Application on MOCA 100k (original) (raw)
Load data
Here we apply haystack
to 100k cells from the Mouse Organogenesis Cell Atlas (MOCA). The sparse matrix data was downloaded from the MOCA website. The data was converted into a Seurat object and processed following the standard pipeline.
## An object of class Seurat
## 16811 features across 100000 samples within 1 assay
## Active assay: RNA (16811 features, 2000 variable features)
## 2 dimensional reductions calculated: pca, umap
Haystack
We run haystack
using PCA coordinates with 50 PCs.
## user system elapsed
## 256.045 28.569 284.612
It takes around 5 minutes to complete in a standard personal computer. Here we show the top 10 genes selected byhaystack
.
## D_KL log.p.vals log.p.adj
## Ppp1r1c 0.25684566 -202.6767 -198.4511
## Acp5 0.13324559 -173.9745 -169.7489
## Itih2 0.19905815 -168.2541 -164.0285
## A1cf 0.27878610 -161.4285 -157.2029
## Kel 0.08720005 -158.6047 -154.3791
## Rhag 0.08512571 -157.6347 -153.4091
## Ermap 0.08432139 -157.2455 -153.0199
## Pkhd1l1 0.09157942 -156.9557 -152.7301
## Spta1 0.08178285 -155.5603 -151.3347
## Gm43449 0.16349201 -155.3943 -151.1687
And here we plot the expression of the top 4 genes.