Table of general binary codes (original) (raw)
Next PreviousContents
The table below gives upper and lower bounds for_A2(n,d)_, the maximum number of vectors in a binary code of word length n and with Hamming distance d.
If d > n then this maximum is 1.
Otherwise, if 3_d_/2 > n then this maximum is 2.
If d = 1 then this maximum is 2^n.
If d = 2 then this maximum is 2^_(n-1)_.
Furthermore, A2(n-1,2e-1) = A2(n,2e).
Thus, in the table below we may restrict ourselves to even d, between 4 and 2_n_/3. Horizontally we give d, vertically n.
| | d=4 | d=6 | d=8 | d=10 | d=12 | d=14 | d=16 | | | ----- | ------------- | ------------- | ----------- | --------- | ------- | ---- | - | | | | | | | | | | | 6 | 4 | 2 | 1 | 1 | 1 | 1 | 1 | | 7 | 8 | 2 | 1 | 1 | 1 | 1 | 1 | | 8 | 16 | 2 | 2 | 1 | 1 | 1 | 1 | | 9 | 20 | 4 | 2 | 1 | 1 | 1 | 1 | | 10 | 40 | 6 | 2 | 2 | 1 | 1 | 1 | | 11 | 72 | 12 | 2 | 2 | 1 | 1 | 1 | | 12 | 144 | 24 | 4 | 2 | 2 | 1 | 1 | | 13 | 256 | 32 | 4 | 2 | 2 | 1 | 1 | | 14 | 512 | 64 | 8 | 2 | 2 | 2 | 1 | | 15 | 1024 | 128 | 16 | 4 | 2 | 2 | 1 | | 16 | 2048 | 256 | 32 | 4 | 2 | 2 | 2 | | 17 | 2816-3276 | 258-340 | 36 | 6 | 2 | 2 | 2 | | 18 | 5632-6552 | 512-673 | 64 | 10 | 4 | 2 | 2 | | 19 | 10496-13104 | 1024-1237 | 128 | 20 | 4 | 2 | 2 | | 20 | 20480-26168 | 2048-2279 | 256 | 40 | 6 | 2 | 2 | | 21 | 40960-43688 | 2560-4096 | 512 | 42-47 | 8 | 4 | 2 | | 22 | 81920-87333 | 4096-6941 | 1024 | 64-84 | 12 | 4 | 2 | | 23 | 163840-172361 | 8192-13674 | 2048 | 80-150 | 24 | 4 | 2 | | 24 | 327680-344308 | 16384-24106 | 4096 | 136-268 | 48 | 6 | 4 | | 25 | 219-599184 | 17920-47538 | 4096-5421 | 192-466 | 52-55 | 8 | 4 | | 26 | 220-1198368 | 32768-84260 | 4104-9275 | 384-836 | 64-96 | 14 | 4 | | 27 | 221-2396736 | 65536-157285 | 8192-17099 | 512-1585 | 128-169 | 28 | 6 | | 28 | 222-4792950 | 131072-291269 | 16384-32151 | 1024-2817 | 178-288 | 56 | 8 | | | | | | | | | |
The table above is an updated version of the table from M.R. Best, A.E. Brouwer, F.J. MacWilliams, A.M. Odlyzko & N.J.A. Sloane,Bounds for Binary Codes of Length Less than 25, IEEE Trans. Inf. Th. 24 (1978) 81-93 with (rather trivial) columns for d>10 added.
Since people have asked, we supply some moredetailon the system of inequalities used in the above paper.
Improvements since 1978:
A(10,4) = 40 and A(20,4) ≥ 20480, see M.R. Best,Binary codes with a minimum distance of four, IEEE Trans. Inf. Th. 26 (1980) 738-742.
A(11,4) = 72 and A(12,4) = 144, see P.R.J. Östergård, T. Baicheva & E. Kolev,Optimal binary one-error-correcting codes of length 10 have 72 codewords, IEEE Trans. Inform. Theory 45 (1999) 1229-1231.
A(17,4) ≥ 2720, see A.M. Romanov,New binary codes of minimal distance 3, Problemy Peredachi Informatsii 19 (1983) 101-102.
A(17,4) ≥ 2816, see Moshe Milshtein,A new binary code of length 16 and minimum distance 3, Information Processing Letters 115 (2015) 975-976.
A(18,4) ≥ 5312, code constructed by T. Etzion (1991). For a description, see G. Cohen, S. Litsyn, A. Lobstein & I. Honkala,Covering codes, 1997, p.58.
A(19,4) ≥ 10496, see H.O. Hämäläinen.Two new binary codes with minimum distance three, IEEE Trans. Inf. Th. 34 (1988) 875.
A(18,4) ≥ 5632 and A(22,4) ≥ 81920 (hence A(21,4) ≥ 40960), see Antti Laaksonen & Patric Östergård, arXiv:1604.06022, Apr 2016. That same paper, in its Jul 2016 version, also has_A_(24,4) ≥ 327680 and A(24,10) ≥ 136 and A(25,6) ≥ 17920.
A(17,8) = 36, see P.R.J. Östergård,On the size of optimal three-error-correcting binary codes of length 16, preprint, Jan 2011.
A(18,8) ≤ 72 and A(21,10) ≤ 48 and A(22,10) ≤ 88, see C.L.M. van Pul, On bounds on codes, Master's Thesis, Eindhoven, 1982.
A(20,8) = 256, via semidefinite programming by Gijswijt en Schrijver (pers. comm. A. Schrijver, 2009).
The lower bound A(26,8) ≥ 4104 is due to Henk van der Zee (pers. comm., 29 Jan 2012).
A(21,10) ≥ 42, see M.K. Kaikkonen,A new four-error-correcting code of length 20, IEEE Trans. Inf. Th. 35 (1989) 1344.
A(22,10) ≥ 50, A(23,10) ≥ 76, A(28,12) ≥ 178,A(29,10) ≥ 1460. see M.K. Kaikkonen, Codes from affine permutation groups, Des. Codes Cryptogr. 15 (1998) 183-186.
A(22,10) ≥ 64 and A(23,10) ≥ 80, see P.R.J. Östergård, Two new four-error-correcting binary codes, Des. Codes Cryptogr. 36 (2005) 327-329.
A(26,10) ≥ 384, see K. Elssel and K.-H. Zimmermann, Two new nonlinear binary codes, IEEE Trans. Inform. Theory 51 (2005) 1189-1190.
A(25,12) ≤ 56 and A(26,12) ≤ 98 are due to I. Honkala, thesis, 1987.
The values for n in the range 25..28 were taken from E. Agrell, A. Vardy, and K. Zeger,A table of upper bounds for binary codes, IEEE Trans. Inform. Theory 47 (2001) 3004-3006. They also give the bounds A(21,4) ≤ 43689,A(22,6) ≤ 6941 (both improving the previous upper bound by 1 using the "2 mod 4" argument).
The upper bounds A(23,4) ≤ 173015, A(26,6) ≤ 84260,A(27,6) ≤ 157286, A(25,8) ≤ 5557,A(26,8) ≤ 9673, A(26,10) ≤ 990 are from B. Mounits, T. Etzion, and S. Litsyn,Improved upper bounds on sizes of codes, preprint, May 2001.
The upper bounds A(21,4) ≤ 43688, A(25,4) ≤ 599184,A(27,6) ≤ 157285, A(26,8) ≤ 9672,A(28,8) ≤ 32204, A(26,10) ≤ 989 are from the published version of this same paper: B. Mounits, T. Etzion, and S. Litsyn,Improved upper bounds on sizes of codes, IEEE Trans. Inform. Theory 48 (2002) 880-886.
The upper bound A(24,4) ≤ 344308 follows from the Johnson bound.
The upper bounds A(19,6) ≤ 1280, A(19,8) ≤ 142, A(20,8) ≤ 274, A(22,10) ≤ 87, A(23,6) ≤ 13766, A(25,6) ≤ 48008, A(25,8) ≤ 5477, A(25,10) ≤ 503, A(26,10) ≤ 859, A(27,8) ≤ 17768, A(28,8) ≤ 32151 are due to A. Schrijver (pers. comm., March 2004). The preprint_New code upper bounds from the Terwilliger algebra_further improves this to A(25,6) ≤ 47998, but worsens things to A(26,10) ≤ 886.
The upper bounds A(20,8) ≤ 273 and_A_(25,6) ≤ 47997 are due to Monique Laurent,Strengthened semidefinite programming bounds for codes, Mathematical Programming (B) 109 (2007) 239-261.
The upper bounds A(22,4) ≤ 87333, A(23,4) ≤ 172361, A(25,6) ≤ 47538 are due to B. Mounits, T. Etzion, and S. Litsyn,New Upper Bounds on Codes via Association Schemes and Linear Programming, Advances of Math. in Communications 1 (2007) 173-195.
The upper bounds A(20,4) ≤ 26168 and A(28,4) ≤ 4792950 are due to W. Haas, On the Failing Cases of the Johnson Bound for Error-Correcting Codes, Electron. J. Combin. 15 (2008)#R55.
The upper bounds_A_(18,6) ≤ 673, A(19,6) ≤ 1237, A(20,6) ≤ 2279,A(23,6) ≤ 13674, A(19,8) ≤ 135, A(20,8) = 256,A(25,8) ≤ 5421, A(26,8) ≤ 9275, A(27,8) ≤ 17099,A(21,10) ≤ 47, A(22,10) ≤ 84,A(24,10) ≤ 268, A(25,10) ≤ 466, A(26,10) ≤ 836,A(27,10) ≤ 1585, A(28,10) ≤ 2817,A(25,12) ≤ 55, A(26,12) ≤ 96 are due to D.C. Gijswijt, H.D. Mittelmann & A. Schrijver,Semidefinite code bounds based on quadruple distances, IEEE Trans. Inform. Theory 58 (2012) 2697-2705.
The upper bounds_A_(18,8) ≤ 71, A(19,8) ≤ 131 are due to Hyun Kwang Kim & Phan Thanh Toan,Improved Semidefinite Programming Bound on Sizes of Codes, arXiv:1212.3467, Dec 2012.
The upper bound A(18,8) ≤ 68 is due to Patric R. J. Östergård,On optimal binary codes with unbalanced coordinates, Applicable Algebra in Engineering, Communication and Computing24 (2013) 197-200.
The upper bounds (and hence equalities)A(18,8) ≤ 64, A(19,8) ≤ 128 are due to Patric R. J. Östergård,The sextuply shortened binary Golay code is optimal, Des. Codes Crypto. 87 (2019) 341-347.doi
The lower bound A(17,6) ≥ 258 is due to Moshe Milshtein,A new two-error-correcting binary code of length 16, Cryptography and Communications (2019) 1-5.doi
Corrections and improvements are welcome.
Acknowledgement: Iiro Honkala, Moshe Milshtein and Sven Polak contributed references.
Andries Brouwer - aeb@cwi.nl
Next PreviousContents