coder.CuDNNConfig - Parameters to configure deep learning code generation with the CUDA Deep Neural Network library - MATLAB (original) (raw)
Main Content
Parameters to configure deep learning code generation with the CUDA Deep Neural Network library
Description
The coder.CuDNNConfig
object contains NVIDIA® cuDNN specific parameters that codegen uses for generating CUDA® code for deep neural networks.
To use a coder.CuDNNConfig
object for code generation, assign it to theDeepLearningConfig
property of a coder.gpuConfig object that you pass to codegen
.
Creation
Create a cuDNN configuration object by using the coder.DeepLearningConfig function with target library set as'cudnn'
.
Properties
Enable or disable auto tuning feature. Enabling auto tuning allows the cuDNN library to find the fastest convolution algorithms. For more information, see Enable auto tuning.
Specify the precision of the inference computations in supported layers. For more information, see Data type (cuDNN).
Location of the MAT-file containing the calibration data. This option is applicable only when DataType
is set to 'int8'
. For more information, see Data type (cuDNN).
A read-only value that specifies the name of the target library.
Examples
Create an entry-point function resnet_predict
that uses theimagePretrainedNetwork
function to load thedlnetwork
object that contains the ResNet-50
network. For more information, see Code Generation for dlarray
function out = resnet_predict(in)
dlIn = dlarray(in, 'SSCB'); persistent dlnet; if isempty(dlnet) dlnet = imagePretrainedNetwork('resnet50'); end
dlOut = predict(dlnet, dlIn); out = extractdata(dlOut);
Create a coder.gpuConfig
configuration object for MEX code generation.
cfg = coder.gpuConfig('mex');
Set the target language to C++.
Create a coder.CuDNNConfig
deep learning configuration object and assign it to the DeepLearningConfig
property of thecfg
configuration object.
cfg.DeepLearningConfig = coder.DeepLearningConfig(TargetLib = 'cudnn');
Use the -config
option of the codegen function to pass the cfg
configuration object. The codegen function must determine the size, class, and complexity of MATLAB® function inputs. Use the -args
option to specify the size of the input to the entry-point function.
codegen -args {ones(224,224,3,'single')} -config cfg resnet_predict;
The codegen
command places all the generated files in thecodegen
folder. The folder contains the CUDA code for the entry-point function resnet_predict.cu
, header, and source files containing the C++ class definitions for the convoluted neural network (CNN), weight, and bias files.
Version History
Introduced in R2018b
See Also
Functions
- codegen | imagePretrainedNetwork (Deep Learning Toolbox) | coder.DeepLearningConfig | coder.loadDeepLearningNetwork