15-inch (38.1 cm) Mark I (original) (raw)

This was quite possibly the best large-caliber naval gun ever developed by Britain and it was certainly one of the longest-lived of any nation, with the first ship-board firing taking place in 1915 and the last in 1954. The design of this weapon was largely based upon the 13.5"/45 (34.3 cm) Mark V and it was rushed into production, bypassing the normal - and lengthy - prototype stage. This shortened design cycle was approved by the Director of Naval Ordnance, Rear Admiral Archibald Moore, who staked his "professional existence" on its success. The reason for this rushed procedure was to allow what became the Queen Elizabeth class battleships to be armed with larger guns than would have otherwise been possible. Although their first warshots were for bombarding shore positions at Gallipoli in 1915, the value of these weapons was not truly shown until the Battle of Jutland (Skagerrak). In that battle, the British battleships with these guns were able to engage German battlecruisers at a range of 19,000 yards (17,400 m), which was beyond the maximum range of the guns on the German ships.

By the mid-1930s the Admiralty saw these guns as growing obsolete, as other nations had developed more powerful weapons, capable of longer ranges and firing heavier projectiles. Along with this, the ships carrying these guns were approaching twenty years of service and starting to show signs of wearing out. Inhibited by treaty restrictions from replacing the battleships, the British instead sought to rectify the situation by initiating a "modernization" program whereby the ships had major overhauls performed and had their weapons upgraded. There were two significant improvements made to these guns during the modernizations: 1) The upper elevation limit of the mountings was increased from 20 degrees up to 30 degrees, which raised their maximum range with 4crh projectiles from 23,700 yards up to 29,000 yards (21,670 m to 26,520 m), and 2) The projectiles were improved and a more streamlined ballistic cap (6crh) was fitted which increased the range still further to about 32,000 yards (29,260 m) at 30 degrees elevation. Thanks to these modifications, in July 1940 HMS Warspite made one of the longest hits ever scored by a naval gun on an enemy ship when she struck the Italian battleship Guilio Cesare at approximately 26,000 yards (23,770 m).

The rate at which these ships could be modernized was limited and by the start of World War II Malaya, Barham, Repulse and the five Royal Sovereign class battleships had not yet been upgraded. Royal Oak, Barham and Repulse were sunk early in the war, but the remaining unmodernized ships were given a "Super Charge" which consisted of the largest possible propellant charge that the guns and mountings could safely handle. These were issued starting in late 1941 and at the maximum elevation of 20 degrees allowed a range of 28,700 yards (26,240 m). However, from a study of the records, it would appear that no ship ever fired a shot using Super Charges, although they were used by the coastal artillery at Dover. Super Charges were not issued to ships with 30 degree mountings as the increased barrel wear and mounting stress was not considered to be acceptable. For this reason, sources which quote HMS Vanguard as having gun ranges in excess of 32,000 yards (29,260 m) are somewhat misleading, as such a range would have required the use of super charges, which she never carried.

In addition to the ship-board guns, there were also five guns used as coastal artillery at Singapore and a further two mounted at Wanstone near Dover. After the war ended in 1945, these last two guns were maintained in an operational state and were not removed until 1959.

Constructed of tapered inner A tube, A tube, full-length multi-start wire, B tube, overlapping jacket and breech ring. Used a Welin breech operated by hydraulic Vickers "pure-coupled" mechanism. A total of 186 guns, including two prototypes, and 58 turrets were manufactured between 1912 and 1918.

The second prototype gun, E597, was to a considerably different construction, having a full-length jacket, no B tube and an Elswick three-motion short arm breech mechanism which considerably reduced "slam." This gun suffered a failed A tube during proof testing. Had this gun not failed, the Elswick breech mechanism probably would have been used on all production guns.

Note: It is often asked if the British ever planned to use these guns for the King George V battleships of World War II. The answer is that they did not, but there was some investigation into using a new design, the "all steel" 15"/45 (38.1 cm) Mark II gun.

Designation 15-inch Mark I
Ship Class Used On Battleships: Queen Elizabeth, Royal Sovereign and Vanguard classesBattlecruisers: Glorious, Repulse and Hood ("Admiral") classesMonitors: Marshal Soult, Erebus and Roberts classes
Date Of Design 1912
Date In Service 1915
Gun Weight 224,000 lbs. (101,605 kg) including breech mechanism
Gun Length oa 650.4 in (16.520 m)
Bore Length 630.0 in (16.002 m)42 calibers
Rifling Length 516.3 in (13.115 m)
Grooves (76) 0.1245 in D x 0.445 in W (2.16 x 11.30 mm)
Lands 0.175 in (4.445 mm)
Twist Uniform RH 1 in 30
Chamber Volume 30,650 in3 (502.3 dm3)
Rate Of Fire 1 2 rounds per minute

The following excerpt is taken from "Progress in Gunnery Material, 1921" ADM 186/251:

32. Comparison between British and German Gun Designs

(a) The design of German 38 cm, 42.4 calibre Naval gun mounted in “Baden” has been carefully investigated and compared with that of the British 15 in. Mark I 42 calibre gun.

(b) The main points of difference between this [German] design and British designs are as follows:

(i) The gun is not relinable.

(ii) Factors of safety are lower. In calculating the strength of the gun at any point, the Germans allow the steel to be stressed much nearer to its elastic limit that we do in our designs, also the figure of elastic limit which they take for purposes of calculation is higher than ours. The gun is not serviceable with barrel split.

(iii) The gun is a Q.F., which permits of radical differences in construction from those necessary at the breech end of a B.L. gun.

(iv) All-steel construction as against wired type.

(v) Much smaller chamber (Capacity 18,000 cu. in. as compared to our 30,590.)

[Comments on the above items]

The effect generally of (i), (ii) and (v) is to lighten the gun considerably.

(iii) is a matter of general policy ; there are reasons both for and against Q.F. guns of this calibre

(iv) The advantages of all-steel versus wire-wound guns have been the subject of discussion for a great many years, and opinions still differ as to which is better than the other from point of view of strength and ballistics ; more recently, however, it has been considered probable that the smaller droop and greater rigidity of the all-steel type may be a very important factor in effect on accuracy. The German gun is noticeably stiff in the region of the centre of gravity, making for small droop and whip ; this is undoubtedly a good point.

(c) As regards (i), the life of our guns (about 325 E.F.C.) is apparently considerably less than that of German heavy guns owing to their use of cooler propellant. They evidently considered that the life of their guns was long enough to justify the simpler lighter design which is possible when relining is not intended. Experiments with propellants generally similar to the German are in hand, but some time must elapse before any can be adopted to replace cordite M.D. in the Service. Until then it is considered that we should certainly continue to design our guns for relining.

(d) As regards (ii), apparently German designers placed greater reliance on their steel forgings than we do on ours, and consequently stressed them much more highly. In all large steel forgings there is always a certain factor of uncertainty which we have allowed for and the Germans have been content to neglect. This is not confined to gun construction, but it is to be found throughout British engineering practice generally. The high factors of safety used in this country are considered to be partly due to the above and partly to caution, which may have been brought about by a few failures of guns in the past caused by faulty building or poor steel, also because there has been no special demand for light gun. We now call for a factor of safety of 1.5 over the chamber and of 2 forward before the steel is stressed up to a figure well below the specification yield point (20 tons as against the German 27). Consequently according to German ideas our factor of safety is 2 or 2.7.

The possibility of reducing the factors of safety in our gun designs has been the subject of discussion recently, and trials to test whether they are unduly great have been arranged for. Doubtless some reduction will now be possible in view of the great advance in machining operations and steel treatment made of late years, but improvements materially affecting our designs can only be adopted gradually. It is confidently anticipated that the forgings for the 16 in. designs will be much superior to what we have had in the past and fully equal to the German, the chief advance being in improvement in elastic limit and resistance to shock, which latter as evidently been specially attended to by German steel makers and is now provided for in our specifications for steel forgings.

The effect of these two points (lower factor of safety and high stress in the steel in the German design) is very marked over the chase with consequent reduction in weight and therefore decrease in the droop – a point already referred to in para. (b).

(e) As regards (iii), a movement between breech bush and inner tubes in a Q.F. gun with cartridge case is of much less importance than with B.L. gun and obturator pad in maintaining an effective seal, and this has permitted the longitudinal stresses being taken direct by the jacket, the breech bush screwing into this instead of into the A tube as in our designs. This simplifies design and manufacture. It has also permitted the use of short hoops in lieu of a long B tube, a form of construction that offers many advantages in accuracy of building shrinkage, though at the same time providing less longitudinal strength, which is poor in the German design according to our ideas.

The fact that the Germans accepted this longitudinal weakness shows that they had great confidence in the workmanship and skill of their gunmakers, as good results depended entirely on these. Our guns are undoubtedly easier to build and are so strong circumferentially due to the wire that the accuracy in building shrinkages, necessary in the German design[,] has not been called for.

(f) As regards (iv), steel and wire construction will be tried out in the trial 16 in. designs, also in trial 6 in. guns to be manufactured this year.

(g) As regards (v), the small size of chamber is not suitable for a solid cord propellant which we have hitherto adhered to. The question of adopting a tubular propellant [may be resolved as] various experiments are in progress.

The opinion is now held that the tubular shape makes for higher M.V. but reduced accuracy as regards mean differences in M.V.

It is more difficult to manufacture to accurate dimensions than cord or oval. Also, with a propellant such as M.D. cordite which has a volatile solvent (acetone) there would be less uniformity of stick than is obtainable with a propellant (like the German) with non-volatile solvent. Ardeer cordite 1a has a non-volatile solvent. Again, owing to its form, a tubular propellant is inherently more susceptible to the influence of variations in ballistic conditions, and thus, though actual wear may be less, loss of velocity for a fewer number of rounds may be greater.

It is, however, one of the many things that requires further investigation before we can be in a position to decide finally what to adopt in the future. It is quite certain that we shall be able to improve on cordite M.D.

(h) Apparently the Germans consider it unnecessary to fire proof rounds in testing guns for supply, and, to take this gun as an example, this certainly permitted them to cut down factors of safety, and therefore weight.

(i) Summarising, the main lessons to be learnt from study of the German design are :-

(i) The possibility of reduced factors of safety being introduced into our designs, especially towards the muzzle.

(ii) The reduction of droop by (i) combined by the use of all-steel construction with a view to obtaining greater rigidity and consequently improved accuracy. At the same time distance of centre of gravity of gun from breech end would probably be decreased, and this would be advantageous as affecting diameter of barbette and size of mounting generally.

(iii) The need for taking advantage of manufacturing progress and greater knowledge obtained by experience in ordering trial guns of new designs from time to time, so that when new guns are required in supply they can be ordered to the most up-to-date designs. Unless this is done, our gun designers cannot acquire confidence in their designs nor can the gun makers gain experience in building.

(iv) The necessity for constantly revising our specifications to obtain the best possible gun steel, and for ensuring by strict inspection during manufacture, that specifications are adhered to and that the workmanship is of the highest standard.

The trial 16 in. guns and experiments in hand on other guns will test some of these points, but the trial guns have chases with a large factor of safety and the droop is therefore not the smallest obtainable.

(j) It may be of interest to mention here that the trial 16 in. gun under manufacture by E.O.C. weighs practically the same as a gun of similar calibre that has been designed working to German figures and methods. It will be clear, therefore, that a good deal has been done already towards reducing weight ; but, although this is very desirable, it can certainly be overdone, and if the gun is not sufficiently stiff, its accuracy will be less good than one where weight has been subordinated all through to gunnery considerations. There is no doubt at all as to the importance of stiffness in a gun.

(k) It is the intention to build, next year, a 6 in. gun to the German design, so far as this can be done without adopting the Q.F. principle, and to try this gun against our guns of similar calibre.

Type Bag
Projectile Types and Weights 1b World War I era APC Mark Ia (4crh) - 1,920 lbs. (871 kg) APC Mark IIIa (4crh - Greenboy) - 1,910 lbs. (866.4 kg) APC Mark Va (4crh - post World War I) - 1,917 lbs. (869.5 kg) 2b APC Mark VIIa (4crh - post World War I) - 1,917 lbs. (869.5 kg CPC 4crh - 1,920 lbs. (871 kg) HE 4crh - 1,920 lbs. (871 kg) HE 8crh - 1,965 lbs. (891 kg) 3b Shrapnel 4crh - 1,920 lbs. (871 kg)Inter-war to World War II era 4b 5b APC Mark XIIa (4crh) - 1,938 lbs. (879 kg) APC Mark XIIIa (4crh) - 1,938 lbs. (879 kg) APC Mark XVIIb (6crh) - 1,938 lbs. (879 kg) 6b APC Mark XXIIb (6crh) - 1,938 lbs. (879 kg) HE Mark VIIIb (6crh) - 1,938 lbs. (879 kg)
Bursting Charge 7b World War I era APC Mark Ia - 60.5 lbs. (27.4 kg) Lyddite APC Mark IIIa - 45.3 lbs. (20.5 kg) Shellite APC Mark Va - 45.3 lbs. (20.5 kg) Shellite APC Mark VIIa - 45.3 lbs. (20.5 kg) Shellite CPC - 129.3 lbs. (58.6 kg) Originally Black Powder, later TNT HE 4crh - 216.5 - 224.0 lbs. (98.2 - 101.6 kg) Lyddite HE 8crh - 224.0 lbs. (101.6 kg) Lyddite Shrapnel - 13,700 lead-alloy balls of 1.75 oz (49.6 gm) eachInter-war to World War II era APC Mark XIIa - 48.5 lbs. (22.0 kg) Shellite APC Mark XIIa - 48.5 lbs. (22.0 kg) Shellite APC Mark XVIIb - 48.5 lbs. (22.0 kg) Shellite APC Mark XXIIb - 48.5 lbs. (22.0 kg) Shellite HE Mark VIIIb - 130 lbs. (59 kg) TNT or TNT/RDX
Projectile Length World War I era APC Mark Ia - 54.5 in (138.4 cm) APC Mark IIIa - 55.9 in (142.0 cm) APC Mark Va - 55.9 in (142.0 cm) APC Mark VIIa - 55.9 in (142.0 cm) CPC - 63.3 in (160.8 cm) HE 4crh - 63.9 in (162.3 cm) HE 8crh - about 75 in (190 cm) 3b Shrapnel - about 63.9 in (162.3 cm)Inter-war to World War II era APC Mark XIIa - 55.9 in (142.0 cm) APC Mark XIIIa - 55.9 in (142.0 cm) APC Mark XVIIb - 65.0 in (165.1 cm) APC Mark XXIIb - 65.0 in (165.1 cm) HE Mark VIIIb - 67.0 in (170.2 cm)
Propellant Charge 8b World War I: 428 lbs. (194 kg) MD45After 1927 (standard charge): 432 lbs. (196 kg) SC 280Super charge: 490 lbs. (222.2 kg) SC 300
Muzzle Velocity 9b World War I era APC 4crh - 2,467 fps (752 mps)Inter-war to World War II era APC 4crh - 2,467 fps (752 mps) APC 6crh (standard charges) - 2,458 fps (749 mps) APC 6crh (super charges) - 2,638 fps (804 mps)
Working Pressure MD and SC standard charge: 20 tons/in2 (3,150 kg/cm2)Super Charge: 23 tons/in2 (3,620 kg/cm2)
Approximate Barrel Life 335 rounds 10b
Ammunition stowage per gun 11b Queen Elizabeth, Royal Sovereign and Vanguard 12b classes: 100 roundsRenown, Courageous and Hood classes: 120 roundsMarshall Soult and Erebus: 100 roundsAbercrombie and Roberts: 110 rounds

A Note on Sources: There are disagreements between the sources listed below as to ranges for these guns. I have chosen to use those figures given in "The Big Gun" for MD charges and those given in "Naval Weapons of World War Two" for SC standard and SC super charges.

Using 1,920 lbs. (871 kg) 4crh AP Shell 1cMV of 2,400 fps (732 mps) using MD or SC standard charges

Elevation Range Striking Velocity Angle of Fall
1.0 degree 1,920 yards (1,756 m) --- 1.0
2.6 degrees 5,000 yards (4,570 m) 2,074 fps (632 mps) 3.0
5.0 degrees 8,629 yards (7,980 m) --- 6.0
5.9 degrees 10,000 yards (9,140 m) 1,776 fps (541 mps) 7.3
10.0 degrees 14,853 yards (13,582 m) --- 13.0
10.1 degrees 15,000 yards (13,720 m) 1,537 fps (468 mps) 13.6
15.0 degrees 19,707 yards (18,020 m) --- 21.0
15.6 degrees 20,000 yards (18,290 m) 1,377 fps (420 mps) 22.3
20.0 degrees 2c 23,734 yards (21,702 m) --- 29.0
20.0 degrees 2c 23,387 yards (21,385 m) --- ---
22.5 degrees 25,000 yards (22,860 m) 1,317 fps (401 mps) 32.7
30.1 degrees 29,000 yards (26,520 m) 1,326 fps (404 mps) 42.0

Using 1,938 lbs. (879 kg) 6crh AP ShellMV of 2,400 fps (732 mps) using SC standard charges

Elevation Range Striking Velocity Angle of Fall
2.6 degrees 5,000 yards (4,570 m) 2,144 fps (653 mps) 2.7
5.6 degrees 10,000 yards (9,140 m) 1,909 fps (582 mps) 6.6
9.3 degrees 15,000 yards (13,720 m) 1,709 fps (521 mps) 11.7
13.8 degrees 20,000 yards (18,290 m) 1,556 fps (474 mps) 18.3
19.2 degrees 25,000 yards (22,860 m) 1,461 fps (445 mps) 26.3
26.1 degrees 30,000 yards (27,430 m) 1,433 fps (437 mps) 35.6
30.5 degrees 32,500 yards (29,720 m) 1,446 fps (441 mps) 40.7

Using 1,938 lbs. (879 kg) 6crh AP ShellMV of 2,575 fps (785 mps) using SC super charges 1e

Elevation Range Striking Velocity Angle of Fall
2.2 degrees 5,000 yards (4,570 m) 2,312 fps (705 mps) 2.4
4.9 degrees 10,000 yards (9,140 m) 2,063 fps (629 mps) 5.7
8.0 degrees 15,000 yards (13,720 m) 1,852 fps (564 mps) 10.0
11.7 degrees 20,000 yards (18,290 m) 1,683 fps (513 mps) 15.5
16.1 degrees 25,000 yards (22,860 m) 1,560 fps (475 mps) 22.2
20.0 degrees 28,732 yards (26,273 m) --- ---
21.4 degrees 30,000 yards (27,430 m) 1,497 fps (456 mps) 29.9
27.9 degrees 35,000 yards (32,000 m) 1,496 fps (456 mps) 38.3
30.3 degrees 36,500 yards (33,380 m) 1,507 fps (459 mps) 40.9
about50.0 degrees 44,150 yards (40,370 m)New gun MV of 2,638 fps (804 mps) using SC super charges --- ---
Range Side Armor Deck Armor
8,629 yards (7,980 m) 16.0" (406 mm) ---
14,853 yards (13,582 m) 12.0" (305 mm) ---
19,707 yards (18,020 m) 11.0" (279 mm) ---
23,734 yards (21,702 m) 9.0" (229 mm) ---

This data is from "The Big Gun" and refers to World War I-era armor plate and probably refers to APC of the early World War I era, not the later, improved "Greenboy" projectiles. This table assumes 90 degree inclination, i.e., an angle of obliquity of 0 degrees. It should be noted that APC of this time did not reliably penetrate at even modest angles of obliquity and were subject to premature bursting, so these values should be used with caution.

Range Side Armor Striking Velocity Angle of Obliquity
0 yards (0 m) 18.0" (457 mm) 2,450 fps (869 mps) 0
10,000 yards (9,144 m) 14.0" (356 mm) 1,850 fps (579 mps) 0
10,000 yards (9,144 m) 13.2" (335 mm) 1,850 fps (579 mps) 20
10,000 yards (9,144 m) 12.2" (310 mm) 1,850 fps (579 mps) 30

This data is from "British Battleships of World War Two" for uncapped AP shells against KC Plate armor of World War I and probably refers to armor piercing projectiles of the early World War I era, not the later, improved "Greenboy" projectiles. The first two rows are for a projectile striking a plate at an angle of 0 degrees, i.e., with the axis of the shell perpendicular to the face of the plate. The next two rows are for shells striking at larger angles and show the degradation in penetration performance for the same striking velocity as the angle increases. A capped shell (APC) would show about 10 to 20% improvement at low velocities and about 30 to 50% improvement at high velocities.

Range Side Armor Deck Armor
17,200 yards (15,730 m) 14.0" (356 mm) ---
18,000 yards (16,460 m) --- 2.0" (51 mm)
19,400 yards (17,740 m) 13.0" (330 mm) ---
21,700 yards (19,840 m) 12.0" (305 mm) ---
24,000 yards (21,950 m) --- 3.0" (76 mm)
24,500 yards (22,400 m) 11.0" (279 mm) ---
28,000 yards (25,600 m) 10.0" (254 mm) 4.0" (102 mm)
29,500 yards (26,970 m) --- 5.0" (127 mm)
32,500 yards (29,720 m) 1f --- 6.0" (152 mm)
Range Side Armor Deck Armor
0 yards (0 m) 27.1" (687 mm) ---
10,000 yards (9,144 m) 16.5" (422 mm) 1.25" (32 mm)
15,000 yards (13,716 m) 13.9" (353 mm) 1.95" (50 mm)
20,000 yards (18,288 m) 11.7" (297 mm) 3.10" (72 mm)
25,000 yards (22,860 m) 10.2" (259 mm) 4.30" (121 mm)
30,000 yards (27,432 m) 9.0" (229 mm) 5.70" (145 mm)

This data is from "Battleships: Allied Battleships in World War II" for a muzzle velocity of 2,400 fps 732 mps) and is partly based upon the USN Empirical Formula for Armor Penetration and partly based upon official data.

In 1921 the British conducted a series of gunnery trials using the last battleship completed by the Germans during World War I, the surrendered Baden. These trials were conducted as a part of the design process for the next generation of capital ships, which were later cancelled as a result of the Washington Naval Limitation Treaty. During these gunnery trials, the monitors Erebus and Terror fired a total of 31 shells using reduced charges in order to obtain striking velocities equivalent to the expected battle ranges. Two primary striking velocities were used, 1,550 fps (472 mps) simulating a range of 15,500 yards (14,170 m) and 1,380 fps (421 mps) simulating a range of 21,800 yards (19,930 m).

Tests at 1,550 fps (472 mps) with 4crh "Greenboy" APC showed that these projectiles could penetrate turret face armor of 35 cm (13.8 in) when struck at an angle of 18.5 degrees and penetrate barbette armor of 35 cm (13.8 in) when struck at an angle of 11 degrees, but that this same armor thickness on the conning tower successfully defeated an APC striking at an angle of 30 degrees. Another test at this velocity saw an APC striking at an angle of 14.5 degrees penetrating the upper armor belt of 25 cm (10 in) and this shell then traveling some 38 feet (11.6 m) before bursting on the funnel casing and damaging two boilers, having first penetrated a 3 cm (1.2 in) splinter bulkhead and the 1.2 cm (0.5 in) main deck.

Five rounds of APC were fired at 1,550 fps (472 mps) at the 10 cm (3.9 in) turret roof armor, with four of these failing to penetrate.

Tests at 1,380 fps (421 mps) with CPC projectiles showed that armor of 17 cm (6.75 in) could be penetrated, but that these shells could neither penetrate nor significantly damage the 35 cm (13.8 in) barbette armor when striking at a 12 degree angle.

There is a cautionary note in ADM 186/251 that may apply to these trials:

Unsteadiness of shells at plate proof - When firing shells with reduced charges to obtain the required S.V. [striking velocity] for the proof or trial of shells or armour, particularly with the larger natures, there is a tendency for shells to be unsteady in flight, as shown by the shape of the hole made in a jump card erected in front of the armour plate. This unsteadiness tends to vitiate the result of the trial. As each round at thick armour may cost as much as £2,000 or more, it is a serious matter to reject the evidence of a round and to repeat it on the score of unsteadiness, although this has sometimes to be done.

The Admiralty's overall conclusion from these trials was that the new "Greenboy" APC projectiles had satisfactory penetration characteristics, although their fuzing was not considered successful. Neither the experimental SAPC nor the older CPC used in these trials was considered to be effective. The penetration of the SAPC was disappointing and showed no advantage over APC. The CPC projectiles had considerable blast effect, but the fragments created by their thin walls were too small to cause significant damage.

Data in this section is primarily from "Washington's Cherrytrees: The Evolution of the British 1921-22 Capital Ships" articles by John Campbell, from excerpts of ADM 186/251 provided to me and from "The Baden Trials" article by William Schleihauf.

Designation Capital Ship Two-gun Turrets Queen Elizabeth (4) and Royal Sovereign [except Resolution] (4): Mark I Resolution (2) Mark I and (2) Mark I* 1g Repulse (2) Mark I and (1) Mark I* Renown (3), Courageous (2) and Glorious (2): Mark I* Hood (4): Mark II 2g Rebuilt Mountings 3g Queen Elizabeth (4), Valiant (4) and Warspite (4): Mark I/N Renown (3): Mark I*/N Vanguard (4): Mark I/N RP 12 4g Monitor Two-gun Turrets 5g Marshall Soult (1) and Roberts (1): Modified Mark I Erebus (1): Modified Mark I* Abercrombie (1): Mark I*/N
Weight 6g Mark I and Mark I*: 770 tons (782 mt)Mark II: 880 tons (894 mt)Mark I/N: 815 tons (828 mt)Mark I/N RP 12: 855 tons (869 mt)
Elevation Mark I and Mark I*: -5 / +20 degreesModified Mark I and Modified Mark I*: +2 / +30 degreesMark II: -5 / +30 degreesMark I/N, Mark I*/N and Mark I/N RP 12: -4.5 / +30 degreesCoastal artillery: -3 / +50 or +55 degrees
Rate of Elevation 5 degrees per second
Train 7g 8g -150 / +150 degrees
Rate of Train 2 degrees per second
Gun Recoil 9g 46 in (117 cm)
Loading Angle 5g 10g Marks I, I* and II: -5 to +20 degreesMarks I/N and I*/N: -4.5 to +20 degreesMonitors except Abercrombie: +5 degrees

A significant new addition was having remote power control (RPC) equipment for training fitted - RPC for elevation was not fitted. HMS Vanguard was the only British battleship to have RPC installed for both main and secondary armaments. The increased elevation for the main armament required cutting larger gun port openings in the turret faceplates. To compensate for these larger openings, armored hoods were fitted over the gun ports, similar to the Mark I*/N mountings. In addition, 24.5 foot (7.47 m) FX stabilized rangefinders - not 30 foot (9.17 m) rangefinders as stated in many references - were installed on the rear of "B", "X" and "Y" turrets. The corresponding space in "A" turret was used as a secondary conning position. To increase magazine protection, Vanguard's magazines were relocated below the shell rooms, which was the reverse of the arrangement used for all other British capital ships with 15" (38.1 cm) guns, but was similar to the design used for the 14" (35.6 cm) mountings on the King George V class. To accommodate this change, the turret trunks now ended at the shell handling rooms and the magazine handling rooms were located above them. The magazines were connected to the handling rooms by fixed hoists, three each for turrets "X" and "Y" and four each for turrets "A" and "B". Something else to note about these mountings is that all four were from ships that did not have superfiring turrets. So, the two mounts destined for Vanguard's "B" and "X" positions had to be substantially reworked in order for them to be used in those superfiring positions. The support structures for all four mountings were stiffened to take the greater recoil forces involved when using supercharges, but as noted above, supercharges were never issued to this or any other ship with mountings capable of 30 degree elevation. Finally, de-humidifying equipment and lagging was fitted to the gunhouse to improve habitability. Vanguard's mountings were now designated as Mark I/N RP 12 (some sources say Mark I*/N RP 12, as the turrets were originally designated as Mark I*, but I believe this to be incorrect). It should be noted that it was only the mountings themselves that came from the battlecruisers, the guns used to arm HMS Vanguard actually came from the reserve stock of spare units.

15-inch (38.1 cm) Mark I guns on exhibit at the Imperial War Museum in London Photograph copyrighted by Axel K. These are the last two of these guns still in existence above water. As viewed from the breech end, the left gun (number 125 built) was installed on HMS Ramillies in 1916. It was removed from that ship and stored in 1941. The right gun barrel (number 102 built) was mounted on HMS Resolution from 1915 to 1938. This gun was relined and then mounted on the monitor HMS Roberts in 1944. The breech mechanism on the right-hand gun is of interest as it was once used for instructional purposes at the Woolwich Arsenal. For a history of these weapons, see this Imperial War Museum Webpage.

Forward Turrets on the HMS Queen Elizabeth. This photograph was taken in 1915 in the Dardanelles at the start of the Gallipoli campaign, the first time the 15-inch (38.1 cm) guns were fired in combat. Note the sighting hoods and small base-length rangefinders on top of "A" turret. IWM Photograph Q 13238.

HMS Royal Oak. Good view showing both forward and broadside views of the Mark I Turrets. IWM photograph.

Overhead view of bow turrets on HMS Royal Oak in 1916. IWM Photograph Q 17922.

HMS Valiant in early 1930s. Note the longer base-length rangefinders on B and X turrets and the Fairey III-F floatplane on her fantail. U.S. Naval Historical Center Photograph # NH 52518.

HMS Hood in the 1930s. Note the differences in these Mark II turrets - sighting ports instead of hoods, 30 foot (9.17 m) range finders used on all turrets and larger gun ports to allow 30 degree elevation. IWM photograph HU 67486.

HMS Hood as she appeared in March 1924. Photograph from Allan C. Green collection of glass negatives. State Library of Victoria Image H91.108/1867.

Bow of HMS Renown during World War II showing modernized Mark I*/N turrets. Note the armored hoods covering the enlarged gunports and that sighting ports have replaced the original sighting hoods. IWM photograph A 20419.

Turrets for HMS Vanguard being modified at the Harland & Wolff erection shop at Scotstoun in 1945. Note the balance weights and armored hoods. 'X' turret is closest to the camera followed by 'A', 'Y', and 'B'. Photograph copyrighted by Harland & Wolff.

HMS Vanguard. Compare this picture with the one above of Queen Elizabeth. Note the larger gun port openings and the 40 mm Bofors STAAG mounting atop "B" turret. Picture from the files of Shirley North, former crewmember of the Vanguard, and used here by his kind permission. Please Note: This picture can not be copied without the express permission of NavWeaps.com.

Bow of HMS Vanguard. Note that this photograph was taken during the "Royal Tour" as a review box has replaced the STAAG mounting atop "B" turret. This photograph also shows portions of the three breakwaters used to shed water from the bow. A major effort was made to make Vanguard a drier ship than the previous King George V class and she was given a raised bow, a bow flare, higher freeboard and these breakwaters as part of that effort. IWM photograph A 31256.

HMS Vanguard in September 1952. Note the belt armor, large turret rangefinders, transom stern and the DP directors for the USA Mark 37 GFCS. U.S. Naval Historical Center Photograph # NH 103735.

15-inch (38.1 cm) Mark I/N Turret being constructed for HMS Abercrombie. Photograph taken at Vickers-Armstrong's Elswick Works in December 1942. The 12 ton (12.2 mt) balance weights that were necessary for 30 degree elevation can be seen atop each gun. At lower right can be seen a 13.5-inch (34.3 cm) gun. The 15-inch (38.1 cm) Mark I was largely based upon the design of this weapon. The one shown here was probably being linered down to a high-velocity 8inch (20.3 cm) gun - see 13.5-inch Mark V data page for further details.

HMS Abercrombie in April 1943 following her completion. The tall barbette was to allow the battleship-sized turret stalk to be used without modifications and still maintain the shallow draft necessary for the monitor to move as close as possible to the coast.

15-inch gun barrel at the Coventry Ordinance Works. Note that the breech has not yet been engraved with identifying information. IWM Photograph Q 30139.

15"/42 Mark I gun in workshop. VSEL = Vickers Shipbuilding and Engineering, Ltd.

15-inch (38.1 cm) Common Round on HMS Royal Oak in 1917. Note the lifting clamp and the protective cover on the driving bands. IWM photograph Q 17945.

Model of Mark I Turret for HMS Queen Elizabeth at the Imperial War Museum, London, UK. Note the overlapping turret top plates, the turret race, the overhead "grabs" used to transfer shells out of storage to the stalk and from the lower to the upper hoist, and the hopper used to move cartridge bags from the magazine. Also note that shells were stored horizontally in bins. This meant that any significant change in shell length - such as the change from 4crh to 6crh projectiles - required modifications to the storage bins. IWM photograph MOD 296.

Typical 15-inch (38.1 cm) projectiles of World War II. The left projectile is an APC Mark XXIIb (6crh) while the right one is an HE Mark VIIIb (6crh). Sketch copyrighted by Ian Buxton and used here by his kind permission.

German sketch of British 15" (38.1 cm) CPC projectile. Note that the base has both 1915 and 1929 date codes. Sketch courtesy of Zhu Shipeng.

15-inch Standard Charge Cartridge. Image courtesy of Steve Johnson of Cyberheritage

"Regia Marina: Italian Battleships of World War Two" by Erminio Bagnasco and Mark Grossman
"The Design and Construction of British Warships 1939-1945: Volume I," "The Grand Fleet: Warship Design and Development 1906-1922" and "Nelson to Vanguard: Warship Design and Development 1923-1945" all by D.K. Brown
"British Battleships: 1919 - 1945" by R.A. Burt
"Big Gun Monitors: The History of the Design, Construction and Operation of the Royal Navy's Monitors" by Ian Buxton
"Warship Special 1: Battle Cruisers," "Naval Weapons of World War Two," "Washington's Cherrytrees: The Evolution of the British 1921-22 Capital Ships" article in "Warship Volume I" and "British Naval Guns 1880-1945 No 1" article in "Warship Volume V" all by John Campbell
"Battleships: Allied Battleships in World War II" by W.H. Garzke, Jr. and R.O. Dulin, Jr.
"Naval Weapons of World War One" by Norman Friedman
"Vanguard to Trident: British Naval Policy since World War Two" by Eric Grove
"The Big Gun: Battleship Main Armament 1860-1945" by Peter Hodges
"The Battleship Builders: Constructing and Arming British Capital Ships" by Ian Johnson & Ian Buxton
"The Weird Sisters" article in "Warship 1990" by Keith McBride
"British Battleships of World War Two" by Alan Raven and John Roberts
"Anatomy of the Ship: The Battlecruiser Hood" and "Battlecruisers" both by John Roberts
"The Baden Trials" article by William Schleihauf in "Warship 2007"
"The Battle-cruiser HMS Renown: 1916 - 1948" by Peter C. Smith
"The Royal Oak Disaster" by Gerald S. Snyder
"Dreadnoughts in Camera: Building the Dreadnoughts 1905-1920" by Roger D. Thomas and Brian Patterson
---
"Twentieth Century British Coast Defence Guns" by Terry Gander
---
ADM 186/169 Reports of the Shell committee 1917 & 1918
ADM 186/251 (an on-line copy is at Royal Navy Flag Officers Website)
ADM 186/259 (Information on Baden 2nd series trials)
---
Jodrell Bank Observatory Radio Telescope
---
Special help from Nathan Okun, Phil Golin, Neil Stirling and Sven Brummack

06 August 2008 - Benchmark
07 March 2009 - Added cost of mounting and guns, added turret manning breakdown
01 April 2010 - Added burster information on HE Mark VIIIb
31 December 2011 - Added additional information about ammunition outfits and information about "Admiral" class mountings
11 February 2012 - Updated to latest template
14 February 2012 - Updated to latest template
05 March 2012 - Corrected note about shape of turret fronts, added note about armor thickness, added information on 8crh HE projectile
28 March 2012 - Added note about Renown training problems
02 April 2012 - Changed link to Wayback Archive, added photograph of Queen Elizabeth Turret Model
11 June 2012 - Minor changes to improve descriptions
10 December 2012 - Added notes about cordite ramming and firing cycle. Fixed links to HMS Hood guns and FCS pages
15 December 2013 - Added photograph of gun barrel
10 February 2014 - Added range for 8crh projectile and note about Resolution training problems after being torpedoed
27 February 2014 - Added photograph of HMS Hood
29 June 2014 - Added bow photograph of HMS Vanguard
05 October 2014 - Added information to note regarding HMS Vanguard mountings and armor thickness for Glorious class, added bow photograph of HMS Renown
01 December 2015 - Changed Vickers Photographic Archive links to point at Wayback Archive
05 March 2016 - Redid photograph of shell handling on HMS Royal Oak
23 June 2016 - Converted to HTML 5 format
28 February 2018 - Reorganized notes
07 August 2018 - Minor changes to improve notes
27 May 2019 - Minor formatting changes, modified notes about Mark I and Mark II mountings, added comments about coastal defense guns at Singapore and Wanstone, corrected typographical errors, reorganized range section and added notes
23 July 2020 - Added port side view of HMS Hood
18 October 2020 - Added details about turret armor changes needed for HMS Vanguard, comments about follow-on "Admiral" battlecruisers
14 March 2021 - Added to Mounting / Turret notes
30 April 2021 - Corrected thickness of HMS Vanguard front plate and added photograph of Vanguard turrets in workshop
13 June 2021 - Added note regarding APC Mark Va and Mark VIIa shells used during Baden trials
27 December 2021 - Changed link to Cyberheritage to point at Wayback Archive, added photograph of bow turrets on HMS Royal Oak, minor additions to Ammunition and Mount/Turret Sections
16 August 2022 - Added photograph of 15"/42 Mark I gun in workshop
26 December 2023 - Added sketch of CPC
21 May 2024 - Minor additions to the Ammunition section