)h(Applied)e(Mathematics,)f(1992.)35 700 y([FRM94])24 b(C.)c(F)l(aloutsos,)i(M.)e(Ranganathan)i(and)f(Y.)e (Manolop)q(oulos,)k Fv(F)l(ast)e(Subse)n(quenc)n(e)j(Match-)248 762 y(ing)19 b(in)g(Time-Series)h(Datab)n(ases)p Ft(,)d(In)g(SIGMOD)g (-)g(Pro)q(ceedings)h(of)g(Ann)o(ual)f(Conference,)248 824 y(Minneap)q(olis,)f(Ma)o(y)f(1994.)35 928 y([GKP91])28 b(R.)18 b(L.)h(Graham,)f(D.)g(E.)h(Kn)o(uth)f(and)h(O.)f(P)o(atashnik,) h Fv(Concr)n(ete)h(Mathematics)p Ft(.)e(Addison)248 990 y(&)e(W)l(esley)l(,)f(1991.)35 1094 y([Jac90])66 b(L.)16 b(B.)g(Jac)o(kson,)g Fv(Signals,)j(Systems)e(and)h(T)l(r)n(ansforms)p Ft(.)c(Addison)j(&)f(W)l(esley)l(,)f(1990.)35 1198 y([Mal89])54 b(S.)21 b(G.)g(Mallat,)h Fv(A)g(The)n(ory)f(of)h(Multir)n(esolution)h (Signal)h(De)n(c)n(omp)n(osition:)31 b(The)22 b(Wavelet)248 1260 y(R)n(epr)n(esentation)p Ft(,)13 b(IEEE)g(T)l(ransactions)g(on)g (P)o(attern)g(Analysis)f(and)h(Mac)o(hine)e(In)o(tellidence,)248 1322 y(11)17 b(,)f(no.)g(7,)g(674{693,)j(July)d(1989.)35 1426 y([OS75])72 b(A.)21 b(V.)g(Opp)q(enheim)f(and)i(R.)f(W.)g(Sc)o (hafer,)h Fv(Digital)h(Signal)h(Pr)n(o)n(c)n(essing)p Ft(.)d(Pren)o(tice-Hall,)248 1488 y(1975.)35 1592 y([OS89])72 b(A.)15 b(V.)g(Opp)q(enheim)f(and)j(R.)e(W.)h(Sc)o(hafer,)f Fv(Discr)n(ete)i(Time)g(Signal)i(Pr)n(o)n(c)n(essing)p Ft(.)c(Pren)o(tice-)248 1654 y(Hall,)g(1989.)35 1758 y([Sau93])59 b(T.)11 b(Sauer,)h Fv(Time)h(Series)g(Pr)n(e)n(diction)g (by)f(Using)i(Delaye)n(d)f(Co)n(or)n(dinate)f(Emb)n(e)n(dding)p Ft(,)g(In)f(A.)f(S.)248 1820 y(W)l(eigend)16 b(and)g(N.)f(A.)g (Gershenfeld,)g(editors,)g(Time)f(Series)h(Prediction:)21 b(F)l(orecasting)16 b(the)248 1883 y(F)l(uture)g(and)h(Understanding)f (the)g(P)o(ast.)h(Addison)f(&)g(W)l(esley)l(,)f(1993.)35 1986 y([Sa)o(v96])61 b(J.)17 b(E.)g(Sa)o(v)m(age,)h Fv(Applie)n(d)h (The)n(ory)f(of)g(Computation)p Ft(,)g(c)o(hap.)f(3.)g(Addison)h(&)f(W) l(esley)l(,)f(1996,)248 2049 y(\(to)h(app)q(ear\).)35 2153 y([SDS94])46 b(E.)19 b(J.)g(Stollnitz,)g(T.)g(D.)g(Derose)h(and)g (D.)f(H.)g(Salesin,)g Fv(Wavelets)j(for)d(Computer)i(Gr)n(aph-)248 2215 y(ics:)46 b(A)30 b(Primer)p Ft(,)h(Av)m(ailable)c(through)k(anon)o (ymous)d(ftp,)k(at)d(cs.w)o(ashington.edu,)j(at)248 2277 y(pub/graphics/W)l(a)o(v)o(eletPrimer.ps.Z,)13 b(1994.)35 2381 y([T)l(AL89])39 b(R.)18 b(T)l(olimieri,)e(M.)i(An)g(and)h(C.)f (Lu,)i Fv(A)o(lgorithms)f(for)g(Discr)n(ete)h(F)l(ourier)f(T)l(r)n (ansform)f(and)248 2443 y(Convolution)p Ft(,)f(c)o(hap.)f(6.)g (Springer-V)l(erlag,)g(1989.)35 2547 y([W)l(ea83])45 b(H.)21 b(J.)f(W)l(ea)o(v)o(er,)h Fv(Applic)n(ations)i(of)f(Discr)n (ete)g(and)g(Continuous)h(F)l(ourier)f(A)o(nalysis)p Ft(.)f(John)248 2609 y(Wiley)15 b(&)h(Sons,)h(1983.)980 2841 y(17)p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF