modulation depth (original) (raw)

Definition: a relative modulation amplitude, or (for a saturable absorber) the maximum change in absorption

Categories: article belongs to category light detection and characterization light detection and characterization, article belongs to category lightwave communications lightwave communications

Related: saturable absorberssemiconductor saturable absorber mirrors

Units: dimensionless or %

Page views in 12 months: 1532

DOI: 10.61835/mda Cite the article: BibTex BibLaTex plain textHTML Link to this page! LinkedIn

Content quality and neutrality are maintained according to our editorial policy.

Contents

What is a Modulation Depth?

When a quantity such as the transmission of an optical modulator is sinusoidally modulated, the modulation depth can be defined as the modulation amplitude (i.e. one-half of the peak-to-peak changes) divided by the mean value. A modulation depth of 100% thus corresponds to a situation where the minimum value of the modulated quantity is zero, and the maximum is twice the mean value.

modulation depth

Figure 1: A signal with a modulation depth of 50%.

Here, the modulation amplitude is half the mean value.

Modulation Depth of Saturable Absorbers

In the context of saturable absorbers, as used for passive mode locking or Q-switching of lasers, the modulation depth is the maximum change in absorption (or reflectance) which can be induced by incident light with a given wavelength. This is an important design parameter in passively mode-locked lasers. A large modulation depth leads to strong pulse shaping by the saturable absorber, which can lead to a short pulse duration and reliable self-starting, but also to unwanted Q-switching instabilities.

For semiconductor saturable absorber mirrors (SESAMs), the modulation depth is specified as the maximum light-induced change in reflectance ($\Delta R$), and may substantially depend on the operating wavelength. For use in mode-locked bulk lasers, it is typically of the order of 1%, while substantially larger values (order of 10%) are normally required for mode-locked fiber lasers. The achieved modulation depth is a substantial fraction of the unsaturated reflectance loss caused by the integrated absorber. It may be increased by using a thicker absorber or multiple thin absorbers, and it also depends on other design features; for example, it can be substantially reduced in anti-resonant designs, which decrease the optical intensity within the absorber.

Frequently Asked Questions

What is modulation depth?

For a sinusoidally modulated quantity, the modulation depth is defined as the modulation amplitude (half the peak-to-peak change) divided by the mean value. A 100% modulation depth implies that the modulated quantity swings between zero and twice its mean value.

How is modulation depth defined for a saturable absorber?

In the context of saturable absorbers, the modulation depth is the maximum change in absorption or reflectance that can be induced by incident light. For a SESAM, it is the maximum light-induced change in reflectance ($\Delta R$).

Why is the modulation depth important for passive mode locking?

A large modulation depth of the saturable absorber leads to strong pulse shaping, which can result in a short pulse duration and reliable self-starting. However, if it is too large, it can cause unwanted Q-switching instabilities.

What are typical values for the modulation depth of a SESAM?

Questions and Comments from Users

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Please do not enter personal data here. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.