100.00 SYNERGY (original) (raw)

250.00 Discoveries of Synergetics


250.11 Where the teacher�s opinion of me was unfavorable, and that, in the humanities, was__in the end__all that governed the marking of papers, I often found myself receiving lower grades for reasons irrelevant to the knowledge content of my work__such as my handwriting. In science, and particularly in my mathematics, the answers were either right or wrong. Probably to prove to myself that I might not be as low-average as was indicated by the gradings I got in the humanities, I excelled in my scientific classes and consistently attained the top grades because all my answers were correct. Maybe this made me like mathematics. But my mathematics teachers in various years would say, �You seem to understand math so well, I�ll show you some more if you stay in later in the afternoon.� I entered Harvard with all As in mathematics, biology, and the sciences, having learned in school advanced mathematics, which at that time was usually taught only at the college level. Since math was so easy, and finding it optional rather than compulsory at Harvard, I took no more of its courses. I was not interested in getting grades but in learning in areas that I didn't know anything about. For instance, in my freshman year, I took not only the compulsory English A, but Government, Musical Composition, Art Appreciation, German Literature, and Chemistry. However, I kept thinking all the time in mathematics and made progressive discoveries, ever enlarging my mathematical vistas. My elementary schoolwork in advanced mathematics as well as in physics and biology, along with my sense of security in relating those fields, gave me great confidence that I was penetrating the unfamiliar while always employing the full gamut of rigorous formulation and treatment appropriate to testing the validity of intuitively glimpsed and tentatively assumed enlargement of the horizon of experientially demonstrable knowledge.
250.21 In the twentieth year after college, I met Homer Lesourd, my old physics teacher, who most greatly inspired his students at my school, Milton Academy, and who for half a century taught mathematics at Harvard. We discovered to our mutual surprise that I had apparently progressed far afield from any of the known physio-mathematical concepts with which he was familiar or of which he had any knowledge. Further inquiry by both of us found no contradiction of our first conclusion. That was a third of a century ago. Thereafter, from time to time but with increasing frequency, I found myself able to elucidate my continuing explorations and discoveries to other scientists, some of whom were of great distinction. I would always ask them if they were familiar with any mathematical phenomena akin to the kind of disclosures I was making, or if work was being done by others that might lead to similar disclosures. None of them was aware of any other such disclosures or exploratory work. I always asked them whether they thought my disclosures warranted my further pursuit of what was becoming an ever-increasingly larger body of elegantly integrated and coordinate field of omnirationally quantified vectorial geometry and topology. While they could not identify my discoveries with any of the scientific fields with which they were familiar, they found no error in my disclosures and thought that the overall rational quantation and their logical order of unfoldment warranted my further pursuing the search.
250.31 For many years, my vocabulary was utterly foreign to the semantics of all the other sciences. I drew heavily on the dictionary for good and unambiguous terms to identify the multiplying nuances of my discoveries. In the meanwhile, the whole field of science was evolving rapidly in the new fields of quantum mechanics, electronics, and nuclear exploration, inducing a gradual evolution in scientific language. In recent years, I find my experiential mathematics vocabulary in a merging traffic pattern with the language trends of the other sciences, particularly physics. Often, however, the particular new words chosen by others would identify phenomena other than that which I identify with the same words. As the others were unaware of my offbeat work, I had to determine for myself which of the phenomena involved had most logical claim to the names involved. I always conceded to the other scientists, of course (unbeknownst to them); when they seemed to have prior or more valid claims, I would then inventor select appropriate but unused names for the phenomena I had discovered. But I held to my own claim when I found it to be eminently warranted or when the phenomena of other claimants were ill described by that term. For example, quantum mechanics came many years after I did to employ the term spin. The physicists assured me that their use of the word did not involve any phenomena that truly spun. Spin was only a convenient word for accounting certain unique energy behaviors and investments. My use of the term was to describe a direct observation of an experimentally demonstrable, inherent spinnability and unique magnitudes of rotation of an actually spinning phenomenon whose next fractional rotations were induced by the always co-occurring, generalized, a priori, environmental conditions within which the spinnable phenomenon occurred. This was a case in which I assumed that I held a better claim to the scientific term spin. In recent years, spin is beginning to be recognized by the physicists themselves as also inadvertently identifying a conceptually spinnable phenomenon__in fact, the same fundamental phenomenon I had identified much earlier when I first chose to use the word spin to describe that which was experimentally disclosed as being inherently spinnable. There appears to be an increasing convergence of scientific explorations in general, and of epistemology and semantics in particular, with my own evolutionary development.
250.401 In the competitive world of money-making, discoveries are looked upon as exploitable and monopolizable claims to be operated as private properties of big business. As a consequence, the world has come to think of both discoveries and patents as monopolized property. This popular viewpoint developed during the last century, when both corporations and government supported by courts have required individuals working for them to assign to them the patent rights on any discoveries or inventions made while in their employ. Employees were to assign these rights during, and for two years after termination of, their employment, whether or not the invention had been developed at home or at work. The drafting of expert patent claims is an ever more specialized and complex art, involving expensive legal services usually beyond the reach of private individuals. When nations were remote from one another, internal country patents were effective protection. With today's omniproximities of the world's countries, only world- around patents costing hundreds of thousands of dollars are now effective, with the result that patent properties are available only to rich corporations.

251.00 Discoveries of Synergetics: Inventory


260.00 The Epistemography of Generalization and Special Case


[260.00-269.07 Nature in a Corner Scenario]

260.12 The diameter of the spherical activity domain of a single atom, including the electrons orbiting its nucleus, is called one angstrom. And one angstrom is l/2,500,000th the diameter of the smallest humanly seeable _speck._Moreover, the diameter of the atomic nucleus is l/10,000th of one angstrom, and the nucleus has now been found to consist of a plurality of further "particles" such as quarks, leptons, hadrons, and so forth. Humans have now developed electromagnetic sensors, have microphotographed individual atoms, and have macrophotographed a billion galaxies, each of hundreds of billions of star- population magnitudes__99.9999 percent of which information about reality is invisible to the naked human eye. (See Sec. 1238.60.) What humans have been experiencing and thinking of "realistically" as dim "somethings" or "points" in a field of omnidirectional seeming nothingness now requires experimentally provable reconsideration, epistemographic reconceptioning, and rewording.
261.02 What Euler and all professional topologists and mathematicians called "areas" are only windows in polyhedrally conceptual systems. You look out the window at the nothingness of undimensional night__or of fog. The "faces" of presynergetics topology packaged the undimensionable nothingness into arbitrary somethingness, which thus misassumed the dimensions of the face windows and their closed-circuit edges to constitute dimensional attributes of the undimensional nothingness so framed. Academically misinformed teachers go to the blackboard, drawing a "square," and saying to the students, "A square is an area bound by a closed line of four equal-length edges and four equiangled corners," without paying any attention to the inherently existent complementations of Universe. To start off with, the phenomenon "square" is dependent on the phenomenon "blackboard," whose structural matrix alone maintained the symmetrical shape of the nonstructurally stabilized pattern of the square. (Compare Sec.617.04.) The closed-line pattern of the square inadvertently subdivides the whole surface of the polyhedral blackboard into two areas, both bound by the closed line of four equal edges and four equal angles. The four equal edges of the large complementary square are the same length as those of the small square; the big square's corners are each 270 degrees, while the small square�s corners are each 90 degrees. (Compare Sec. 810.) Moreover, the drawing of the square also inadvertently subdivides the insideness and outsideness of the blackboard into concave and convex big and little squares; it also deposits part of the Universe as "chalk" atoms onto the blackboard�s agglomeration of atoms, which inadvertently rearranges the chemical element resources of Scenario Universe.
22 = 4, 4×10=40, 40 + 2 = 42
spheres symmetrically embrace the 12-ball system. Thus the number of unit radius spheres in the third layer is 92, and so forth (see Sec.418).
02 = 0, 0×10 = 0, 0 + 2 = 2
and we discover that unity is two. The single nuclear sphere consists of both its concave inside and its exterior convex sphere, its inbounding and outbounding co-occur at the convergent, center-of-volume turnaround point. Unity is plural and at minimum two (see Secs. 224.12and 240.03). That the nuclear ball is inherently two has been incontrovertibly discovered by reducing nature to her omnidirectionally convergent, nuclear-center terminal case.
__Since humans were so tiny in respect to their laterally surrounding world, and since the tales of travelers reported greater mountains as one went inland from the sea, and since the sea ever surrounded the land, the best-informed humans assumed Earth to be an island floating on a sea that extended laterally to infinity in all horizontal directions as a plane, a plane whose surface could be made rough by god-blown winds, while the skies were filled with gods disguised as clouds blowing winds.
__Since the shortest distances between two points seemed obviously to be a straight, stretched-hair line, all the straight lines on the infinite plane of the world ran to infinity; and since humans could never reach infinity, they need not worry about where the points were located between which the straight infinite lines were stretched. All they had to do was to have two local points through which to run their �straight� line, which could thus be extended to infinity in two opposite directions. This was the genesis of "flat land," from which humans have not yet emerged. In flat land there are infinite biggest and smallest: In the vertical sense this means giants bigger than mountains and gods bigger than giants__ergo, the biggest greatest god, the biggest of visually engendered conceptioning enthroned on the highest mountain, while the invisibly smallest emerged as the elves and the evil spirits existing in things.
262.03 Similarly, the concept of spatial nothingness is pretelescopic, established eons before anyone knew that humans might develop a telescope. Now that humans have acquired discretely measured knowledge regarding the speed and other behavioral characteristics of all radiation, including the refraction of light, and have developed the science of optics and the chemistry of light-sensitive emulsions for phototelescopy, they have discovered a macrocosm of billions of galaxies consisting of an average of 100 billion stars each; 99.9999 percent of these progressively outwardly considered, discovered phenomena are invisible to the naked human eye. In the opposed or inwardly considered experience field the physicists have discovered and measured the unique frequency characteristics of each of the chemical elements together with frequency characteristics and other energetic characteristics of atomic components. Physicists employing the same radiation-sensitive emulsion photography__first through the human-spectrum-range microscope, subsequently through the scanning electron microscope, and after that through the field emission microscope__have photographed individual atoms. In this inwardly and diminishing magnitude progression humans have photographically harvested knowledge of physical reality that is 99.9999 percent infra- or subvisible to humans, meaning untunable within the very limited electromagnetic frequency range of the human senses� crystal-equipped radio sets. The exponential, fourth-power, historical acceleration rate of these outwardly exploding and inwardly permeating human cognitive events has become too sudden for societal digestion and recognition of the significance of what seemed to be terminal yesterday. The reality of the_point_ and the space have been variously conceptualized in the purely theoretical and physically unexperienceable rationalizations of progressively misinformed humans.
262.04 Man suddenly got to thinking of the atom as the terminal, the conceptual minimum. He had the terminal case of the atom as a point, but then later found that the atoms consisted of at minimum a proton, a neutron, an electron, and an atomic nucleus, and so forth. And so for a while the atomic nucleus was the terminal limit, until humans began smashing the atom and breaking the nucleus into new component particles: Thus the quarks became the most recently apparent terminally smallest limits of considerability. But the characteristics of the quarks are very exciting because they, too, incontrovertibly manifest a complex of a plurality of interdependent and numerically consistent behaviors. So what physics is really discovering is primitive system conceptuality independent of time and size. And in synergetics conceptuality independent of time and size discloses a complex hierarchy of nuclear system intertransformabilities with low-order numerical and topological relationships, a complex of interrelationships consistently characterizing every one of their realizations as special case, experimentally demonstrable, sense-tuned, physical reality.
265.06 Observing individuals can be visually or tactilely aware of another (complex or subsystem) part of their own systemic organism__for example, the child's hand tactilely discovering its own foot�s temperature, texture, olfactoral, taste, relative size, and conformation. This self-discovery, otherness-aroused awareness of the individual includes the child's cerebral-cortex feeling that its stomach is hungry, whereby the brain instructs the child's fourfold aural-communication-system-defining mouth, throat, tongue, and lungs to start pumping in and out of the smellable, nonorganically integral, otherness atmosphere to produce �crying� for contact with an external udder of the nonintegral otherness__the m-m-motherness from which to suck (pump) out her nonintegral otherness milk produced by her digested consumption of a plurality of nonintegral othernesses. This is an objective- subjective awareness of the complex individual's integral otherness parts.
266.06 Humans' integral sensing and brain-operated tunability is always special- case, size-and-frequency limited. But the conceptioning and comprehending of a human's mind is concerned exclusively with relative-magnitude-and-frequency interrelationships constituting limitless synergetic systems in pure, abstract, generalized, eternal principle. All humans� minds are now and always have been capable of employing those principles as soon as they have been apprehended, experimentally verified, and mathematically quantified, to enlarge multibillionsfold both the macro- and microranges of special case, definitively exquisite harvesting of cosmic information, the significance of which is almost undetected and unrealized by humanity's common-sense, socioeconomic, and spontaneous recreational preoccupations.
Tactile: touch________ omnidirectionally outward Olfactory ________ inward Sight: optical ________ frontally oriented Hearing ________ sidewise
Inherent tetrahedral relationship. (See Fig. 267.02A.)Observer is inherently a tetra-system. (See Fig. 267.02B.)
269.05 But there are always the outsideness and the insideness of tetrahedral system unity__the ultratunable, omnidirectionless nothingness and the infratunable, twilight- radiant-threshold-crossing, directionally oriented somethingness. Instead of Euler's vertexes, crossings, or points, we say: inframicrosystems, which are only directionally identifiable; specific directional ins; threshold-crossing, twilight-radiant, twilight-frequency somethingnesses tune-in-able only as noise.ultramacrosystems, which are nondirectionally identifiable; the omnidirectional outs, never-as-yet and maybe never-ever tunable; wherever and whenever the seeming nothingness may have color only as threshold-crossing, twilight-radiant, twilight- frequency, nondirectional, ultratunable outness; a number of glimpsed or window-framed views of nothingness.interrelationships, the directionally orientable, local-azimuthally-angled, cyclically- fractionated aroundness from this moment to that; the most economic geodesic interrelationship lines occurring as curvilinear arc segments of complex orbital accelerations. (Compare Sec. 1007.22.)


Copyright © 1997 Estate of Buckminster Fuller