Eric PARENT - Profile on Academia.edu (original) (raw)
Papers by Eric PARENT
HAL (Le Centre pour la Communication Scientifique Directe), Sep 8, 2010
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific r... more HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Le saumon atlantique est une espèce emblématique qui est à la fois un patrimoine naturel fragilis... more Le saumon atlantique est une espèce emblématique qui est à la fois un patrimoine naturel fragilisé par l'action de l'homme et une ressource naturelle renouvelable exploitée par pêche. Dans une perspective de recherche finalisée visant à éclairer les choix de gestion concernant cette espèce, la modélisation statistique est une voie d'approche qui permet tout à la fois de synthétiser des connaissances, rendre compte des incertitudes, faire des inférences à partir de données observées, faire des simulations prédictives. En illustrant par des études de cas réels, la mise en oeuvre de la modélisation statistique est démontrée en insistant sur le transferts d'information via des structures hiérarchiques, la prise en compte simultanée de la stochasticité des processus et des erreurs d'observations dans les modèles de dynamique des populations, l'application de la théorie de la décision pour comparer des stratégies de gestion à la recherche d'un compromis entre des objectifs contradictoires. L'ensemble des travaux présentés ont été mis en oeuvre en adoptant le point de vue de la théorique statistique Bayesienne qui offre un cadre unique, cohérent et pratiquement efficace pour traiter l'ensemble de points évoqués précédemment.
arXiv (Cornell University), Aug 1, 2018
Invasion of new territories by alien organisms is of primary concern for environmental and health... more Invasion of new territories by alien organisms is of primary concern for environmental and health agencies and has been a core topic in mathematical modeling, in particular in the intents of reconstructing the past dynamics of the alien organisms and predicting their future spatial extents. Partial differential equations offer a rich and flexible modeling framework that has been applied to a large number of invasions. In this article, we are specifically interested in dating and localizing the introduction that led to an invasion using mathematical modeling, post-introduction data and an adequate statistical inference procedure. We adopt a mechanistic-statistical approach grounded on a coupled reaction-diffusion-absorption model representing the dynamics of an organism in an heterogeneous domain with respect to growth. Initial conditions (including the date and site of the introduction) and model parameters related to diffusion, reproduction and mortality are jointly estimated in the Bayesian framework by using an adaptive importance sampling algorithm. This framework is applied to the invasion of Xylella fastidiosa, a phytopathogenic bacterium detected in South Corsica in 2015, France.
arXiv (Cornell University), Sep 21, 2018
In this paper, we propose a practical Bayesian framework for the calibration and validation of a ... more In this paper, we propose a practical Bayesian framework for the calibration and validation of a computer code, and apply it to a case study concerning the energy consumption forecasting of a building. Validation allows to quantify forecasting uncertainties in view of the code's final use. Here we explore the situation where an energy provider promotes new energy contracts for residential buildings, tailored to each customer's needs, and including a guarantee of energy performance. Based on power field measurements, collected from an experimental building cell over a certain time period, the code is calibrated, effectively reducing the epistemic uncertainty affecting some code parameters (here albedo, thermal bridge factor and convective coefficient). Validation is conducted by testing the goodness of fit of the code with respect to field measures, and then by propagating the a posteriori parametric uncertainty through the code, yielding probabilistic forecasts of the average electric power delivered inside the cell over a given time period. To illustrate the benefits of the proposed Bayesian validation framework, we address the decision problem for an energy supplier offering a new type of contract, wherein the customer pays a fixed fee chosen in advance, based on an overall energy consumption forecast. According to Bayesian decision theory, we show how to choose such a fee optimally from the point of view of the supplier, in order to balance short-terms benefits with customer loyalty.
HAL (Le Centre pour la Communication Scientifique Directe), 2017
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific r... more HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Journal of Mathematical Biology, May 16, 2019
Invasion of new territories by alien organisms is of primary concern for environmental and health... more Invasion of new territories by alien organisms is of primary concern for environmental and health agencies and has been a core topic in mathematical modeling, in particular in the intents of reconstructing the past dynamics of the alien organisms and predicting their future spatial extents. Partial differential equations offer a rich and flexible modeling framework that has been applied to a large number of invasions. In this article, we are specifically interested in dating and localizing the introduction that led to an invasion using mathematical modeling, post-introduction data and an adequate statistical inference procedure. We adopt a mechanistic-statistical approach grounded on a coupled reaction-diffusion-absorption model representing the dynamics of an organism in an heterogeneous domain with respect to growth. Initial conditions (including the date and site of the introduction) and model parameters related to diffusion, reproduction and mortality are jointly estimated in the Bayesian framework by using an adaptive importance sampling algorithm. This framework is applied to the invasion of Xylella fastidiosa, a phytopathogenic bacterium detected in South Corsica in 2015, France.
HAL (Le Centre pour la Communication Scientifique Directe), May 1, 2020
Bernier est un ancien ingénieur EDF et il fut un pionnier de l'enseignement de la décision statis... more Bernier est un ancien ingénieur EDF et il fut un pionnier de l'enseignement de la décision statistique à l'ISUP. Je témoigne de la qualité de son enseignement que j'ai jadis suivi avec plaisir. Depuis son départ à la retraite en 1991, Jacques Bernier continue à être très actif scientifiquement et à publier des articles de recherche en statistique bayésienne appliquée. Il est l'un des scientifiques qui aura le plus contribué à la diffusion et à la démonstration du potentiel de l'approche bayésienne en hydrologie. Son compère et disciple, Éric Parent, est ingénieur des Ponts, des Eaux et des Forêts. Il travaille aujourd'hui comme enseignant-chercheur en statistiques appliquées et en modélisation probabiliste pour l'ingénierie environnementale à AgroParisTech. Il a fait énormément pour la pénétration de bonnes pratiques bayésiennes en ingéniérie par les nombreuses recherches appliquées qu'il orchestre.
Journal of Agricultural Biological and Environmental Statistics, Mar 2, 2019
Meteorological ensemble members are a collection of scenarios for future weather issued by a mete... more Meteorological ensemble members are a collection of scenarios for future weather issued by a meteorological center. Such ensembles nowadays form the main source of valuable information for probabilistic forecasting which aims at producing a predictive probability distribution of the quantity of interest instead of a single best guess point-wise estimate. Unfortunately, ensemble members cannot generally be considered as a sample from such a predictive probability distribution without a preliminary post-processing treatment to re-calibrate the ensemble. Two main families of postprocessing methods, either competing such as the BMA or collaborative such as the EMOS, can be found in the literature. This paper proposes a mixed effect model belonging to the collaborative family. The structure of the model is formally justified by Bruno de Finetti's representation theorem which shows how to construct operational statistical models of ensemble based on judgments of invariance under the relabeling of the members. Its interesting specificities are as follows: 1) exchangeability contributes to parsimony, with an interpretation of the latent pivot of the ensemble in terms of a statistical synthesis of the essential meteorological features of the ensemble members, 2) a multi-ensemble implementation is straightforward, allowing to take advantage of various information so as to increase the sharpness of the forecasting procedure. Focus is cast onto Normal statistical structures, first with a direct application for temperatures, then with its very convenient Tobit extension for precipitation. Inference is performed by Expectation Maximization (EM) algorithms with both steps leading to explicit analytic expressions in the Gaussian temperature case and recourse is made to stochastic conditional simulations in the zero-inflated precipitation case. After checking its good behavior on artificial data, the proposed post-processing technique is applied to temperature and precipitation ensemble forecasts produced for lead times from 1 to 9 days over five river basins managed by Hydro-Québec, which ranks among the world's largest electric companies. These ensemble forecasts, provided by three meteorological global forecast centres (Canadian, US and European), were extracted from the THORPEX Interactive Grand Global Ensemble (TIGGE) database. The results indicate that post-processed ensembles are calibrated and generally sharper than the raw ensembles for the five watersheds under study.
HAL (Le Centre pour la Communication Scientifique Directe), May 22, 2009
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific r... more HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
HAL (Le Centre pour la Communication Scientifique Directe), 2015
Statistical decision theory provides an attractive framework to help choose decisions under uncer... more Statistical decision theory provides an attractive framework to help choose decisions under uncertainty. Unfortunately, it does not seem to be often implemented for specific applications. In this paper, we rely on this theory to determine the optimal sampling plan for a plant producing diced bacon. Sampling plans are widely used in the food industry to assess the quality of products. After presenting the most common sampling plan in use, we develop a Bayesian reanalysis to interpret the common practice for sampling by attribute. Then, we turn to a more elaborate problem and propose a way to get the best plan by minimizing the expected cost a food plant could face. Although the cost function was designed to be easily understandable by manufacturers, we encountered difficulties in determining the correct costs through discussion with an expert. After correction, our alternative approach gives applicable results. We finally discuss what we learnt from this practical experience and give our thoughts on how cost elicitation could be improved and extended by discussing with more manufacturers.
Econometrics
In this paper, we present a case study aimed at determining a billing plan that ensures customer ... more In this paper, we present a case study aimed at determining a billing plan that ensures customer loyalty and provides a profit for the energy company, whose point of view is taken in the paper. The energy provider promotes new contracts for residential buildings, in which customers pay a fixed rate chosen in advance, based on an overall energy consumption forecast. For such a purpose, we consider a practical Bayesian framework for the calibration and validation of a computer code used to forecast the energy consumption of a building. On the basis of power field measurements, collected from an experimental building cell in a given period of time, the code is calibrated, effectively reducing the epistemic uncertainty affecting the most relevant parameters of the code (albedo, thermal bridge factor, and convective coefficient). The validation is carried out by testing the goodness of fit of the code with respect to the field measurements, and then propagating the posterior parametric u...
arXiv (Cornell University), Aug 3, 2018
In this article, we present a recently released R package for Bayesian calibration. Many industri... more In this article, we present a recently released R package for Bayesian calibration. Many industrial fields are facing unfeasible or costly field experiments. These experiments are replaced with numerical/computer experiments which are realized by running a numerical code. Bayesian calibration intends to estimate, through a posterior distribution, input parameters of the code in order to make the code outputs close to the available experimental data. The code can be time consuming while the Bayesian calibration implies a lot of code calls which makes studies too burdensome. A discrepancy might also appear between the numerical code and the physical system when facing incompatibility between experimental data and numerical code outputs. The package CaliCo deals with these issues through four statistical models which deal with a time consuming code or not and with discrepancy or not. A guideline for users is provided in order to illustrate the main functions and their arguments. Eventually, a toy example is detailed using CaliCo. This example (based on a real physical system) is in five dimensions and uses simulated data.
HAL (Le Centre pour la Communication Scientifique Directe), May 1, 2020
Bernier est un ancien ingénieur EDF et il fut un pionnier de l'enseignement de la décision statis... more Bernier est un ancien ingénieur EDF et il fut un pionnier de l'enseignement de la décision statistique à l'ISUP. Je témoigne de la qualité de son enseignement que j'ai jadis suivi avec plaisir. Depuis son départ à la retraite en 1991, Jacques Bernier continue à être très actif scientifiquement et à publier des articles de recherche en statistique bayésienne appliquée. Il est l'un des scientifiques qui aura le plus contribué à la diffusion et à la démonstration du potentiel de l'approche bayésienne en hydrologie. Son compère et disciple, Éric Parent, est ingénieur des Ponts, des Eaux et des Forêts. Il travaille aujourd'hui comme enseignant-chercheur en statistiques appliquées et en modélisation probabiliste pour l'ingénierie environnementale à AgroParisTech. Il a fait énormément pour la pénétration de bonnes pratiques bayésiennes en ingéniérie par les nombreuses recherches appliquées qu'il orchestre.
HAL (Le Centre pour la Communication Scientifique Directe), Dec 31, 2020
Les méthodes de capture-marquage-recapture sont des méthodes astucieuses d'échantillonnage peu in... more Les méthodes de capture-marquage-recapture sont des méthodes astucieuses d'échantillonnage peu invasives pour évaluer le nombre d'individus dans une population. Utilisées principalement en écologie, elles trouvent aussi des applications de portée bien plus large pour des enquêtes discrètes dans divers domaines. Du point de vue de la pédagogie, elles permettent d'illustrer de façon simple, pratique et vivante de nombreux points clés du raisonnement probabiliste indispensables au statisticien-modélisateur. A l'aide d'une expérience ludique facile à effectuer en salle avec des gommettes, des haricots secs, une cuillère à soupe et un saladier, nous montrons comment aborder de façon simple et intéressante les points-clés suivants dans le cadre d'un problème d'estimation de la taille inconnue d'une population : -les ingrédients de base du problème de statistique inférentielle considéré, en particulier, inconnues versus observables ; -la construction d'un modèle probabiliste/stochastique possible, fondé sur l'assemblage de plusieurs briques binomiales élémentaires, ainsi que les différentes décompositions possibles de la vraisemblance associée ; -la recherche d'estimateurs, leur étude théorique ainsi que la comparaison de leurs propriétés mathématiques par simulation numérique ; -les différences opérationnelles majeures entre approches statistiques fréquentielle et bayésienne. Cette expérience permet également d'illustrer en quoi le travail d'un statisticienmodélisateur ressemble bien souvent à celui d'un enquêteur de police.... Mots-clés. Capture-marquage-recapture, estimation, loi binomiale, raisonnement probabiliste, statistique bayésienne.
Statistique et Société, Dec 31, 2020
Les méthodes de capture-marquage-recapture sont des méthodes astucieuses d'échantillonnage peu in... more Les méthodes de capture-marquage-recapture sont des méthodes astucieuses d'échantillonnage peu invasives pour évaluer le nombre d'individus dans une population. Utilisées principalement en écologie, elles trouvent aussi des applications de portée bien plus large dans divers domaines tels que la sociologie et la psychologie expérimentales. Du point de vue de la pédagogie, elles permettent d'illustrer de façon simple, pratique et vivante de nombreux points clés du raisonnement probabiliste indispensables au statisticien-modélisateur. A l'aide d'une expérience ludique facile à effectuer en salle avec des gommettes, des haricots secs, une cuillère à soupe et un saladier, nous montrons comment aborder de façon simple et intéressante les points-clés suivants dans le cadre d'un problème d'estimation de la taille inconnue d'une population : -les ingrédients de base du problème de statistique inférentielle considéré, en particulier, inconnues versus observables ; -la construction d'un modèle probabiliste/stochastique possible, fondé sur l'assemblage de plusieurs briques binomiales élémentaires, ainsi que les différentes décompositions possibles de la vraisemblance associée ; -la recherche d'estimateurs, leur étude théorique ainsi que la comparaison de leurs propriétés mathématiques par simulation numérique ; -les différences opérationnelles majeures entre approches statistiques fréquentielle et bayésienne. Cette expérience permet également d'illustrer en quoi le travail d'un statisticienmodélisateur ressemble bien souvent à celui d'un enquêteur de police.... Mots-clés. Capture-marquage-recapture, estimation, loi binomiale, raisonnement probabiliste, statistique bayésienne.
Statistical decision theory provides an attractive framework to help choose decisions under uncer... more Statistical decision theory provides an attractive framework to help choose decisions under uncertainty. Unfortunately, it does not seem to be often implemented for specific applications. In this paper, we rely on this theory to determine the optimal sampling plan for a plant producing diced bacon. Sampling plans are widely used in the food industry to assess the quality of products. After presenting the most common sampling plan in use, we developa Bayesian reanalysis to interpret the common practice for sampling by attribute. Then, we turn to a more elaborate problem and propose a way to get the best plan by minimizing the expected cost a food plant could face. Although the cost function was designed to be easily understandable by manufacturers, we encountered difficulties in determining the correct costs through discussion with an expert. After correction, our alternative approach gives applicable results. We finally discuss what we learnt from this practical experience and give ...
arXiv: Computation, 2018
Field experiments are often difficult and expensive to make. To bypass these issues, industrial c... more Field experiments are often difficult and expensive to make. To bypass these issues, industrial companies have developed computational codes. These codes intend to be representative of the physical system, but come with a certain amount of problems. Code validation is representative of one of these issues, related to the fact that the code intends to be as close as possible to the physical system. It turns out that, despite continuous code development, the difference between code output and experiments can remain significant. Two kinds of uncertainties are observed. The first comes from the difference between the physical phenomenon and the values recorded experimentally which is often represented by a white Gaussian noise. The second concerns the gap between the code and the physical system. To reduce this difference, often named model bias, or model error, computer codes are generally complexified in order to make them more realistic. These improvements lead to time consuming code...
as the IPCC pointed out the large uncertainty on soil carbon stock and its potential impact on fu... more as the IPCC pointed out the large uncertainty on soil carbon stock and its potential impact on future climate change. The increase in soil carbon stock is foreseen as a solution to mitigate global warming but this is relevant only if the storage is perennial. Therefore, C content has to be used as an indicator of durability of soil carbon stock. Our aim in this study is to identify the climatic and environmental factors that affect the most the soil C dynamics, although the many sources of uncertainty blurring the C response. For this purpose, we investigate a statistical model selection procedure.
La Houille Blanche, 2018
Le zonage des risques en montagne reste pensé comme une procédure normative issue de la transposi... more Le zonage des risques en montagne reste pensé comme une procédure normative issue de la transposition du « modèle inondation ». Au cœur de ce schéma figure le phénomène centennal, référence probabiliste d'une définition problématique, inadaptée à des phénomènes destructeurs, et peu interprétable en termes d'exposition. Ces insuffisances sont sources d'incompréhensions, et elle rend nécessaire des raccourcis et des pratiques de terrain sécuritaires. Cet article propose un changement de paradigme. Le zonage y est envisagé comme la un compromis entre les pertes dues au phénomène dommageable et les restrictions que la société s'impose. L'état des connaissances scientifiques ne permet pour l'instant pas de définir une procédure directive complète qu'il ne revient de toute façon pas à la sphère technique d'énoncer. En revanche, cartographier le risque individuel en combinant modèle d'aléa et susceptibilité au dommages pour différents types d'enjeux ...
Quality and Reliability Engineering International, 2016
Complex physical systems are increasingly modeled by computer codes which aim at predicting the r... more Complex physical systems are increasingly modeled by computer codes which aim at predicting the reality as accurately as possible. During the last decade, code validation has benefited from a large interest within the scientific community because of the requirement to assess the uncertainty affecting the code outputs. Inspiring from past contributions to this task, a testing procedure is proposed in this paper to decide either a pure code prediction or a discrepancy‐corrected one should be used to provide the best approximation of the physical system.In a particular case where the computer code depends on uncertain parameters, this problem of model selection can be carried out in a Bayesian setting. It requires the specification of proper prior distributions that are well known as having a strong impact on the results. Another way consists in specifying non‐informative priors. However, they are sometimes improper, which is a major barrier for computing the Bayes factor. A way to ove...
HAL (Le Centre pour la Communication Scientifique Directe), Sep 8, 2010
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific r... more HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Le saumon atlantique est une espèce emblématique qui est à la fois un patrimoine naturel fragilis... more Le saumon atlantique est une espèce emblématique qui est à la fois un patrimoine naturel fragilisé par l'action de l'homme et une ressource naturelle renouvelable exploitée par pêche. Dans une perspective de recherche finalisée visant à éclairer les choix de gestion concernant cette espèce, la modélisation statistique est une voie d'approche qui permet tout à la fois de synthétiser des connaissances, rendre compte des incertitudes, faire des inférences à partir de données observées, faire des simulations prédictives. En illustrant par des études de cas réels, la mise en oeuvre de la modélisation statistique est démontrée en insistant sur le transferts d'information via des structures hiérarchiques, la prise en compte simultanée de la stochasticité des processus et des erreurs d'observations dans les modèles de dynamique des populations, l'application de la théorie de la décision pour comparer des stratégies de gestion à la recherche d'un compromis entre des objectifs contradictoires. L'ensemble des travaux présentés ont été mis en oeuvre en adoptant le point de vue de la théorique statistique Bayesienne qui offre un cadre unique, cohérent et pratiquement efficace pour traiter l'ensemble de points évoqués précédemment.
arXiv (Cornell University), Aug 1, 2018
Invasion of new territories by alien organisms is of primary concern for environmental and health... more Invasion of new territories by alien organisms is of primary concern for environmental and health agencies and has been a core topic in mathematical modeling, in particular in the intents of reconstructing the past dynamics of the alien organisms and predicting their future spatial extents. Partial differential equations offer a rich and flexible modeling framework that has been applied to a large number of invasions. In this article, we are specifically interested in dating and localizing the introduction that led to an invasion using mathematical modeling, post-introduction data and an adequate statistical inference procedure. We adopt a mechanistic-statistical approach grounded on a coupled reaction-diffusion-absorption model representing the dynamics of an organism in an heterogeneous domain with respect to growth. Initial conditions (including the date and site of the introduction) and model parameters related to diffusion, reproduction and mortality are jointly estimated in the Bayesian framework by using an adaptive importance sampling algorithm. This framework is applied to the invasion of Xylella fastidiosa, a phytopathogenic bacterium detected in South Corsica in 2015, France.
arXiv (Cornell University), Sep 21, 2018
In this paper, we propose a practical Bayesian framework for the calibration and validation of a ... more In this paper, we propose a practical Bayesian framework for the calibration and validation of a computer code, and apply it to a case study concerning the energy consumption forecasting of a building. Validation allows to quantify forecasting uncertainties in view of the code's final use. Here we explore the situation where an energy provider promotes new energy contracts for residential buildings, tailored to each customer's needs, and including a guarantee of energy performance. Based on power field measurements, collected from an experimental building cell over a certain time period, the code is calibrated, effectively reducing the epistemic uncertainty affecting some code parameters (here albedo, thermal bridge factor and convective coefficient). Validation is conducted by testing the goodness of fit of the code with respect to field measures, and then by propagating the a posteriori parametric uncertainty through the code, yielding probabilistic forecasts of the average electric power delivered inside the cell over a given time period. To illustrate the benefits of the proposed Bayesian validation framework, we address the decision problem for an energy supplier offering a new type of contract, wherein the customer pays a fixed fee chosen in advance, based on an overall energy consumption forecast. According to Bayesian decision theory, we show how to choose such a fee optimally from the point of view of the supplier, in order to balance short-terms benefits with customer loyalty.
HAL (Le Centre pour la Communication Scientifique Directe), 2017
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific r... more HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Journal of Mathematical Biology, May 16, 2019
Invasion of new territories by alien organisms is of primary concern for environmental and health... more Invasion of new territories by alien organisms is of primary concern for environmental and health agencies and has been a core topic in mathematical modeling, in particular in the intents of reconstructing the past dynamics of the alien organisms and predicting their future spatial extents. Partial differential equations offer a rich and flexible modeling framework that has been applied to a large number of invasions. In this article, we are specifically interested in dating and localizing the introduction that led to an invasion using mathematical modeling, post-introduction data and an adequate statistical inference procedure. We adopt a mechanistic-statistical approach grounded on a coupled reaction-diffusion-absorption model representing the dynamics of an organism in an heterogeneous domain with respect to growth. Initial conditions (including the date and site of the introduction) and model parameters related to diffusion, reproduction and mortality are jointly estimated in the Bayesian framework by using an adaptive importance sampling algorithm. This framework is applied to the invasion of Xylella fastidiosa, a phytopathogenic bacterium detected in South Corsica in 2015, France.
HAL (Le Centre pour la Communication Scientifique Directe), May 1, 2020
Bernier est un ancien ingénieur EDF et il fut un pionnier de l'enseignement de la décision statis... more Bernier est un ancien ingénieur EDF et il fut un pionnier de l'enseignement de la décision statistique à l'ISUP. Je témoigne de la qualité de son enseignement que j'ai jadis suivi avec plaisir. Depuis son départ à la retraite en 1991, Jacques Bernier continue à être très actif scientifiquement et à publier des articles de recherche en statistique bayésienne appliquée. Il est l'un des scientifiques qui aura le plus contribué à la diffusion et à la démonstration du potentiel de l'approche bayésienne en hydrologie. Son compère et disciple, Éric Parent, est ingénieur des Ponts, des Eaux et des Forêts. Il travaille aujourd'hui comme enseignant-chercheur en statistiques appliquées et en modélisation probabiliste pour l'ingénierie environnementale à AgroParisTech. Il a fait énormément pour la pénétration de bonnes pratiques bayésiennes en ingéniérie par les nombreuses recherches appliquées qu'il orchestre.
Journal of Agricultural Biological and Environmental Statistics, Mar 2, 2019
Meteorological ensemble members are a collection of scenarios for future weather issued by a mete... more Meteorological ensemble members are a collection of scenarios for future weather issued by a meteorological center. Such ensembles nowadays form the main source of valuable information for probabilistic forecasting which aims at producing a predictive probability distribution of the quantity of interest instead of a single best guess point-wise estimate. Unfortunately, ensemble members cannot generally be considered as a sample from such a predictive probability distribution without a preliminary post-processing treatment to re-calibrate the ensemble. Two main families of postprocessing methods, either competing such as the BMA or collaborative such as the EMOS, can be found in the literature. This paper proposes a mixed effect model belonging to the collaborative family. The structure of the model is formally justified by Bruno de Finetti's representation theorem which shows how to construct operational statistical models of ensemble based on judgments of invariance under the relabeling of the members. Its interesting specificities are as follows: 1) exchangeability contributes to parsimony, with an interpretation of the latent pivot of the ensemble in terms of a statistical synthesis of the essential meteorological features of the ensemble members, 2) a multi-ensemble implementation is straightforward, allowing to take advantage of various information so as to increase the sharpness of the forecasting procedure. Focus is cast onto Normal statistical structures, first with a direct application for temperatures, then with its very convenient Tobit extension for precipitation. Inference is performed by Expectation Maximization (EM) algorithms with both steps leading to explicit analytic expressions in the Gaussian temperature case and recourse is made to stochastic conditional simulations in the zero-inflated precipitation case. After checking its good behavior on artificial data, the proposed post-processing technique is applied to temperature and precipitation ensemble forecasts produced for lead times from 1 to 9 days over five river basins managed by Hydro-Québec, which ranks among the world's largest electric companies. These ensemble forecasts, provided by three meteorological global forecast centres (Canadian, US and European), were extracted from the THORPEX Interactive Grand Global Ensemble (TIGGE) database. The results indicate that post-processed ensembles are calibrated and generally sharper than the raw ensembles for the five watersheds under study.
HAL (Le Centre pour la Communication Scientifique Directe), May 22, 2009
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific r... more HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
HAL (Le Centre pour la Communication Scientifique Directe), 2015
Statistical decision theory provides an attractive framework to help choose decisions under uncer... more Statistical decision theory provides an attractive framework to help choose decisions under uncertainty. Unfortunately, it does not seem to be often implemented for specific applications. In this paper, we rely on this theory to determine the optimal sampling plan for a plant producing diced bacon. Sampling plans are widely used in the food industry to assess the quality of products. After presenting the most common sampling plan in use, we develop a Bayesian reanalysis to interpret the common practice for sampling by attribute. Then, we turn to a more elaborate problem and propose a way to get the best plan by minimizing the expected cost a food plant could face. Although the cost function was designed to be easily understandable by manufacturers, we encountered difficulties in determining the correct costs through discussion with an expert. After correction, our alternative approach gives applicable results. We finally discuss what we learnt from this practical experience and give our thoughts on how cost elicitation could be improved and extended by discussing with more manufacturers.
Econometrics
In this paper, we present a case study aimed at determining a billing plan that ensures customer ... more In this paper, we present a case study aimed at determining a billing plan that ensures customer loyalty and provides a profit for the energy company, whose point of view is taken in the paper. The energy provider promotes new contracts for residential buildings, in which customers pay a fixed rate chosen in advance, based on an overall energy consumption forecast. For such a purpose, we consider a practical Bayesian framework for the calibration and validation of a computer code used to forecast the energy consumption of a building. On the basis of power field measurements, collected from an experimental building cell in a given period of time, the code is calibrated, effectively reducing the epistemic uncertainty affecting the most relevant parameters of the code (albedo, thermal bridge factor, and convective coefficient). The validation is carried out by testing the goodness of fit of the code with respect to the field measurements, and then propagating the posterior parametric u...
arXiv (Cornell University), Aug 3, 2018
In this article, we present a recently released R package for Bayesian calibration. Many industri... more In this article, we present a recently released R package for Bayesian calibration. Many industrial fields are facing unfeasible or costly field experiments. These experiments are replaced with numerical/computer experiments which are realized by running a numerical code. Bayesian calibration intends to estimate, through a posterior distribution, input parameters of the code in order to make the code outputs close to the available experimental data. The code can be time consuming while the Bayesian calibration implies a lot of code calls which makes studies too burdensome. A discrepancy might also appear between the numerical code and the physical system when facing incompatibility between experimental data and numerical code outputs. The package CaliCo deals with these issues through four statistical models which deal with a time consuming code or not and with discrepancy or not. A guideline for users is provided in order to illustrate the main functions and their arguments. Eventually, a toy example is detailed using CaliCo. This example (based on a real physical system) is in five dimensions and uses simulated data.
HAL (Le Centre pour la Communication Scientifique Directe), May 1, 2020
Bernier est un ancien ingénieur EDF et il fut un pionnier de l'enseignement de la décision statis... more Bernier est un ancien ingénieur EDF et il fut un pionnier de l'enseignement de la décision statistique à l'ISUP. Je témoigne de la qualité de son enseignement que j'ai jadis suivi avec plaisir. Depuis son départ à la retraite en 1991, Jacques Bernier continue à être très actif scientifiquement et à publier des articles de recherche en statistique bayésienne appliquée. Il est l'un des scientifiques qui aura le plus contribué à la diffusion et à la démonstration du potentiel de l'approche bayésienne en hydrologie. Son compère et disciple, Éric Parent, est ingénieur des Ponts, des Eaux et des Forêts. Il travaille aujourd'hui comme enseignant-chercheur en statistiques appliquées et en modélisation probabiliste pour l'ingénierie environnementale à AgroParisTech. Il a fait énormément pour la pénétration de bonnes pratiques bayésiennes en ingéniérie par les nombreuses recherches appliquées qu'il orchestre.
HAL (Le Centre pour la Communication Scientifique Directe), Dec 31, 2020
Les méthodes de capture-marquage-recapture sont des méthodes astucieuses d'échantillonnage peu in... more Les méthodes de capture-marquage-recapture sont des méthodes astucieuses d'échantillonnage peu invasives pour évaluer le nombre d'individus dans une population. Utilisées principalement en écologie, elles trouvent aussi des applications de portée bien plus large pour des enquêtes discrètes dans divers domaines. Du point de vue de la pédagogie, elles permettent d'illustrer de façon simple, pratique et vivante de nombreux points clés du raisonnement probabiliste indispensables au statisticien-modélisateur. A l'aide d'une expérience ludique facile à effectuer en salle avec des gommettes, des haricots secs, une cuillère à soupe et un saladier, nous montrons comment aborder de façon simple et intéressante les points-clés suivants dans le cadre d'un problème d'estimation de la taille inconnue d'une population : -les ingrédients de base du problème de statistique inférentielle considéré, en particulier, inconnues versus observables ; -la construction d'un modèle probabiliste/stochastique possible, fondé sur l'assemblage de plusieurs briques binomiales élémentaires, ainsi que les différentes décompositions possibles de la vraisemblance associée ; -la recherche d'estimateurs, leur étude théorique ainsi que la comparaison de leurs propriétés mathématiques par simulation numérique ; -les différences opérationnelles majeures entre approches statistiques fréquentielle et bayésienne. Cette expérience permet également d'illustrer en quoi le travail d'un statisticienmodélisateur ressemble bien souvent à celui d'un enquêteur de police.... Mots-clés. Capture-marquage-recapture, estimation, loi binomiale, raisonnement probabiliste, statistique bayésienne.
Statistique et Société, Dec 31, 2020
Les méthodes de capture-marquage-recapture sont des méthodes astucieuses d'échantillonnage peu in... more Les méthodes de capture-marquage-recapture sont des méthodes astucieuses d'échantillonnage peu invasives pour évaluer le nombre d'individus dans une population. Utilisées principalement en écologie, elles trouvent aussi des applications de portée bien plus large dans divers domaines tels que la sociologie et la psychologie expérimentales. Du point de vue de la pédagogie, elles permettent d'illustrer de façon simple, pratique et vivante de nombreux points clés du raisonnement probabiliste indispensables au statisticien-modélisateur. A l'aide d'une expérience ludique facile à effectuer en salle avec des gommettes, des haricots secs, une cuillère à soupe et un saladier, nous montrons comment aborder de façon simple et intéressante les points-clés suivants dans le cadre d'un problème d'estimation de la taille inconnue d'une population : -les ingrédients de base du problème de statistique inférentielle considéré, en particulier, inconnues versus observables ; -la construction d'un modèle probabiliste/stochastique possible, fondé sur l'assemblage de plusieurs briques binomiales élémentaires, ainsi que les différentes décompositions possibles de la vraisemblance associée ; -la recherche d'estimateurs, leur étude théorique ainsi que la comparaison de leurs propriétés mathématiques par simulation numérique ; -les différences opérationnelles majeures entre approches statistiques fréquentielle et bayésienne. Cette expérience permet également d'illustrer en quoi le travail d'un statisticienmodélisateur ressemble bien souvent à celui d'un enquêteur de police.... Mots-clés. Capture-marquage-recapture, estimation, loi binomiale, raisonnement probabiliste, statistique bayésienne.
Statistical decision theory provides an attractive framework to help choose decisions under uncer... more Statistical decision theory provides an attractive framework to help choose decisions under uncertainty. Unfortunately, it does not seem to be often implemented for specific applications. In this paper, we rely on this theory to determine the optimal sampling plan for a plant producing diced bacon. Sampling plans are widely used in the food industry to assess the quality of products. After presenting the most common sampling plan in use, we developa Bayesian reanalysis to interpret the common practice for sampling by attribute. Then, we turn to a more elaborate problem and propose a way to get the best plan by minimizing the expected cost a food plant could face. Although the cost function was designed to be easily understandable by manufacturers, we encountered difficulties in determining the correct costs through discussion with an expert. After correction, our alternative approach gives applicable results. We finally discuss what we learnt from this practical experience and give ...
arXiv: Computation, 2018
Field experiments are often difficult and expensive to make. To bypass these issues, industrial c... more Field experiments are often difficult and expensive to make. To bypass these issues, industrial companies have developed computational codes. These codes intend to be representative of the physical system, but come with a certain amount of problems. Code validation is representative of one of these issues, related to the fact that the code intends to be as close as possible to the physical system. It turns out that, despite continuous code development, the difference between code output and experiments can remain significant. Two kinds of uncertainties are observed. The first comes from the difference between the physical phenomenon and the values recorded experimentally which is often represented by a white Gaussian noise. The second concerns the gap between the code and the physical system. To reduce this difference, often named model bias, or model error, computer codes are generally complexified in order to make them more realistic. These improvements lead to time consuming code...
as the IPCC pointed out the large uncertainty on soil carbon stock and its potential impact on fu... more as the IPCC pointed out the large uncertainty on soil carbon stock and its potential impact on future climate change. The increase in soil carbon stock is foreseen as a solution to mitigate global warming but this is relevant only if the storage is perennial. Therefore, C content has to be used as an indicator of durability of soil carbon stock. Our aim in this study is to identify the climatic and environmental factors that affect the most the soil C dynamics, although the many sources of uncertainty blurring the C response. For this purpose, we investigate a statistical model selection procedure.
La Houille Blanche, 2018
Le zonage des risques en montagne reste pensé comme une procédure normative issue de la transposi... more Le zonage des risques en montagne reste pensé comme une procédure normative issue de la transposition du « modèle inondation ». Au cœur de ce schéma figure le phénomène centennal, référence probabiliste d'une définition problématique, inadaptée à des phénomènes destructeurs, et peu interprétable en termes d'exposition. Ces insuffisances sont sources d'incompréhensions, et elle rend nécessaire des raccourcis et des pratiques de terrain sécuritaires. Cet article propose un changement de paradigme. Le zonage y est envisagé comme la un compromis entre les pertes dues au phénomène dommageable et les restrictions que la société s'impose. L'état des connaissances scientifiques ne permet pour l'instant pas de définir une procédure directive complète qu'il ne revient de toute façon pas à la sphère technique d'énoncer. En revanche, cartographier le risque individuel en combinant modèle d'aléa et susceptibilité au dommages pour différents types d'enjeux ...
Quality and Reliability Engineering International, 2016
Complex physical systems are increasingly modeled by computer codes which aim at predicting the r... more Complex physical systems are increasingly modeled by computer codes which aim at predicting the reality as accurately as possible. During the last decade, code validation has benefited from a large interest within the scientific community because of the requirement to assess the uncertainty affecting the code outputs. Inspiring from past contributions to this task, a testing procedure is proposed in this paper to decide either a pure code prediction or a discrepancy‐corrected one should be used to provide the best approximation of the physical system.In a particular case where the computer code depends on uncertain parameters, this problem of model selection can be carried out in a Bayesian setting. It requires the specification of proper prior distributions that are well known as having a strong impact on the results. Another way consists in specifying non‐informative priors. However, they are sometimes improper, which is a major barrier for computing the Bayes factor. A way to ove...