Guardrails AI | Phoenix (original) (raw)
Guardrails AI
Instrument LLM applications that use the Guardrails AI framework
In this example we will instrument a small program that uses the Guardrails AI framework to protect their LLM calls.
Sign up for Phoenix:
Sign up for an Arize Phoenix account at https://app.phoenix.arize.com/login
Install packages:
pip install arize-phoenix-otel
Set your Phoenix endpoint and API Key:
import os
# Add Phoenix API Key for tracing
PHOENIX_API_KEY = "ADD YOUR API KEY"
os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={PHOENIX_API_KEY}"
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com"
Your Phoenix API key can be found on the Keys section of your dashboard.
Launch your local Phoenix instance:
pip install arize-phoenix
phoenix serve
For details on customizing a local terminal deployment, see Terminal Setup.
Install packages:
pip install arize-phoenix-otel
Set your Phoenix endpoint:
import os
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "http://localhost:6006"
See Terminal for more details
Pull latest Phoenix image from Docker Hub:
docker pull arizephoenix/phoenix:latest
Run your containerized instance:
docker run -p 6006:6006 arizephoenix/phoenix:latest
This will expose the Phoenix on localhost:6006
Install packages:
pip install arize-phoenix-otel
Set your Phoenix endpoint:
import os
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "http://localhost:6006"
For more info on using Phoenix with Docker, see Docker.
Install packages:
pip install arize-phoenix
Launch Phoenix:
import phoenix as px
px.launch_app()
By default, notebook instances do not have persistent storage, so your traces will disappear after the notebook is closed. See self-hosting or use one of the other deployment options to retain traces.
pip install openinference-instrumentation-guardrails guardrails-ai
Connect to your Phoenix instance using the register function.
from phoenix.otel import register
# configure the Phoenix tracer
tracer_provider = register(
project_name="my-llm-app", # Default is 'default'
auto_instrument=True # Auto-instrument your app based on installed OI dependencies
)
From here, you can run Guardrails as normal:
from guardrails import Guard
from guardrails.hub import TwoWords
import openai
guard = Guard().use(
TwoWords(),
)
response = guard(
llm_api=openai.chat.completions.create,
prompt="What is another name for America?",
model="gpt-3.5-turbo",
max_tokens=1024,
)
print(response)
Now that you have tracing setup, all invocations of underlying models used by Guardrails (completions, chat completions, embeddings) will be streamed to your running Phoenix for observability and evaluation. Additionally, Guards will be present as a new span kind in Phoenix.