dye lasers (original) (raw)
Definition: lasers based on liquid or solid dyes as gain media
Category:
laser devices and laser physics
- light sources
- lasers
* solid-state lasers
* diode-pumped lasers
* lamp-pumped lasers
* distributed feedback lasers
* dye lasers
* gas lasers
* free-electron lasers
* radiation-balanced lasers
* cryogenic lasers
* visible lasers
* eye-safe lasers
* infrared lasers
* ultraviolet lasers
* X-ray lasers
* upconversion lasers
* Raman lasers
* high-power lasers
* multi-line lasers
* narrow-linewidth lasers
* tunable lasers
* pulsed lasers
* ring lasers
* seed lasers
* ultrafast lasers
* industrial lasers
* scientific lasers
* alignment lasers
* medical lasers
* space-qualified lasers
* miniature lasers
* OEM laser modules
* lasers for material processing
* lasers for quantum photonics
* lasers for Raman spectroscopy
* (more topics)
- lasers
Related: laser gain mediatunable laserstitaniumâsapphire lasersultrafast lasersmode-locked lasersspectroscopyintracavity laser absorption spectroscopylaser safety
Page views in 12 months: 2171
DOI: 10.61835/hbd Cite the article: BibTex BibLaTex plain textHTML Link to this page! LinkedIn
Content quality and neutrality are maintained according to our editorial policy.
đŚ For purchasing dye lasers, use the RP Photonics Buyer's Guide â an expert-curated directory for finding all relevant suppliers, which also offers advanced purchasing assistance.
Contents
What are Dye Lasers?
A dye laser is a laser based on a dye (typically in a liquid solution) as the laser gain medium [1, 2]. Most laser dyes are based on organic molecules used in liquid form as solutions, although solid laser dyes and vapor dyes exist as well.
Typical characteristics of laser dyes as gain media are:
- They exhibit a broad gain bandwidth, which allows for broad wavelength tunability and also ultrashort pulse generation with passive mode locking. A wide range of emission wavelengths from the ultraviolet to the near-infrared region can be addressed with different laser dyes.
- Upper-state lifetimes are typically a couple of nanoseconds, i.e., similar to those of semiconductor lasers, but orders of magnitude shorter than those of doped-insulator solid-state lasers. Therefore, dye lasers are not suitable for Q-switching with continuous or long-pulse pumping; they can store energy only over very short times. However, intense dye laser pulses can be obtained with pulsed pumping, using a Q-switched pump laser or a flash lamp.
- The gain per unit length can be fairly high (order of 103 cmâ1), particularly for pulsed pumping.
- The power conversion efficiency is typically between 10% and 30% for laser pumping, and typically lower for flash lamp pumping.
Many different laser dyes are available, and in total they can cover huge wavelength regions. A name like exalite, coumarin, rhodamine, pyrromethene, pyridine, fluorescein or styryl often denotes not a precisely defined substance, but rather a whole family of dyes with slightly different chemical structures, having somewhat different ranges of emission wavelengths and being distinguished with additional numbers. For example, one may use coumarin 2, 47, 102 or 153 for lasers in the blue to green spectral region.
Solvents
Typical solvents for laser dyes are ethanol, p-dioxane and dimethylsulfoxide (DMSO). The used dye concentrations depend on the used pumping geometry and pump power; they are normally well below a gram per liter. The dyes can be purchased in powder form, such that the user can make the dye solution with any desired concentration.
Note that many laser dyes and some of the solvents are poisonous and partly also carcinogenic. One should therefore carefully avoid exposing the skin to such a dye solution, or even to spill the dye by operating an improperly assembled dye circulating system. A particularly hazardous solvent, sometimes used for cyanide dyes, is dimethylsulfoxide (DMSO), which greatly accelerates the transport of dyes into the skin. (See also the article on laser safety.)
Pumping Options for Dye Lasers
Dye lasers are normally pumped at relatively short wavelengths. Some typical options are:
- Many dyes can be pumped with a green laser such as a frequency-doubled solid-state laser or an argon ion laser. For 532-nm pumping, for example, laser emission may then be in the green, yellow, orange, red or near infrared spectral region.
- Laser dyes for shorter emission wavelengths (for example, exalite, stilbene and coumarin) have to be pumped at shorter wavelengths â typically, with ultraviolet light. For example one may use a Q-switched and frequency-tripled Nd:YAG laser at 355 nm, or a frequency-quadrupled Nd:YAG laser at 266 nm.
- Other possibilities are to use an excimer laser, a nitrogen laser, or a copper vapor laser.
- Some dye lasers can be pumped with flash lamps. This leads to longer pulses and a lower power conversion efficiency. However, pulsed pumping with flash lamps allows the excitation of large volumes and thus the generation of pulses with high energies (sometimes of the order of 1 J).
Even for continuous pumping, the applied pump intensity is fairly high; for example, a few watts of pump power are focused to a beam waist with a radius of the order of 20 Îźm.
Dye Laser Resonators
Figure 1: Setup of a wavelength-tunable dye laser.
The laser resonator of a dye laser typically contains a dye jet or a dye cuvette (see below) as the laser gain medium. In addition, there are usually one or several frequency-selective elements, for example a birefringent tuner or a diffraction grating in Littrow configuration, which permits wavelength tuning in a range of tens of nanometers. Narrow-linewidth lasers contain additional frequency filtering components such as etalons, and often sophisticated computer-controlled tuning mechanics for precisely and reliably setting the desired emission wavelengths. On the other hand, mode-locked lasers use only coarse wavelength control, as their emission bandwidth must be large. A stable linear polarization of the output is usually obtained as a side effect of the tuning elements.
Dye Jets and Dye Cuvettes; Recovery from Triplet States
A frequently used kind of dye laser uses a thin dye jet [5] as the gain medium, so that the dye molecules are used only for a short time within the pump and laser beam and have a long time to recover before they are used again.
Alternatively, the dye can be pumped through a thin cuvette. Here, the dye is enclosed in some transparent material, and it is easier to obtain a steady flow. Obviously, the cuvette material (for example, quartz) must be resistant to the laser light and the pump light, and the cuvette surfaces must have a high optical quality.
Some time for recovery is often required due to the tendency of organic dye molecules to become trapped in triplet states, in which they cannot participate in the lasing process. An alternative way to lower the triplet concentration is to add a triplet quenching agent to the dye solution.
Degradation; Exchanging Dyes
During operation, laser dyes tend to be chemically degraded. (That is particularly the case for UV-pumped dyes.) Therefore, the dye solution usually has to be exchanged after an operation time of 100 hours, for example. That lifetime depends on the dye used, on the pumping conditions, the volume of dye solution, etc.
One also sometimes has to exchange the dye to access a different wavelength region. There are systems where different dye cells (cuvettes) can be used for different dyes, and switching between different dye cells is relatively easy, requiring little or no realignment of the laser resonator.
Ultrashort Pulse Generation
Much of the original work on ultrashort pulse generation was done with dye lasers [6, 8, 9]. However, dye lasers suffer from significant disadvantages such as rapid degradation during operation, limited output power, and the need for pumping e.g. with green or blue light, making their pump sources expensive. Furthermore, dye lasers require the awkward handling of poisonous, often even carcinogenic materials.
For such reasons, solid-state lasers, in particular Ti:sapphire lasers and later on also fiber lasers, took most of the business from dye lasers (at least in the domain of ultrashort pulse generation) as soon as they were sufficiently developed.
Dye lasers are still used in some areas, e.g. laser spectroscopy with wavelengths which are otherwise hard to generate. They are also particularly suitable for intracavity laser absorption spectroscopy. Even in special wavelength regions, where no suitable laser transitions are available, dye lasers may be replaced with optical parametric oscillators.
Solid Laser Dyes
There is some work on dye lasers based on solid media, e.g. with the dye in a polymer matrix. Obviously, the solid-state form has many advantages, particularly concerning handling. A problem, however, is the rapid degradation, either for a limited time by triplet excitation, or permanently by destruction of dye molecules. Some success has been achieved with dyes in plastic fiber [10] and with rotating dye disk lasers [11].
Frequently Asked Questions
What is a dye laser?
A dye laser is a type of laser that uses an organic dye, typically dissolved in a liquid solvent, as its active gain medium. Solid and vapor-based dye lasers also exist.
What is the most important feature of laser dyes as gain media?
Laser dyes exhibit a very broad gain bandwidth. This key feature allows for a wide range of wavelength tunability and also for the generation of ultrashort pulses via passive mode locking.
How are dye lasers pumped?
Dye lasers are optically pumped at wavelengths shorter than their emission wavelength. Common pump sources include other lasers (e.g., frequency-doubled solid-state lasers, argon or excimer lasers) or flash lamps.
Why are dye lasers generally not suitable for Q-switching?
Their upper-state lifetimes are very short, typically a few nanoseconds. This prevents the storage of significant energy in the gain medium, which is a prerequisite for effective Q-switching with continuous or long-pulse pumping.
What are the main disadvantages of dye lasers?
Key drawbacks are the chemical degradation of the dye during operation, requiring its regular replacement, and the handling of toxic and often carcinogenic dye solutions and solvents.
What technologies have largely replaced dye lasers?
For many applications, particularly ultrashort pulse generation, dye lasers have been superseded by solid-state lasers like Ti:sapphire lasers and fiber lasers, which are more convenient to handle.
What is a solid-state dye laser?
This is a type of dye laser where the dye is embedded in a solid host material, such as a polymer matrix. This format simplifies handling but often suffers from rapid degradation of the dye.
Suppliers
Bibliography
| [1] | P. P. Sorokin and J. R. Lankard, âStimulated emission observed from an organic dye, chloro-aluminum phtalocyanineâ, IBM J. Res. Dev. 10, 162 (1966); doi:10.1147/rd.102.0162 |
|---|---|
| [2] | F. P. Schäfer et al., âOrganic dye solution laserâ, Appl. Phys. Lett. 9 (8), 306 (1966); doi:10.1063/1.1754762 |
| [3] | B. H. Soffer and B. B. McFarland, âContinuously tunable, narrow-band organic dye lasersâ, Appl. Phys. Lett. 10 (10), 266 (1967); doi:10.1063/1.1754804 |
| [4] | O. G. Peterson et al., âCw operation of an organic dye solution laserâ (first continuous-wave operation of a dye laser), Appl. Phys. Lett. 17 (6), 245 (1970); doi:10.1063/1.1653384 |
| [5] | P. K. Runge and R. Rosenberg, âUnconfined flowing-dye films for cw dye lasersâ, IEEE J. Quantum Electron. 8 (12), 910 (1972); doi:10.1109/JQE.1972.1076895 |
| [6] | C. V. Shank and E. P. Ippen, âSubpicosecond kilowatt pulses from a mode-locked cw dye laserâ, Appl. Phys. Lett. 24, 373 (1974); doi:10.1063/1.1655222 |
| [7] | C. V. Shank, âPhysics of dye lasersâ, Rev. Mod. Phys. 47, 649 (1975); doi:10.1103/RevModPhys.47.649 |
| [8] | R. L Fork, B. I. Greene and C. V Shank, âGeneration of optical pulses shorter than 0.1 ps by colliding pulse modelockingâ, Appl. Phys. Lett. 38, 671 (1981); doi:10.1063/1.92500 |
| [9] | J. A. Valdmanis et al., âGeneration of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gainâ, Opt. Lett. 10 (3), 131 (1985); doi:10.1364/OL.10.000131 |
| [10] | A. Argyros et al., âMicrostructured polymer fiber laserâ, Opt. Lett. 29 (16), 1882 (2004); doi:10.1364/OL.29.001882 |
| [11] | R. Bornemann et al., âContinuous-wave solid-state dye laserâ, Opt. Lett. 31 (11), 1669 (2006) doi:10.1364/OL.31.001669 (first continuous-wave operation of a solid-state dye laser) |
| [12] | S. Klinkhammer et al., âA continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporationâ, Appl. Phys. B 97, 787 (2009); doi:10.1007/s00340-009-3789-0 |
(Suggest additional literature!)
Questions and Comments from Users
Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the authorâs answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.
Please do not enter personal data here. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.
By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.