Thomas Leeper | University of Akron (original) (raw)

Papers by Thomas Leeper

Research paper thumbnail of The structure of an enzyme-activating fragment of human telomerase RNA

Rna-a Publication of The Rna Society, 2005

The ribonucleoprotein enzyme telomerase ensures the stability and fidelity of linear chromosome e... more The ribonucleoprotein enzyme telomerase ensures the stability and fidelity of linear chromosome ends by elongating the telomeric DNA that is lost during each round of DNA replication. All telomerases contain a catalytic protein component homologous to viral reverse transcriptases (TERT) and an RNA (TR) that provides the template sequence, acts as the scaffold for ribonucleoprotein assembly, and activates the enzyme for catalysis. Vertebrate telomerase RNAs contain three highly conserved structural and functional domains: the template domain, the "CR4-CR5" or "activation" domain essential for activation of the enzymatic activity, and a 3-terminal "box H/ACA"-homology domain responsible for ribonucleprotein assembly and maturation. Here we report the NMR structure of a functionally essential RNA structural element derived from the human telomerase RNA CR4-CR5 domain. This RNA, referred to as hTR J6, forms a stable hairpin interrupted by a single nucleotide bulge and an asymmetric internal loop. Previous work on telomerase has shown that deletion of the hTR J6 asymmetric internal loop results in an RNA incapable of binding the enzymatic protein component of the RNP and therefore an inactive RNP without telomerase activity. We demonstrate here that the J6 internal loop introduces a twist in the RNA structure that may position the entire domain into the catalytic site of the enzyme. .

Research paper thumbnail of TAR RNA Recognition by a Cyclic Peptidomimetic of Tat Protein

Biochemistry, 2005

The search for new antiviral drugs that repress HIV viral replication by blocking transactivation... more The search for new antiviral drugs that repress HIV viral replication by blocking transactivation of viral RNA transcription has long been advocated as an approach to novel antiviral therapy. However, research in this area has so far failed to yield attractive lead compounds because of the insufficient development of RNA-based medicinal chemistry. One difficulty in efforts to inhibit protein-RNA interactions using small druglike molecules is the large surface areas typically found at these interfaces. To overcome this problem, we sought to identify constrained peptidomimetic inhibitors that would provide potential new drug leads. We previously reported the discovery of a cyclic peptide mimic of the RNAbinding domain of BIV Tat protein based on a designed -hairpin scaffold. We demonstrated that the cyclic peptide bound BIV TAR RNA with an affinity comparable to that of the RNA-binding domain of the Tat protein and inhibited protein binding to the RNA. In this study, we report the structure of the complex of the cyclic peptide bound to BIV TAR RNA determined using heteronuclear NMR methods. The structure reveals a -hairpin conformation in the bound peptide, which adopts an unexpected orientation in the major groove of the RNA opposite those observed for peptides derived from the Tat protein. This structure suggests many ways in which to optimize the compound and enhance its activity and pharmacological potential and represents a further step in the rational design of a new class of HIV-1 virus replication inhibitors based on peptidomimetic chemistry. † This work was supported by a grant from NIH-NIAID (to G.V.) and from the SNF (to J.A.R.). ‡ Coordinates for the BIV-2 peptide/TAR RNA complex have been deposited in the Protein Data Bank (PDB) as entry 2A9X.

Research paper thumbnail of Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain

Nature Structural & Molecular Biology, 2010

Phosphorylation of the C-terminal domain of RNA polymerase II controls the co-transcriptional ass... more Phosphorylation of the C-terminal domain of RNA polymerase II controls the co-transcriptional assembly of RNA processing and transcription factors. Recruitment relies on conserved CTDinteracting domains that recognize different CTD phosphoisoforms during the transcription cycle, but the molecular basis for their specificity remains unclear. We show that the CTD-interacting domains of two transcription termination factors, Rtt103 and Pcf11, achieve high affinity and specificity both by specifically recognizing the phosphorylated CTD and by cooperatively binding to neighboring CTD repeats. Single amino acid mutations at the protein-protein interface abolish cooperativity and affect recruitment at the 3′-end processing site in vivo. We suggest that this cooperativity provides a signal-response mechanism to ensure that its action is confined only to proper polyadenylation sites where Serine 2 phosphorylation density is highest.

Research paper thumbnail of Simultaneous recognition of HIV1 TAR RNA bulge and loop sequences by cyclic peptide mimics of Tat protein

Proceedings of The National Academy of Sciences, 2009

The interaction of the HIV-1 transactivator protein Tat with its transactivation response (TAR) R... more The interaction of the HIV-1 transactivator protein Tat with its transactivation response (TAR) RNA is an essential step in viral replication and therefore an attractive target for developing antivirals with new mechanisms of action. Numerous compounds that bind to the 3-nt bulge responsible for binding Tat have been identified in the past, but none of these molecules had sufficient potency to warrant pharmaceutical development. We have discovered conformationally-constrained cyclic peptide mimetics of Tat that are specific nM inhibitors of the Tat-TAR interaction by using a structure-based approach. The lead peptides are nearly as active as the antiviral drug nevirapine against a variety of clinical isolates in human lymphocytes. The NMR structure of a peptide-RNA complex reveals that these molecules interfere with the recruitment to TAR of both Tat and the essential cellular cofactor transcription elongation factor-b (P-TEFb) by binding simultaneously at the RNA bulge and apical loop, forming an unusually deep pocket. This structure illustrates additional principles in RNA recognition: RNA-binding molecules can achieve specificity by interacting simultaneously with multiple secondary structure elements and by inducing the formation of deep binding pockets in their targets. It also provides insight into the P-TEFb binding site and a rational basis for optimizing the promising antiviral activity observed for these cyclic peptides.

Research paper thumbnail of The solution structure of an essential stem-loop of human telomerase RNA

Nucleic Acids Research, 2003

The ribonucleoprotein enzyme telomerase maintains chromosome ends in most eukaryotes and is criti... more The ribonucleoprotein enzyme telomerase maintains chromosome ends in most eukaryotes and is critical for a cell's genetic stability and its proliferative viability. All telomerases contain a catalytic protein component homologous to viral reverse transcriptases (TERT) and an RNA (TR) that provides the template sequence as well as a scaffold for ribonucleoprotein assembly. Vertebrate telomerase RNAs have three essential domains: the template, activation and stability domains. Here we report the NMR structure of an essential RNA element derived from the human telomerase RNA activation domain. The sequence forms a stem±loop structure stabilized by a GU wobble pair formed by two of the ®ve unpaired residues capping a short double helical region. The remaining three loop residues are in a well-de®ned conformation and form phosphate-base stacking interactions reminiscent of other RNA loop structures. Mutations of these unpaired nucleotides abolish enzymatic activity. The structure rationalizes a number of biochemical observations, and allows us to propose how the loop may function in the telomerase catalytic cycle. The pre-formed structure of the loop exposes the bases of these three essential nucleotides and positions them to interact with other RNA sequences within TR, with the reverse transcriptase or with the newly synthesized telomeric DNA strand. The functional role of this stem±loop appears to be conserved in even distantly related organisms such as yeast and ciliates.

Research paper thumbnail of Novel Protein–Protein Contacts Facilitate mRNA 3′Processing Signal Recognition by Rna15 and Hrp1

Journal of Molecular Biology, 2010

Precise 3′-end processing of mRNA is essential for correct gene expression, yet in yeast, 3′-proc... more Precise 3′-end processing of mRNA is essential for correct gene expression, yet in yeast, 3′-processing signals consist of multiple ambiguous sequence elements. Two neighboring elements upstream of the cleavage site are particularly important for the accuracy (positioning element) and efficiency (efficiency element) of 3′-processing and are recognized by the RNA-binding proteins Rna15 and Hrp1, respectively. In vivo, these interactions are strengthened by the scaffolding protein Rna14 that stabilizes their association. The NMR structure of the 34 -kDa ternary complex of the RNA recognition motif (RRM) domains of Hrp1 and Rna15 bound to this pair of RNA elements was determined by residual dipolar coupling and paramagnetic relaxation experiments. It reveals how each of the proteins binds to RNA and introduces a novel class of protein–protein contact in regions of previously unknown function. These interdomain contacts had previously been overlooked in other multi-RRM structures, although a careful analysis suggests that they may be frequently present. Mutations in the regions of these contacts disrupt 3′-end processing, suggesting that they may structurally organize the ribonucleoprotein complexes responsible for RNA processing.

Research paper thumbnail of A new α-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III

Embo Journal, 2004

Rnt1 endoribonuclease, the yeast homolog of RNAse III, plays an important role in the maturation ... more Rnt1 endoribonuclease, the yeast homolog of RNAse III, plays an important role in the maturation of a diverse set of RNAs. The enzymatic activity requires a conserved catalytic domain, while RNA binding requires the doublestranded RNA-binding domain (dsRBD) at the C-terminus of the protein. While bacterial RNAse III enzymes cleave double-stranded RNA, Rnt1p specifically cleaves RNAs that possess short irregular stem-loops containing 12-14 base pairs interrupted by internal loops and bulges and capped by conserved AGNN tetraloops. Consistent with this substrate specificity, the isolated Rnt1p dsRBD and the 30-40 amino acids that follow bind to AGNN-containing stemloops preferentially in vitro. In order to understand how Rnt1p recognizes its cognate processing sites, we have defined its minimal RNA-binding domain and determined its structure by solution NMR spectroscopy and X-ray crystallography. We observe a new carboxy-terminal helix following a canonical dsRBD structure. Removal of this helix reduces binding to Rnt1p substrates. The results suggest that this helix allows the Rnt1p dsRBD to bind to short RNA stem-loops by modulating the conformation of helix a1, a key RNA-recognition element of the dsRBD.

Research paper thumbnail of The structure of an enzyme-activating fragment of human telomerase RNA

Rna-a Publication of The Rna Society, 2005

The ribonucleoprotein enzyme telomerase ensures the stability and fidelity of linear chromosome e... more The ribonucleoprotein enzyme telomerase ensures the stability and fidelity of linear chromosome ends by elongating the telomeric DNA that is lost during each round of DNA replication. All telomerases contain a catalytic protein component homologous to viral reverse transcriptases (TERT) and an RNA (TR) that provides the template sequence, acts as the scaffold for ribonucleoprotein assembly, and activates the enzyme for catalysis. Vertebrate telomerase RNAs contain three highly conserved structural and functional domains: the template domain, the "CR4-CR5" or "activation" domain essential for activation of the enzymatic activity, and a 3-terminal "box H/ACA"-homology domain responsible for ribonucleprotein assembly and maturation. Here we report the NMR structure of a functionally essential RNA structural element derived from the human telomerase RNA CR4-CR5 domain. This RNA, referred to as hTR J6, forms a stable hairpin interrupted by a single nucleotide bulge and an asymmetric internal loop. Previous work on telomerase has shown that deletion of the hTR J6 asymmetric internal loop results in an RNA incapable of binding the enzymatic protein component of the RNP and therefore an inactive RNP without telomerase activity. We demonstrate here that the J6 internal loop introduces a twist in the RNA structure that may position the entire domain into the catalytic site of the enzyme. .

Research paper thumbnail of TAR RNA Recognition by a Cyclic Peptidomimetic of Tat Protein

Biochemistry, 2005

The search for new antiviral drugs that repress HIV viral replication by blocking transactivation... more The search for new antiviral drugs that repress HIV viral replication by blocking transactivation of viral RNA transcription has long been advocated as an approach to novel antiviral therapy. However, research in this area has so far failed to yield attractive lead compounds because of the insufficient development of RNA-based medicinal chemistry. One difficulty in efforts to inhibit protein-RNA interactions using small druglike molecules is the large surface areas typically found at these interfaces. To overcome this problem, we sought to identify constrained peptidomimetic inhibitors that would provide potential new drug leads. We previously reported the discovery of a cyclic peptide mimic of the RNAbinding domain of BIV Tat protein based on a designed -hairpin scaffold. We demonstrated that the cyclic peptide bound BIV TAR RNA with an affinity comparable to that of the RNA-binding domain of the Tat protein and inhibited protein binding to the RNA. In this study, we report the structure of the complex of the cyclic peptide bound to BIV TAR RNA determined using heteronuclear NMR methods. The structure reveals a -hairpin conformation in the bound peptide, which adopts an unexpected orientation in the major groove of the RNA opposite those observed for peptides derived from the Tat protein. This structure suggests many ways in which to optimize the compound and enhance its activity and pharmacological potential and represents a further step in the rational design of a new class of HIV-1 virus replication inhibitors based on peptidomimetic chemistry. † This work was supported by a grant from NIH-NIAID (to G.V.) and from the SNF (to J.A.R.). ‡ Coordinates for the BIV-2 peptide/TAR RNA complex have been deposited in the Protein Data Bank (PDB) as entry 2A9X.

Research paper thumbnail of Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain

Nature Structural & Molecular Biology, 2010

Phosphorylation of the C-terminal domain of RNA polymerase II controls the co-transcriptional ass... more Phosphorylation of the C-terminal domain of RNA polymerase II controls the co-transcriptional assembly of RNA processing and transcription factors. Recruitment relies on conserved CTDinteracting domains that recognize different CTD phosphoisoforms during the transcription cycle, but the molecular basis for their specificity remains unclear. We show that the CTD-interacting domains of two transcription termination factors, Rtt103 and Pcf11, achieve high affinity and specificity both by specifically recognizing the phosphorylated CTD and by cooperatively binding to neighboring CTD repeats. Single amino acid mutations at the protein-protein interface abolish cooperativity and affect recruitment at the 3′-end processing site in vivo. We suggest that this cooperativity provides a signal-response mechanism to ensure that its action is confined only to proper polyadenylation sites where Serine 2 phosphorylation density is highest.

Research paper thumbnail of Simultaneous recognition of HIV1 TAR RNA bulge and loop sequences by cyclic peptide mimics of Tat protein

Proceedings of The National Academy of Sciences, 2009

The interaction of the HIV-1 transactivator protein Tat with its transactivation response (TAR) R... more The interaction of the HIV-1 transactivator protein Tat with its transactivation response (TAR) RNA is an essential step in viral replication and therefore an attractive target for developing antivirals with new mechanisms of action. Numerous compounds that bind to the 3-nt bulge responsible for binding Tat have been identified in the past, but none of these molecules had sufficient potency to warrant pharmaceutical development. We have discovered conformationally-constrained cyclic peptide mimetics of Tat that are specific nM inhibitors of the Tat-TAR interaction by using a structure-based approach. The lead peptides are nearly as active as the antiviral drug nevirapine against a variety of clinical isolates in human lymphocytes. The NMR structure of a peptide-RNA complex reveals that these molecules interfere with the recruitment to TAR of both Tat and the essential cellular cofactor transcription elongation factor-b (P-TEFb) by binding simultaneously at the RNA bulge and apical loop, forming an unusually deep pocket. This structure illustrates additional principles in RNA recognition: RNA-binding molecules can achieve specificity by interacting simultaneously with multiple secondary structure elements and by inducing the formation of deep binding pockets in their targets. It also provides insight into the P-TEFb binding site and a rational basis for optimizing the promising antiviral activity observed for these cyclic peptides.

Research paper thumbnail of The solution structure of an essential stem-loop of human telomerase RNA

Nucleic Acids Research, 2003

The ribonucleoprotein enzyme telomerase maintains chromosome ends in most eukaryotes and is criti... more The ribonucleoprotein enzyme telomerase maintains chromosome ends in most eukaryotes and is critical for a cell's genetic stability and its proliferative viability. All telomerases contain a catalytic protein component homologous to viral reverse transcriptases (TERT) and an RNA (TR) that provides the template sequence as well as a scaffold for ribonucleoprotein assembly. Vertebrate telomerase RNAs have three essential domains: the template, activation and stability domains. Here we report the NMR structure of an essential RNA element derived from the human telomerase RNA activation domain. The sequence forms a stem±loop structure stabilized by a GU wobble pair formed by two of the ®ve unpaired residues capping a short double helical region. The remaining three loop residues are in a well-de®ned conformation and form phosphate-base stacking interactions reminiscent of other RNA loop structures. Mutations of these unpaired nucleotides abolish enzymatic activity. The structure rationalizes a number of biochemical observations, and allows us to propose how the loop may function in the telomerase catalytic cycle. The pre-formed structure of the loop exposes the bases of these three essential nucleotides and positions them to interact with other RNA sequences within TR, with the reverse transcriptase or with the newly synthesized telomeric DNA strand. The functional role of this stem±loop appears to be conserved in even distantly related organisms such as yeast and ciliates.

Research paper thumbnail of Novel Protein–Protein Contacts Facilitate mRNA 3′Processing Signal Recognition by Rna15 and Hrp1

Journal of Molecular Biology, 2010

Precise 3′-end processing of mRNA is essential for correct gene expression, yet in yeast, 3′-proc... more Precise 3′-end processing of mRNA is essential for correct gene expression, yet in yeast, 3′-processing signals consist of multiple ambiguous sequence elements. Two neighboring elements upstream of the cleavage site are particularly important for the accuracy (positioning element) and efficiency (efficiency element) of 3′-processing and are recognized by the RNA-binding proteins Rna15 and Hrp1, respectively. In vivo, these interactions are strengthened by the scaffolding protein Rna14 that stabilizes their association. The NMR structure of the 34 -kDa ternary complex of the RNA recognition motif (RRM) domains of Hrp1 and Rna15 bound to this pair of RNA elements was determined by residual dipolar coupling and paramagnetic relaxation experiments. It reveals how each of the proteins binds to RNA and introduces a novel class of protein–protein contact in regions of previously unknown function. These interdomain contacts had previously been overlooked in other multi-RRM structures, although a careful analysis suggests that they may be frequently present. Mutations in the regions of these contacts disrupt 3′-end processing, suggesting that they may structurally organize the ribonucleoprotein complexes responsible for RNA processing.

Research paper thumbnail of A new α-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III

Embo Journal, 2004

Rnt1 endoribonuclease, the yeast homolog of RNAse III, plays an important role in the maturation ... more Rnt1 endoribonuclease, the yeast homolog of RNAse III, plays an important role in the maturation of a diverse set of RNAs. The enzymatic activity requires a conserved catalytic domain, while RNA binding requires the doublestranded RNA-binding domain (dsRBD) at the C-terminus of the protein. While bacterial RNAse III enzymes cleave double-stranded RNA, Rnt1p specifically cleaves RNAs that possess short irregular stem-loops containing 12-14 base pairs interrupted by internal loops and bulges and capped by conserved AGNN tetraloops. Consistent with this substrate specificity, the isolated Rnt1p dsRBD and the 30-40 amino acids that follow bind to AGNN-containing stemloops preferentially in vitro. In order to understand how Rnt1p recognizes its cognate processing sites, we have defined its minimal RNA-binding domain and determined its structure by solution NMR spectroscopy and X-ray crystallography. We observe a new carboxy-terminal helix following a canonical dsRBD structure. Removal of this helix reduces binding to Rnt1p substrates. The results suggest that this helix allows the Rnt1p dsRBD to bind to short RNA stem-loops by modulating the conformation of helix a1, a key RNA-recognition element of the dsRBD.