(original) (raw)

##################### TLNise.mv1 README FILE ####################### ####### Copyright 2000, Phil Everson, Swarthmore College. ########### TLNise stands for "Two-Level Normal independent sampling estimation". This program enables inferences for the following two-level model: Level-1: Yj|thetaj,Vj ~ Np(thetaj, Vj), j=1,..,J Level-2: thetaj|gamma,A ~ Np(Wjgamma, A) With tlnise.mv1, responses Yj may be scalars or p-dimensional vectors, in which case the Vj's are pxp covariance matrices. See Everson and Morris (2000) JRSSB 62 (399-412) for details. The Vj's are assumed known for this analysis. The next release of TLNise will allow for unknown level-1 variances in the univariate case. INSTALLATION: 1) Save tlnisemv1.f with that name, and compile the Fortran code in your environment; e.g., type "f77 -c tlnisemv.f" (or "g77") to create a Fortran object file (tlnise.o). 2) Edit TLNise.mv1.src to point to your copy of tlnise.o: # # !!!IMPORTANT!!! # you must change the path in the following line to specify the directory in # which you stored the Fortran object file tlnise.o. dyn.load("/home/everson/TLNise/tlnisemv1.o") # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -> change to agree with your path # 3) Source TLNise.mv1.src into Splus ( "source("/..path../TLNise.mv1.src") to load the Splus functions. EXECUTION: The minimal inputs to tlnise are Y and V. If p=1 (univariate) then both are vectors. If p > 1 (multivariate) then Y is a Jxp (or pxJ) matrix, and V is a (pxpxJ) array of level-1 covariance matrices. # INPUTS: # Y: Jxp (or pxJ) matrix of p-dimensional Normal outcomes # V: pxpxJ array of pxp Level-1 covariances (assumed known) # w: Jxq (or qxJ) covariate matrix (adds column of 1's if # not included and intercept = T) # V0: "typical" Vj (default is average of Vj's) # prior: Prior parameter: p(B0) = |B0|^{(prior-p-1)/2} # prior = -(p+1): uniform on level-2 covariance matrix A (default) # prior = 0: Jeffreys' prior # prior = (p+1): uniform on shrinkage matrix B0 # N: number of Constrained Wishart draws for inference # Tol: tolerance for determining modal convergence # maxiter: maximum number of EM iterations for finding mode #intercept: if True, an intercept term is included in the regression # labelw: optional names vector for covariates # labelY: optional names vector for the J observations # labelYj: optional names vector for the p elements of Yj # digits: number of significant digits for reporting results # brief: level of output, from 0 (minimum) to 2 (maximum) # prnt: Controls printing during execution # # OUTPUTS: # *** brief=0 *** # gamma: matrix of posterior mean and sd estimates of Gamma, # and their ratios. # theta: pxJ matrix of posterior mean estimates for thetaj's. # SDtheta: pxJ matrix of posterior SD estimates for thetaj's. # A: pxp estimated posterior mean of variance matrix A. # rtA: p-vector of between group SD estimates. # # *** brief=1 *** # brief=0 outputs, plus # Dgamma: rxr estimated posterior covariance matrix for Gamma. # Vtheta: pxpxJ array of estimated covariances for thetaj's. # B0: pxpxN array of simulated B0 values. # lr: N-vector of log density ratios for each B0 value. # # *** brief=2 *** # brief=1 outputs, plus # lf: N-vector of log f(B0|Y) evaluated at each B0. # lf0: N-vector of log f0(B0|Y) evaluated at each B0 # (f0 is the CWish envelope density for f). # df: degrees of freedom for f0. # Sigma: scale matrix for f0. # nvec: number of matrices begun, diagonal and off-diagonal # elements simulated to get N CWish matrices. # nrej: number of rejections that occurred at each step 1,..,p. ########### EXAMPLES: 1) UNIVARIATE: J_10 n_c(5,5,10,10,15,15,25,25,30,30) V_150/n # eg, Yj's are averages of nj N(thetaj,150) observations, so Vj=150/nj w_c(1,2,3,4,5,5,4,3,2,1) mu_5+2*w # gamma = (5,2)' A_10 # (level-2 standard deviation: sqrt(A) = 3.162278) set.seed(5) theta_sqrt(A)*rnorm(10)+mu #> theta (simulated theta values) # [1] 3.036296 6.681080 14.467340 9.643961 20.387069 19.355127 13.179958 # [8] 9.668313 7.811781 9.129335 Y_sqrt(V)*rnorm(10)+theta #> Y (simulated Y values) # [1] 12.574769 8.714413 19.244139 8.835750 22.274406 15.603354 11.504766 # [8] 9.500900 9.150601 8.482405 # ## Inference via TLNise.mv1: source("/home/everson/TLNise/TLNise.mv1.src") # (specify path to appropriate directory) out_tlnise(Y,V,w,seed=123456789) [1] ******** Prior Parameter = -2 [1] ******** Locating Posterior Mode ************ [1] Converged in 50 EM iterations. [1] Posterior mode of B0: [,1] [1,] 0.382 [1] lf(modeB0) = -4.054 ; lf0(modeB0) = -3.924 ; adj = 0.1295 [1] ******** Drawing Constrained Wisharts ******** [1] CWish acceptance rate = 1000 / 1000 = 1 [1] ******** Processing Draws ************** [1] Average scaled importance weight = 0.9415 [1] Posterior mean estimate of A: [,1] [1,] 25.34 [1] Between-group SD estimate: [,1] [1,] 5.034 ## Parameter inference: out$gamma est se est/se 0 6.361285 4.550758 1.397852 1 1.980062 1.354638 1.461690 out$theta 1 2 3 4 5 6 7 8 9.796958 9.710735 15.69414 11.57806 19.70825 15.87692 12.4019 10.39493 9 10 9.46121 8.391604 out$SDtheta 1 2 3 4 5 6 7 8 3.863312 3.512786 3.248165 3.096908 2.966085 2.649943 2.164782 2.132232 9 10 1.964715 2.046164 2) MULTIVARIATE: J_20 p_3 # Set an A matrix to generate data. A_1.5*diag(3) A[2,1]_A[1,2]_0.3 A[3,2]_A[2,3]_0.2 rtA_t(chol(A)) # generate thetas ~ N3(0, A) (no covariates): theta_matrix(0,ncol=J,nrow=p) set.seed(5555555) for(j in 1:J){ thetaj_matrix(rnorm(p)) theta[,j]_rtA%*%thetaj } nj_c(rep(10,5),rep(20,5),rep(30,5),rep(40,5)) Y_matrix(0,ncol=J,nrow=p) V_array(0,c(3,3,J)) # Generate p=3 dimensional N(thetaj,50*I) samples of size nj, j=1,..,J. V0_0*A for(j in 1:J){ Yj_matrix(rnorm(nj[j]*p,0,sqrt(50)),ncol=nj[j],nrow=p)+theta[,j] Y[,j]_apply(Yj,1,mean) Zj_Yj-Y[,j] V0_V0+Zj%*%t(Zj) } V0_V0/sum(nj) # estimate of within covariance (=50*I) V0 #[1,] 50.7150198 1.741149 0.5318248 #[2,] 1.7411489 54.992984 -1.1571739 #[3,] 0.5318248 -1.157174 46.8230153 # Compute Vj = V0/nj, j=1,..,J: for(j in 1:J){ V[,,j]_V0/nj[j] } # Inference via tlnise: out_tlnise(Y,V,seed=987654321) [1] ******** Prior Parameter = -4 [1] ******** Locating Posterior Mode ************ [1] Converged in 54 EM iterations. [1] Posterior mode of B0: [,1] [,2] [,3] [1,] 0.505273 0.006369 0.10653 [2,] 0.006369 0.393624 0.08319 [3,] 0.106530 0.083195 0.44365 [1] lf(modeB0) = -32.54 ; lf0(modeB0) = -30.37 ; adj = 2.171 [1] ******** Drawing Constrained Wisharts ******** [1] CWish acceptance rate = 1000 / 1304 = 0.7669 [1] ******** Processing Draws ************** [1] Average scaled importance weight = 0.5776 [1] Posterior mean estimate of A: [,1] [,2] [,3] [1,] 3.542 0.378 -1.205 [2,] 0.378 5.227 -1.398 [3,] -1.205 -1.398 4.270 [1] Between-group SD estimate: [1] 1.882 2.286 2.066 # estimates of the means of each thetaij (p=3): # (true means are all 0). out$gamma est se est/se 0 0.5185656 0.5400422 0.9602316 1 0.2885743 0.6231494 0.4630901 2 0.5374147 0.5664382 0.9487613 # estimates of 1st 5 thetas: out$theta[,1:5] 1 2 3 4 5 1 -0.25071812 0.6075118 -0.2415335 1.3768032 -0.3271834 2 -0.07639761 -0.7983987 0.1679034 0.8021381 1.3590052 3 1.47776465 1.3437457 1.2525367 -1.2017726 0.5979628 out$SDtheta[,1:5] 1 2 3 4 5 1 1.362928 1.353548 1.358573 1.398708 1.397352 2 1.556334 1.569360 1.551943 1.589873 1.601760 3 1.417908 1.415371 1.406529 1.495524 1.424882 # compare to true thetas: theta[,1:5] [,1] [,2] [,3] [,4] [,5] [1,] -1.1305050 -1.0780958 -1.3360882 -0.3071049 -0.2415728 [2,] -1.9076087 -0.1059074 -0.8573725 -0.5588133 0.4234559 [3,] 0.5093163 0.9792807 -0.4555741 -1.0687344 -0.5667646 summary((out$theta-theta)/out$SDtheta) Min. 1st Qu. Median Mean 3rd Qu. Max. -1.358 -0.2756 0.209 0.2776 0.8766 1.651 # deviations are all small in terms of standard deviations.